期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Augmented Lagrangian Methods for Convex Matrix Optimization Problems
1
作者 Ying Cui Chao Ding +1 位作者 Xu-Dong Li Xin-Yuan Zhao 《Journal of the Operations Research Society of China》 EI CSCD 2022年第2期305-342,共38页
In this paper,we provide some gentle introductions to the recent advance in augmented Lagrangian methods for solving large-scale convex matrix optimization problems(cMOP).Specifically,we reviewed two types of sufficie... In this paper,we provide some gentle introductions to the recent advance in augmented Lagrangian methods for solving large-scale convex matrix optimization problems(cMOP).Specifically,we reviewed two types of sufficient conditions for ensuring the quadratic growth conditions of a class of constrained convex matrix optimization problems regularized by nonsmooth spectral functions.Under a mild quadratic growth condition on the dual of cMOP,we further discussed the R-superlinear convergence of the Karush-Kuhn-Tucker(KKT)residuals of the sequence generated by the augmented Lagrangian methods(ALM)for solving convex matrix optimization problems.Implementation details of the ALM for solving core convex matrix optimization problems are also provided. 展开更多
关键词 Matrix optimization Spectral functions Quadratic growth conditions Metric subregularity augmented lagrangian methods Fast convergence rates Semismooth Newton methods
原文传递
Augmented Lagrangian Alternating Direction Method for Tensor RPCA 被引量:1
2
作者 Ruru HAO Zhixun SU 《Journal of Mathematical Research with Applications》 CSCD 2017年第3期367-378,共12页
Tensor robust principal component analysis(TRPCA) problem aims to separate a low-rank tensor and a sparse tensor from their sum. This problem has recently attracted considerable research attention due to its wide ra... Tensor robust principal component analysis(TRPCA) problem aims to separate a low-rank tensor and a sparse tensor from their sum. This problem has recently attracted considerable research attention due to its wide range of potential applications in computer vision and pattern recognition. In this paper, we propose a new model to deal with the TRPCA problem by an alternation minimization algorithm along with two adaptive rankadjusting strategies. For the underlying low-rank tensor, we simultaneously perform low-rank matrix factorizations to its all-mode matricizations; while for the underlying sparse tensor,a soft-threshold shrinkage scheme is applied. Our method can be used to deal with the separation between either an exact or an approximate low-rank tensor and a sparse one. We established the subsequence convergence of our algorithm in the sense that any limit point of the iterates satisfies the KKT conditions. When the iteration stops, the output will be modified by applying a high-order SVD approach to achieve an exactly low-rank final result as the accurate rank has been calculated. The numerical experiments demonstrate that our method could achieve better results than the compared methods. 展开更多
关键词 tensor RPCA alternating direction method augmented lagrangian function high-order SVD
原文传递
An Optimization Model for the Strip-packing Problem and Its Augmented Lagrangian Method
3
作者 于洪霞 张宏伟 张立卫 《Northeastern Mathematical Journal》 CSCD 2006年第4期441-450,共10页
This paper formulates a two-dimensional strip packing problem as a non- linear programming (NLP) problem and establishes the first-order optimality conditions for the NLP problem. A numerical algorithm for solving t... This paper formulates a two-dimensional strip packing problem as a non- linear programming (NLP) problem and establishes the first-order optimality conditions for the NLP problem. A numerical algorithm for solving this NLP problem is given to find exact solutions to strip-packing problems involving up to 10 items. Approximate solutions can be found for big-sized problems by decomposing the set of items into small-sized blocks of which each block adopts the proposed numerical algorithm. Numerical results show that the approximate solutions to big-sized problems obtained by this method are superior to those by NFDH, FFDH and BFDH approaches. 展开更多
关键词 strip-packing problem augmented lagrangian method first-order optimality condition
在线阅读 下载PDF
