Infants portray suggestive unique cries while sick, having belly pain, discomfort, tiredness, attention and desire for a change of diapers among other needs. There exists limited knowledge in accessing the infants’ n...Infants portray suggestive unique cries while sick, having belly pain, discomfort, tiredness, attention and desire for a change of diapers among other needs. There exists limited knowledge in accessing the infants’ needs as they only relay information through suggestive cries. Many teenagers tend to give birth at an early age, thereby exposing them to be the key monitors of their own babies. They tend not to have sufficient skills in monitoring the infant’s dire needs, more so during the early stages of infant development. Artificial intelligence has shown promising efficient predictive analytics from supervised, and unsupervised to reinforcement learning models. This study, therefore, seeks to develop an android app that could be used to discriminate the infant audio cries by leveraging the strength of convolution neural networks as a classifier model. Audio analytics from many kinds of literature is an untapped area by researchers as it’s attributed to messy and huge data generation. This study, therefore, strongly leverages convolution neural networks, a deep learning model that is capable of handling more than one-dimensional datasets. To achieve this, the audio data in form of a wave was converted to images through Mel spectrum frequencies which were classified using the computer vision CNN model. The Librosa library was used to convert the audio to Mel spectrum which was then presented as pixels serving as the input for classifying the audio classes such as sick, burping, tired, and hungry. The study goal was to incorporate the model as an android tool that can be utilized at the domestic level and hospital facilities for surveillance of the infant’s health and social needs status all time round.展开更多
The recent advancement in internet 2.0 creates a scope to connect people worldwide using society 2.0 and web 2.0 technologies.This new era allows the consumer to directly connect with other individuals,business corpor...The recent advancement in internet 2.0 creates a scope to connect people worldwide using society 2.0 and web 2.0 technologies.This new era allows the consumer to directly connect with other individuals,business corporations,and the government.People are open to sharing opinions,views,and ideas on any topic in different formats out loud.This creates the opportunity to make the"Big Social Data"handy by implementing machine learning approaches and social data analytics.This study offers an overview of recent works in social media,data science,and machine learning to gain a wide perspective on social media big data analytics.We explain why social media data are significant elements of the improved data-driven decision-making process.We propose and build the"Sunflower Model of Big Data"to define big data and bring it up to date with technology by combining 5 V’s and 10 Bigs.We discover the top ten social data analytics to work in the domain of social media platforms.A comprehensive list of relevant statistical/machine learning methods to implement each of these big data analytics is discussed in this work."Text Analytics"is the most used analytics in social data analysis to date.We create a taxonomy on social media analytics to meet the need and provide a clear understanding.Tools,techniques,and supporting data type are also discussed in this research work.As a result,researchers will have an easier time deciding which social data analytics would best suit their needs.展开更多
文摘Infants portray suggestive unique cries while sick, having belly pain, discomfort, tiredness, attention and desire for a change of diapers among other needs. There exists limited knowledge in accessing the infants’ needs as they only relay information through suggestive cries. Many teenagers tend to give birth at an early age, thereby exposing them to be the key monitors of their own babies. They tend not to have sufficient skills in monitoring the infant’s dire needs, more so during the early stages of infant development. Artificial intelligence has shown promising efficient predictive analytics from supervised, and unsupervised to reinforcement learning models. This study, therefore, seeks to develop an android app that could be used to discriminate the infant audio cries by leveraging the strength of convolution neural networks as a classifier model. Audio analytics from many kinds of literature is an untapped area by researchers as it’s attributed to messy and huge data generation. This study, therefore, strongly leverages convolution neural networks, a deep learning model that is capable of handling more than one-dimensional datasets. To achieve this, the audio data in form of a wave was converted to images through Mel spectrum frequencies which were classified using the computer vision CNN model. The Librosa library was used to convert the audio to Mel spectrum which was then presented as pixels serving as the input for classifying the audio classes such as sick, burping, tired, and hungry. The study goal was to incorporate the model as an android tool that can be utilized at the domestic level and hospital facilities for surveillance of the infant’s health and social needs status all time round.
文摘The recent advancement in internet 2.0 creates a scope to connect people worldwide using society 2.0 and web 2.0 technologies.This new era allows the consumer to directly connect with other individuals,business corporations,and the government.People are open to sharing opinions,views,and ideas on any topic in different formats out loud.This creates the opportunity to make the"Big Social Data"handy by implementing machine learning approaches and social data analytics.This study offers an overview of recent works in social media,data science,and machine learning to gain a wide perspective on social media big data analytics.We explain why social media data are significant elements of the improved data-driven decision-making process.We propose and build the"Sunflower Model of Big Data"to define big data and bring it up to date with technology by combining 5 V’s and 10 Bigs.We discover the top ten social data analytics to work in the domain of social media platforms.A comprehensive list of relevant statistical/machine learning methods to implement each of these big data analytics is discussed in this work."Text Analytics"is the most used analytics in social data analysis to date.We create a taxonomy on social media analytics to meet the need and provide a clear understanding.Tools,techniques,and supporting data type are also discussed in this research work.As a result,researchers will have an easier time deciding which social data analytics would best suit their needs.