The complexity of cloud environments challenges secure resource management,especially for intrusion detection systems(IDS).Existing strategies struggle to balance efficiency,cost fairness,and threat resilience.This pa...The complexity of cloud environments challenges secure resource management,especially for intrusion detection systems(IDS).Existing strategies struggle to balance efficiency,cost fairness,and threat resilience.This paper proposes an innovative approach to managing cloud resources through the integration of a genetic algorithm(GA)with a“double auction”method.This approach seeks to enhance security and efficiency by aligning buyers and sellers within an intelligent market framework.It guarantees equitable pricing while utilizing resources efficiently and optimizing advantages for all stakeholders.The GA functions as an intelligent search mechanism that identifies optimal combinations of bids from users and suppliers,addressing issues arising from the intricacies of cloud systems.Analyses proved that our method surpasses previous strategies,particularly in terms of price accuracy,speed,and the capacity to manage large-scale activities,critical factors for real-time cybersecurity systems,such as IDS.Our research integrates artificial intelligence-inspired evolutionary algorithms with market-driven methods to develop intelligent resource management systems that are secure,scalable,and adaptable to evolving risks,such as process innovation.展开更多
The increased demand for personalized customization calls for new production modes to enhance collaborations among a wide range of manufacturing practitioners who unnecessarily trust each other.In this article,a block...The increased demand for personalized customization calls for new production modes to enhance collaborations among a wide range of manufacturing practitioners who unnecessarily trust each other.In this article,a blockchain-enabled manufacturing collaboration framework is proposed,with a focus on the production capacity matching problem for blockchainbased peer-to-peer(P2P)collaboration.First,a digital model of production capacity description is built for trustworthy and transparent sharing over the blockchain.Second,an optimization problem is formulated for P2P production capacity matching with objectives to maximize both social welfare and individual benefits of all participants.Third,a feasible solution based on an iterative double auction mechanism is designed to determine the optimal price and quantity for production capacity matching with a lack of personal information.It facilitates automation of the matching process while protecting users'privacy via blockchainbased smart contracts.Finally,simulation results from the Hyperledger Fabric-based prototype show that the proposed approach increases social welfare by 1.4%compared to the Bayesian game-based approach,makes all participants profitable,and achieves 90%fairness of enterprises.展开更多
Electronic auctions(e-auctions)remove the physical limitations of traditional auctions and bring this mechanism to the general public.However,most e-auction schemes involve a trusted auctioneer,which is not always cre...Electronic auctions(e-auctions)remove the physical limitations of traditional auctions and bring this mechanism to the general public.However,most e-auction schemes involve a trusted auctioneer,which is not always credible in practice.Some studies have applied cryptography tools to solve this problem by distributing trust,but they ignore the existence of collusion.In this paper,a blockchain-based Privacy-Preserving and Collusion-Resistant scheme(PPCR)for double auctions is proposed by employing both cryptography and blockchain technology,which is the first decentralized and collusion-resistant double auction scheme that guarantees bidder anonymity and bid privacy.A two-server-based auction framework is designed to support off-chain allocation with privacy preservation and on-chain dispute resolution for collusion resistance.A Dispute Resolution agreement(DR)is provided to the auctioneer to prove that they have conducted the auction correctly and the result is fair and correct.In addition,a Concise Dispute Resolution protocol(CDR)is designed to handle situations where the number of accused winners is small,significantly reducing the computation cost of dispute resolution.Extensive experimental results confirm that PPCR can indeed achieve efficient collusion resistance and verifiability of auction results with low on-chain and off-chain computational overhead.展开更多
Although blockchain technology has received a significant amount of cutting-edge research on constructing a novel carbon trade market in theory,there is little research on using blockchain in carbon emission trading s...Although blockchain technology has received a significant amount of cutting-edge research on constructing a novel carbon trade market in theory,there is little research on using blockchain in carbon emission trading schemes(ETS).This study intends to address existing gaps in the literature by creating and simulating an ETS system based on blockchain technology.Using the ciphertext-policy attributed-based encryption algorithm and the Fabric network to build a platform may optimize the amount of data available while maintaining privacy security.Considering the augmentation of information interaction during the auction process brought about by blockchain,the learning behavior of bidding firms is introduced to investigate the impact of blockchain on ETS auction.In particular,implementing smart contracts can provide a swift and automatic settlement.The simulation results of the proposed system demonstrate the following:(1)fine-grained access is possible with a second delay;(2)the average annual compliance levels increase by 2%when bidders’learning behavior is considered;and(3)the blockchain network can process more than 350 reading operations or 7 writing operations in a second.Novel cooperative management of an ETS platform based on blockchain is proposed.The data access control policy based on CP-ABE is used to solve the contradiction between data privacy on the firm chain and government supervision.A learned auction strategy is proposed to suit the enhancement of information interaction caused by blockchain technology.This study provides a new method for climate change policymakers to consider the blockchain application of the carbon market.展开更多