A STOCHASTIC AUGMENTED LAGRANGIAN METHOD FOR STOCHASTIC CONVEX PROGRAMMING
4
作者 Jiani Wang Liwei Zhang 《Journal of Computational Mathematics》 2025年第2期315-344,共30页
In this paper,we analyze the convergence properties of a stochastic augmented Lagrangian method for solving stochastic convex programming problems with inequality constraints.Approximation models for stochastic convex... In this paper,we analyze the convergence properties of a stochastic augmented Lagrangian method for solving stochastic convex programming problems with inequality constraints.Approximation models for stochastic convex programming problems are constructed from stochastic observations of real objective and constraint functions.Based on relations between solutions of the primal problem and solutions of the dual problem,it is proved that the convergence of the algorithm from the perspective of the dual problem.Without assumptions on how these random models are generated,when estimates are merely sufficiently accurate to the real objective and constraint functions with high enough,but fixed,probability,the method converges globally to the optimal solution almost surely.In addition,sufficiently accurate random models are given under different noise assumptions.We also report numerical results that show the good performance of the algorithm for different convex programming problems with several random models. 展开更多
关键词 Stochastic convex optimization Stochastic approximation augmented lagrangian method Duality theory
原文传递
The Rate of Convergence of Augmented Lagrangian Method for Minimax Optimization Problems with Equality Constraints
5
作者 Yu-Hong Dai Li-Wei Zhang 《Journal of the Operations Research Society of China》 EI CSCD 2024年第2期265-297,共33页
The augmented Lagrangian function and the corresponding augmented Lagrangian method are constructed for solving a class of minimax optimization problems with equality constraints.We prove that,under the linear indepen... The augmented Lagrangian function and the corresponding augmented Lagrangian method are constructed for solving a class of minimax optimization problems with equality constraints.We prove that,under the linear independence constraint qualification and the second-order sufficiency optimality condition for the lower level problem and the second-order sufficiency optimality condition for the minimax problem,for a given multiplier vectorμ,the rate of convergence of the augmented Lagrangian method is linear with respect to||μu-μ^(*)||and the ratio constant is proportional to 1/c when the ratio|μ-μ^(*)||/c is small enough,where c is the penalty parameter that exceeds a threshold c_(*)>O andμ^(*)is the multiplier corresponding to a local minimizer.Moreover,we prove that the sequence of multiplier vectors generated by the augmented Lagrangian method has at least Q-linear convergence if the sequence of penalty parameters(ck)is bounded and the convergence rate is superlinear if(ck)is increasing to infinity.Finally,we use a direct way to establish the rate of convergence of the augmented Lagrangian method for the minimax problem with a quadratic objective function and linear equality constraints. 展开更多
关键词 Minimax optimization augmented lagrangian method Rate of convergence Second-order sufficiency optimality
原文传递
A Second-Order Image Denoising Model for Contrast Preservation
6
作者 Wei Zhu 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1406-1427,共22页
In this work,we propose a second-order model for image denoising by employing a novel potential function recently developed in Zhu(J Sci Comput 88:46,2021)for the design of a regularization term.Due to this new second... In this work,we propose a second-order model for image denoising by employing a novel potential function recently developed in Zhu(J Sci Comput 88:46,2021)for the design of a regularization term.Due to this new second-order derivative based regularizer,the model is able to alleviate the staircase effect and preserve image contrast.The augmented Lagrangian method(ALM)is utilized to minimize the associated functional and convergence analysis is established for the proposed algorithm.Numerical experiments are presented to demonstrate the features of the proposed model. 展开更多
关键词 Image denoising Variational model Image contrast augmented lagrangian method(ALM)
