期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Sparse-view phase-contrast and attenuation-based CT reconstruction utilizing model-driven deep learning
1
作者 Xia-Yu Tao Qi-Si Lin +3 位作者 Zhao Wu Yong Guan Yang-Chao Tian Gang Liu 《Nuclear Science and Techniques》 2025年第4期59-71,共13页
Grating-based X-ray phase-contrast imaging enhances the contrast of imaged objects,particularly soft tissues.However,the radiation dose in computed tomography(CT)is generally excessive owing to the complex collection ... Grating-based X-ray phase-contrast imaging enhances the contrast of imaged objects,particularly soft tissues.However,the radiation dose in computed tomography(CT)is generally excessive owing to the complex collection scheme.Sparse-view CT collection reduces the radiation dose,but with reduced resolution and reconstructed artifacts particularly in analytical reconstruction methods.Recently,deep learning has been employed in sparse-view CT reconstruction and achieved stateof-the-art results.Nevertheless,its low generalization performance and requirement for abundant training datasets have hindered the practical application of deep learning in phase-contrast CT.In this study,a CT model was used to generate a substantial number of simulated training datasets,thereby circumventing the need for experimental datasets.By training a network with simulated training datasets,the proposed method achieves high generalization performance in attenuationbased CT and phase-contrast CT,despite the lack of sufficient experimental datasets.In experiments utilizing only half of the CT data,our proposed method obtained an image quality comparable to that of the filtered back-projection algorithm with full-view projection.The proposed method simultaneously addresses two challenges in phase-contrast three-dimensional imaging,namely the lack of experimental datasets and the high exposure dose,through model-driven deep learning.This method significantly accelerates the practical application of phase-contrast CT. 展开更多
关键词 Sparse-view CT Phase-contrast CT attenuation-based CT Deep learning network Frequency loss function
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部