In this era of digital domination,it is fit to say that individuals are more inclined towards viewership on online platforms due to the wide variety and the scope of individual preferences it provides.In the past few ...In this era of digital domination,it is fit to say that individuals are more inclined towards viewership on online platforms due to the wide variety and the scope of individual preferences it provides.In the past few years,there has been a massive growth in the popularity of Over-The-Top platforms,with an increasing number of consumers adapting to them.The Covid-19 pandemic has also caused the proliferation of these services as people are restricted to their homes.Consumers are often in a dilemma about which subscription plan to choose,and this iswhere a recommendation systemmakes their task easy.The Subscription recommendation system allows potential users to pick the most suitable and convenient plan for their daily consumption from diverse OTT platforms.The economic equilibrium behind allocating these resources follows a unique voting and bidding system propped by us in this paper.The systemis dependent on two types of individuals,type 1 seeking the recommendation plan,and type 2 suggesting it.In our study,the system collaborates with the latterwho participate in voting and invest/bid in the available options,keeping in mind the user preferences.This architecture runs on an interface where the candidates can login to participate at their convenience.As a result,selective participants are awarded monetary gains considering the rules of the suggested mechanism,and the most voted subscription plan gets recommended to the user.展开更多
Auctions are important market mechanisms for the allocation of goods and services. Combinatorial auctions are those auctions in which buyers can place bids on combinations of items. Combinatorial auctions have many ap...Auctions are important market mechanisms for the allocation of goods and services. Combinatorial auctions are those auctions in which buyers can place bids on combinations of items. Combinatorial auctions have many applications. The paper presents the CRAB software system. CRAB is a non-commercial software system for generating, solving, and testing of combinatorial auction problems. The system solves problems by Balas’ method or by the primal-dual algo-rithm. CRAB is implemented in Ruby and it is distributed as the file crab.rb. The system is freely available on web pag-es for all interested展开更多
With the arrival of the 5G era,wireless communication technologies and services are rapidly exhausting the limited spectrum resources.Spectrum auctions came into being,which can effectively utilize spectrum resources....With the arrival of the 5G era,wireless communication technologies and services are rapidly exhausting the limited spectrum resources.Spectrum auctions came into being,which can effectively utilize spectrum resources.Because of the complexity of the electronic spectrum auction network environment,the security of spectrum auction can not be guaranteed.Most scholars focus on researching the security of the single-sided auctions,while ignoring the practical scenario of a secure double spectrum auction where participants are composed of multiple sellers and buyers.Researchers begin to design the secure double spectrum auction mechanisms,in which two semi-honest agents are introduced to finish the spectrum auction rules.But these two agents may collude with each other or be bribed by buyers and sellers,which may create security risks,therefore,a secure double spectrum auction is proposed in this paper.Unlike traditional secure double spectrum auctions,the spectrum auction server with Software Guard Extensions(SGX)component is used in this paper,which is an Ethereum blockchain platform that performs spectrum auctions.A secure double spectrum protocol is also designed,using SGX technology and cryptographic tools such as Paillier cryptosystem,stealth address technology and one-time ring signatures to well protect the private information of spectrum auctions.In addition,the smart contracts provided by the Ethereum blockchain platform are executed to assist offline verification,and to verify important spectrum auction information to ensure the fairness and impartiality of spectrum auctions.Finally,security analysis and performance evaluation of our protocol are discussed.展开更多