在线阅读 下载PDF
An Augmented Lagrangian Deep Learning Method for Variational Problems with Essential Boundary Conditions 被引量:2
7
作者 Jianguo Huang Haoqin Wang Tao Zhou 《Communications in Computational Physics》 SCIE 2022年第3期966-986,共21页
This paper is concerned with a novel deep learning method for variational problems with essential boundary conditions.To this end,wefirst reformulate the original problem into a minimax problem corresponding to a feas... This paper is concerned with a novel deep learning method for variational problems with essential boundary conditions.To this end,wefirst reformulate the original problem into a minimax problem corresponding to a feasible augmented La-grangian,which can be solved by the augmented Lagrangian method in an infinite dimensional setting.Based on this,by expressing the primal and dual variables with two individual deep neural network functions,we present an augmented Lagrangian deep learning method for which the parameters are trained by the stochastic optimiza-tion method together with a projection technique.Compared to the traditional penalty method,the new method admits two main advantages:i)the choice of the penalty parameter isflexible and robust,and ii)the numerical solution is more accurate in the same magnitude of computational cost.As typical applications,we apply the new ap-proach to solve elliptic problems and(nonlinear)eigenvalue problems with essential boundary conditions,and numerical experiments are presented to show the effective-ness of the new method. 展开更多
关键词 The augmented lagrangian method deep learning variational problems saddle point problems essential boundary conditions
原文传递
An Augmented Lagrangian Uzawa IterativeMethod for Solving Double Saddle-Point Systems with Semidefinite(2,2)Block and its Application to DLM/FDMethod for Elliptic Interface Problems 被引量:2
8
作者 Cheng Wang Pengtao Sun 《Communications in Computational Physics》 SCIE 2021年第6期124-143,共20页
.In this paper,an augmented Lagrangian Uzawa iterative method is developed and analyzed for solving a class of double saddle-point systems with semidefinite(2,2)block.Convergence of the iterativemethod is proved under... .In this paper,an augmented Lagrangian Uzawa iterative method is developed and analyzed for solving a class of double saddle-point systems with semidefinite(2,2)block.Convergence of the iterativemethod is proved under the assumption that the double saddle-point problem exists a unique solution.An application of the iterative method to the double saddle-point systems arising from the distributed Lagrange multiplier/fictitious domain(DLM/FD)finite element method for solving elliptic interface problems is also presented,in which the existence and uniqueness of the double saddle-point system is guaranteed by the analysis of the DLM/FD finite element method.Numerical experiments are conducted to validate the theoretical results and to study the performance of the proposed iterative method. 展开更多
关键词 Double saddle-point problem augmented lagrangian Uzawa method elliptic interface problem distributed Lagrange multiplier/fictitious domain(DLM/FD)method
原文传递
Study on the Splitting Methods for Separable Convex Optimization in a Unified Algorithmic Framework
9
作者 Bingsheng He 《Analysis in Theory and Applications》 CSCD 2020年第3期262-282,共21页
It is well recognized the convenience of converting the linearly constrained convex optimization problems to a monotone variational inequality.Recently,we have proposed a unified algorithmic framework which can guide ... It is well recognized the convenience of converting the linearly constrained convex optimization problems to a monotone variational inequality.Recently,we have proposed a unified algorithmic framework which can guide us to construct the solution methods for solving these monotone variational inequalities.In this work,we revisit two full Jacobian decomposition of the augmented Lagrangian methods for separable convex programming which we have studied a few years ago.In particular,exploiting this framework,we are able to give a very clear and elementary proof of the convergence of these solution methods. 展开更多
关键词 Convex programming augmented lagrangian method multi-block separable model Jacobian splitting unified algorithmic framework.
