建立了北方苍鹰算法优化长短期记忆神经网络(northern goshawk optimization-long short term memory,NGO-LSTM)的预测模型。以深圳市共享单车为例,首先对共享单车数据进行预处理,以Geohash算法为基础将骑行的时变数据作为特征输入;然...建立了北方苍鹰算法优化长短期记忆神经网络(northern goshawk optimization-long short term memory,NGO-LSTM)的预测模型。以深圳市共享单车为例,首先对共享单车数据进行预处理,以Geohash算法为基础将骑行的时变数据作为特征输入;然后采用Canopy算法结合K-means聚类算法将深圳市地铁站进行聚类分析,以此发掘不同类型站点骑行规律;最后在此基础上建立了NGO-LSTM预测模型对站点的需求量进行预测分析,并与其他模型进行对比。实验结果表明,NGO-LSTM模型的决定系数达到0.90。展开更多
Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring securit...Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring security defense and confrontation,and is essential for effective deployment of military strategy.Accurately predicting the trajectory of sea surface targets using AIS(Automatic Identification System)information is crucial for security defense and confrontation,and holds significant importance for military strategy deployment.In response to the problem of insufficient accuracy in ship trajectory prediction,this study proposes a hybrid genetic algorithm to optimize the Long Short-Term Memory(LSTM)algorithm.The HGA-LSTM algorithm is proposed for ship trajectory prediction.It can converge faster and obtain better parameter solutions,thereby improving the effectiveness of ship trajectory prediction.Compared to traditional LSTM and GA-LSTM algorithms,experimental results demonstrate that this algorithm outperforms them in both single-step and multi-step prediction.展开更多
文摘建立了北方苍鹰算法优化长短期记忆神经网络(northern goshawk optimization-long short term memory,NGO-LSTM)的预测模型。以深圳市共享单车为例,首先对共享单车数据进行预处理,以Geohash算法为基础将骑行的时变数据作为特征输入;然后采用Canopy算法结合K-means聚类算法将深圳市地铁站进行聚类分析,以此发掘不同类型站点骑行规律;最后在此基础上建立了NGO-LSTM预测模型对站点的需求量进行预测分析,并与其他模型进行对比。实验结果表明,NGO-LSTM模型的决定系数达到0.90。
文摘Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring security defense and confrontation,and is essential for effective deployment of military strategy.Accurately predicting the trajectory of sea surface targets using AIS(Automatic Identification System)information is crucial for security defense and confrontation,and holds significant importance for military strategy deployment.In response to the problem of insufficient accuracy in ship trajectory prediction,this study proposes a hybrid genetic algorithm to optimize the Long Short-Term Memory(LSTM)algorithm.The HGA-LSTM algorithm is proposed for ship trajectory prediction.It can converge faster and obtain better parameter solutions,thereby improving the effectiveness of ship trajectory prediction.Compared to traditional LSTM and GA-LSTM algorithms,experimental results demonstrate that this algorithm outperforms them in both single-step and multi-step prediction.