The airspace congestion is becoming more and more severe.Although there are traffic flow management(TFM)initiatives based on CDM widely applied,how to reschedule these disrupted flights of different airlines integra...The airspace congestion is becoming more and more severe.Although there are traffic flow management(TFM)initiatives based on CDM widely applied,how to reschedule these disrupted flights of different airlines integrating TFM initiatives and allocate the limited airspace resources to these airlines equitably and efficiently is still a problem.The air traffic management(ATM)authority aims to minimizing the systemic costs of congested airspaces.And the airlines are self-interested and profit-oriented.Being incorporated into the collaborative decision making(CDM)process,the airlines can influence the rescheduling decisions to profit themselves.The airlines maybe hide the flight information that is disadvantageous to them,but is necessary to the optimal system decision.To realize the coincidence goal between the ATM authority and airlines for the efficient,and equitable allocation of airspace resources,this paper provides an auction-based market method to solve the congestion airspace problem under the pre-tactic and tactic stage of air traffic flow management.Through a simulation experiment,the rationing results show that the auction method can decrease the total delay costs of flights in the congested airspace compared with both the first schedule first service(FSFS)tactic and the ration by schedule(RBS)tactic.Finally,the analysis results indicate that if reallocate the charges from the auction to the airlines according to the proportion of their disrupted flights,the auction mechanism can allocate the airspace resource in economy equitably and decrease the delay losses of the airlines compared with the results of the FSFS tactic.展开更多
In a SIPV model,when the commission proportion is not certain,but related with bargain price,generally,it is a linear function of the bargain price,this paper gives bidders'equilibrium bidding strategies in the fi...In a SIPV model,when the commission proportion is not certain,but related with bargain price,generally,it is a linear function of the bargain price,this paper gives bidders'equilibrium bidding strategies in the first-and secondprice auctions.We find that the equilibrium strategies in second-price auction are dominant strategies.For seller or auction house,whether the fixed proportion or the unfixed proportion is good is not only related with constant item and the linear coefficient of the linear function,the size of the fixed commission proportion,but also related with the value of the item auctioned.So,in the practical auctions,the seller and the auction house negotiated with each other to decide the commission rules for their own advantage.展开更多
I present a new protocol for three-party quantum secure direct communication (QSDC) with a set of ordered M Einstein-Podolsky-Rosen (EPR) pairs. In the scheme, by performing two unitary operations and Bell state m...I present a new protocol for three-party quantum secure direct communication (QSDC) with a set of ordered M Einstein-Podolsky-Rosen (EPR) pairs. In the scheme, by performing two unitary operations and Bell state measurements, it is shown that the three legitimate parties can exchange their respective secret message simultaneously. Then I modify it for an experimentally feasible and secure quantum sealed-bid auction (QSBD) protocol. Furthermore, I also analyze th^ecurity of the protocol, and the scheme is proven to be secure against the intercept-and-resend attack, the disturbancb attack and the entangled-and-measure attack.展开更多
文摘The complexity of cloud environments challenges secure resource management,especially for intrusion detection systems(IDS).Existing strategies struggle to balance efficiency,cost fairness,and threat resilience.This paper proposes an innovative approach to managing cloud resources through the integration of a genetic algorithm(GA)with a“double auction”method.This approach seeks to enhance security and efficiency by aligning buyers and sellers within an intelligent market framework.It guarantees equitable pricing while utilizing resources efficiently and optimizing advantages for all stakeholders.The GA functions as an intelligent search mechanism that identifies optimal combinations of bids from users and suppliers,addressing issues arising from the intricacies of cloud systems.Analyses proved that our method surpasses previous strategies,particularly in terms of price accuracy,speed,and the capacity to manage large-scale activities,critical factors for real-time cybersecurity systems,such as IDS.Our research integrates artificial intelligence-inspired evolutionary algorithms with market-driven methods to develop intelligent resource management systems that are secure,scalable,and adaptable to evolving risks,such as process innovation.
基金supported in part by the National Natural Science Foundation of China(62273310)the Natural Science Foundation of Zhejiang Province of China(LY22F030006,LZ24F030009)
文摘The increased demand for personalized customization calls for new production modes to enhance collaborations among a wide range of manufacturing practitioners who unnecessarily trust each other.In this article,a blockchain-enabled manufacturing collaboration framework is proposed,with a focus on the production capacity matching problem for blockchainbased peer-to-peer(P2P)collaboration.First,a digital model of production capacity description is built for trustworthy and transparent sharing over the blockchain.Second,an optimization problem is formulated for P2P production capacity matching with objectives to maximize both social welfare and individual benefits of all participants.Third,a feasible solution based on an iterative double auction mechanism is designed to determine the optimal price and quantity for production capacity matching with a lack of personal information.It facilitates automation of the matching process while protecting users'privacy via blockchainbased smart contracts.Finally,simulation results from the Hyperledger Fabric-based prototype show that the proposed approach increases social welfare by 1.4%compared to the Bayesian game-based approach,makes all participants profitable,and achieves 90%fairness of enterprises.