原文传递
Binary Level Set Methods for Dynamic Reservoir Characterization by Operator Splitting Scheme
10
作者 Changhui Yao 《Advances in Applied Mathematics and Mechanics》 SCIE 2012年第6期780-798,共19页
In this paper,operator splitting scheme for dynamic reservoir characterization by binary level set method is employed.For this problem,the absolute permeability of the two-phase porous medium flow can be simulated by ... In this paper,operator splitting scheme for dynamic reservoir characterization by binary level set method is employed.For this problem,the absolute permeability of the two-phase porous medium flow can be simulated by the constrained augmented Lagrangian optimization method with well data and seismic time-lapse data.By transforming the constrained optimization problem in an unconstrained one,the saddle point problem can be solved by Uzawas algorithms with operator splitting scheme,which is based on the essence of binary level set method.Both the simple and complicated numerical examples demonstrate that the given algorithms are stable and efficient and the absolute permeability can be satisfactorily recovered. 展开更多
关键词 Dynamic reservoir characterization binary level set method operator splitting scheme the augmented lagrangian method
在线阅读 下载PDF
IMAGE SUPER-RESOLUTION RECONSTRUCTION BY HUBER REGULARIZATION AND TAILORED FINITE POINT METHOD
11
作者 Wenli Yang Zhongyi Huang Wei Zhu 《Journal of Computational Mathematics》 SCIE CSCD 2024年第2期313-336,共24页
In this paper,we propose using the tailored finite point method(TFPM)to solve the resulting parabolic or elliptic equations when minimizing the Huber regularization based image super-resolution model using the augment... In this paper,we propose using the tailored finite point method(TFPM)to solve the resulting parabolic or elliptic equations when minimizing the Huber regularization based image super-resolution model using the augmented Lagrangian method(ALM).The Hu-ber regularization based image super-resolution model can ameliorate the staircase for restored images.TFPM employs the method of weighted residuals with collocation tech-nique,which helps get more accurate approximate solutions to the equations and reserve more details in restored images.We compare the new schemes with the Marquina-Osher model,the image super-resolution convolutional neural network(SRCNN)and the classical interpolation methods:bilinear interpolation,nearest-neighbor interpolation and bicubic interpolation.Numerical experiments are presented to demonstrate that with the new schemes the quality of the super-resolution images has been improved.Besides these,the existence of the minimizer of the Huber regularization based image super-resolution model and the convergence of the proposed algorithm are also established in this paper. 展开更多
关键词 Image super-resolution Variational model augmented lagrangian methods Tailored finite point method
原文传递
Randomized Algorithms for Orthogonal Nonnegative Matrix Factorization 被引量:1
12
作者 Yong-Yong Chen Fang-Fang Xu 《Journal of the Operations Research Society of China》 EI CSCD 2023年第2期327-345,共19页
Orthogonal nonnegative matrix factorization(ONMF)is widely used in blind image separation problem,document classification,and human face recognition.The model of ONMF can be efficiently solved by the alternating direc... Orthogonal nonnegative matrix factorization(ONMF)is widely used in blind image separation problem,document classification,and human face recognition.The model of ONMF can be efficiently solved by the alternating direction method of multipliers and hierarchical alternating least squares method.When the given matrix is huge,the cost of computation and communication is too high.Therefore,ONMF becomes challenging in the large-scale setting.The random projection is an efficient method of dimensionality reduction.In this paper,we apply the random projection to ONMF and propose two randomized algorithms.Numerical experiments show that our proposed algorithms perform well on both simulated and real data. 展开更多
关键词 Orthogonal nonnegative matrix factorization Random projection method Dimensionality reduction augmented lagrangian method Hierarchical alternating least squares algorithm
原文传递
Unified convergence analysis of a second-order method of multipliers for nonlinear conic programming
13
作者 Liang Chen Junyuan Zhu Xinyuan Zhao 《Science China Mathematics》 SCIE CSCD 2022年第11期2397-2422,共26页
In this paper,we accomplish the unified convergence analysis of a second-order method of multipliers(i.e.,a second-order augmented Lagrangian method)for solving the conventional nonlinear conic optimization problems.S... In this paper,we accomplish the unified convergence analysis of a second-order method of multipliers(i.e.,a second-order augmented Lagrangian method)for solving the conventional nonlinear conic optimization problems.Specifically,the algorithm that we investigate incorporates a specially designed nonsmooth(generalized)Newton step to furnish a second-order update rule for the multipliers.We first show in a unified fashion that under a few abstract assumptions,the proposed method is locally convergent and possesses a(nonasymptotic)superlinear convergence rate,even though the penalty parameter is fixed and/or the strict complementarity fails.Subsequently,we demonstrate that for the three typical scenarios,i.e.,the classic nonlinear programming,the nonlinear second-order cone programming and the nonlinear semidefinite programming,these abstract assumptions are nothing but exactly the implications of the iconic sufficient conditions that are assumed for establishing the Q-linear convergence rates of the method of multipliers without assuming the strict complementarity. 展开更多
关键词 second-order method of multipliers augmented lagrangian method convergence rate generalized Newton method second-order cone programming semidefinite programming
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部