基金supported by the National Key R&D Program of China (No.2020YFB1005500)the Leading-edge Technology Program of Jiangsu Natural Science Foundation (No.BK20202001)+1 种基金the Fundamental Research Funds for the Central Universities (No.XJSJ23040)the Postdoctoral Science Foundation of Jiangsu Province (No.2021K596C)。
文摘Electronic auctions(e-auctions)remove the physical limitations of traditional auctions and bring this mechanism to the general public.However,most e-auction schemes involve a trusted auctioneer,which is not always credible in practice.Some studies have applied cryptography tools to solve this problem by distributing trust,but they ignore the existence of collusion.In this paper,a blockchain-based Privacy-Preserving and Collusion-Resistant scheme(PPCR)for double auctions is proposed by employing both cryptography and blockchain technology,which is the first decentralized and collusion-resistant double auction scheme that guarantees bidder anonymity and bid privacy.A two-server-based auction framework is designed to support off-chain allocation with privacy preservation and on-chain dispute resolution for collusion resistance.A Dispute Resolution agreement(DR)is provided to the auctioneer to prove that they have conducted the auction correctly and the result is fair and correct.In addition,a Concise Dispute Resolution protocol(CDR)is designed to handle situations where the number of accused winners is small,significantly reducing the computation cost of dispute resolution.Extensive experimental results confirm that PPCR can indeed achieve efficient collusion resistance and verifiability of auction results with low on-chain and off-chain computational overhead.
基金supported by the National Natural Science Foundation of China(No.72104075,71850012,72274056)the National Social Science Fund of China(No.19AZD014,21&ZD125)+2 种基金the Major Special Projects of the Department of Science and Technology of Hunan province(No.2018GK1020)the Natural Science Foundation of Hunan Province(No.2022JJ40106)the China Association for Science and Technology(No.20220615ZZ07110402),and Hunan University Youth Talent Program.
文摘Although blockchain technology has received a significant amount of cutting-edge research on constructing a novel carbon trade market in theory,there is little research on using blockchain in carbon emission trading schemes(ETS).This study intends to address existing gaps in the literature by creating and simulating an ETS system based on blockchain technology.Using the ciphertext-policy attributed-based encryption algorithm and the Fabric network to build a platform may optimize the amount of data available while maintaining privacy security.Considering the augmentation of information interaction during the auction process brought about by blockchain,the learning behavior of bidding firms is introduced to investigate the impact of blockchain on ETS auction.In particular,implementing smart contracts can provide a swift and automatic settlement.The simulation results of the proposed system demonstrate the following:(1)fine-grained access is possible with a second delay;(2)the average annual compliance levels increase by 2%when bidders’learning behavior is considered;and(3)the blockchain network can process more than 350 reading operations or 7 writing operations in a second.Novel cooperative management of an ETS platform based on blockchain is proposed.The data access control policy based on CP-ABE is used to solve the contradiction between data privacy on the firm chain and government supervision.A learned auction strategy is proposed to suit the enhancement of information interaction caused by blockchain technology.This study provides a new method for climate change policymakers to consider the blockchain application of the carbon market.
文摘In this era of digital domination,it is fit to say that individuals are more inclined towards viewership on online platforms due to the wide variety and the scope of individual preferences it provides.In the past few years,there has been a massive growth in the popularity of Over-The-Top platforms,with an increasing number of consumers adapting to them.The Covid-19 pandemic has also caused the proliferation of these services as people are restricted to their homes.Consumers are often in a dilemma about which subscription plan to choose,and this iswhere a recommendation systemmakes their task easy.The Subscription recommendation system allows potential users to pick the most suitable and convenient plan for their daily consumption from diverse OTT platforms.The economic equilibrium behind allocating these resources follows a unique voting and bidding system propped by us in this paper.The systemis dependent on two types of individuals,type 1 seeking the recommendation plan,and type 2 suggesting it.In our study,the system collaborates with the latterwho participate in voting and invest/bid in the available options,keeping in mind the user preferences.This architecture runs on an interface where the candidates can login to participate at their convenience.As a result,selective participants are awarded monetary gains considering the rules of the suggested mechanism,and the most voted subscription plan gets recommended to the user.
基金supported by Grants No.402/07/0166No.P402/10/0197 from the Grant Agency of Czech Republic.
文摘Auctions are important market mechanisms for the allocation of goods and services. Combinatorial auctions are those auctions in which buyers can place bids on combinations of items. Combinatorial auctions have many applications. The paper presents the CRAB software system. CRAB is a non-commercial software system for generating, solving, and testing of combinatorial auction problems. The system solves problems by Balas’ method or by the primal-dual algo-rithm. CRAB is implemented in Ruby and it is distributed as the file crab.rb. The system is freely available on web pag-es for all interested
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government.(MSIT)(2021R1A2B5B02087169)the National Natural Science Foundation of China(Nos.62072092,62072093+4 种基金U1708262)the China Postdoctoral Science Foundation(No.2019M653568)the Key Research and Development Project of Hebei Province(No.20310702D)the Natural Science Foundation of Hebei Province(No.F2020501013)the Fundamental Research Funds for the Central Universities(No.N2023020)。
文摘With the arrival of the 5G era,wireless communication technologies and services are rapidly exhausting the limited spectrum resources.Spectrum auctions came into being,which can effectively utilize spectrum resources.Because of the complexity of the electronic spectrum auction network environment,the security of spectrum auction can not be guaranteed.Most scholars focus on researching the security of the single-sided auctions,while ignoring the practical scenario of a secure double spectrum auction where participants are composed of multiple sellers and buyers.Researchers begin to design the secure double spectrum auction mechanisms,in which two semi-honest agents are introduced to finish the spectrum auction rules.But these two agents may collude with each other or be bribed by buyers and sellers,which may create security risks,therefore,a secure double spectrum auction is proposed in this paper.Unlike traditional secure double spectrum auctions,the spectrum auction server with Software Guard Extensions(SGX)component is used in this paper,which is an Ethereum blockchain platform that performs spectrum auctions.A secure double spectrum protocol is also designed,using SGX technology and cryptographic tools such as Paillier cryptosystem,stealth address technology and one-time ring signatures to well protect the private information of spectrum auctions.In addition,the smart contracts provided by the Ethereum blockchain platform are executed to assist offline verification,and to verify important spectrum auction information to ensure the fairness and impartiality of spectrum auctions.Finally,security analysis and performance evaluation of our protocol are discussed.
基金Supported by the National High Technology Research and Development Program of China("863"Program)(20060AA12A105)the Chinese Airspace Management Commission Researching Program(GKG200802006)~~
文摘The airspace congestion is becoming more and more severe.Although there are traffic flow management(TFM)initiatives based on CDM widely applied,how to reschedule these disrupted flights of different airlines integrating TFM initiatives and allocate the limited airspace resources to these airlines equitably and efficiently is still a problem.The air traffic management(ATM)authority aims to minimizing the systemic costs of congested airspaces.And the airlines are self-interested and profit-oriented.Being incorporated into the collaborative decision making(CDM)process,the airlines can influence the rescheduling decisions to profit themselves.The airlines maybe hide the flight information that is disadvantageous to them,but is necessary to the optimal system decision.To realize the coincidence goal between the ATM authority and airlines for the efficient,and equitable allocation of airspace resources,this paper provides an auction-based market method to solve the congestion airspace problem under the pre-tactic and tactic stage of air traffic flow management.Through a simulation experiment,the rationing results show that the auction method can decrease the total delay costs of flights in the congested airspace compared with both the first schedule first service(FSFS)tactic and the ration by schedule(RBS)tactic.Finally,the analysis results indicate that if reallocate the charges from the auction to the airlines according to the proportion of their disrupted flights,the auction mechanism can allocate the airspace resource in economy equitably and decrease the delay losses of the airlines compared with the results of the FSFS tactic.
基金Supported by the National Natural Science Foun-dation of China(70071012)
文摘In a SIPV model,when the commission proportion is not certain,but related with bargain price,generally,it is a linear function of the bargain price,this paper gives bidders'equilibrium bidding strategies in the first-and secondprice auctions.We find that the equilibrium strategies in second-price auction are dominant strategies.For seller or auction house,whether the fixed proportion or the unfixed proportion is good is not only related with constant item and the linear coefficient of the linear function,the size of the fixed commission proportion,but also related with the value of the item auctioned.So,in the practical auctions,the seller and the auction house negotiated with each other to decide the commission rules for their own advantage.
基金Supported by the 211 Project of Anhui University under Grant No.2009QN028B
文摘I present a new protocol for three-party quantum secure direct communication (QSDC) with a set of ordered M Einstein-Podolsky-Rosen (EPR) pairs. In the scheme, by performing two unitary operations and Bell state measurements, it is shown that the three legitimate parties can exchange their respective secret message simultaneously. Then I modify it for an experimentally feasible and secure quantum sealed-bid auction (QSBD) protocol. Furthermore, I also analyze th^ecurity of the protocol, and the scheme is proven to be secure against the intercept-and-resend attack, the disturbancb attack and the entangled-and-measure attack.