期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于改进GAN的地图面状色彩迁移方法研究
1
作者 王红 陈忞 +1 位作者 史磊 李荣 《测绘科学》 北大核心 2025年第10期177-186,共10页
针对大众制图过程中存在的地图色彩设计搭配不协调,信息表达不明确,难以满足个性化设计的问题,该文提出了一种基于改进生成对抗网络的地图面状色彩迁移模型,为实现不同灰度地图的自动化配色提供了一种新的解决方案。该方法基于传统的GA... 针对大众制图过程中存在的地图色彩设计搭配不协调,信息表达不明确,难以满足个性化设计的问题,该文提出了一种基于改进生成对抗网络的地图面状色彩迁移模型,为实现不同灰度地图的自动化配色提供了一种新的解决方案。该方法基于传统的GAN神经网络,通过改进生成器与判别器的对抗学习约束迁移过程,同时引入注意力机制,使模型获得更多的地图局部色彩及边缘特征,产生更为自然和细腻的地图色彩迁移结果。本文通过改进前后定量和定性实验对比分析,从主观和客观两个维度验证了算法的优越性。实验结果表明,较传统GAN模型,融合注意力机制的改进地图面状色彩迁移模型结构相似性指数(SSIM)提高了4.37%,峰值信噪比指数(PSNR)提高了5.61 dB,颜色多样性(colorfulness)指数提高了4.62,为大众制图的个性化配色提出一种新的解决办法。 展开更多
关键词 地图色彩迁移 地图配色 生成对抗网络 注意力机制
原文传递
Pervasive Attentive Neural Network for Intelligent Image Classification Based on N-CDE’s
2
作者 Anas W.Abulfaraj 《Computers, Materials & Continua》 SCIE EI 2024年第4期1137-1156,共20页
The utilization of visual attention enhances the performance of image classification tasks.Previous attentionbased models have demonstrated notable performance,but many of these models exhibit reduced accuracy when co... The utilization of visual attention enhances the performance of image classification tasks.Previous attentionbased models have demonstrated notable performance,but many of these models exhibit reduced accuracy when confronted with inter-class and intra-class similarities and differences.Neural-Controlled Differential Equations(N-CDE’s)and Neural Ordinary Differential Equations(NODE’s)are extensively utilized within this context.NCDE’s possesses the capacity to effectively illustrate both inter-class and intra-class similarities and differences with enhanced clarity.To this end,an attentive neural network has been proposed to generate attention maps,which uses two different types of N-CDE’s,one for adopting hidden layers and the other to generate attention values.Two distinct attention techniques are implemented including time-wise attention,also referred to as bottom N-CDE’s;and element-wise attention,called topN-CDE’s.Additionally,a trainingmethodology is proposed to guarantee that the training problem is sufficiently presented.Two classification tasks including fine-grained visual classification andmulti-label classification,are utilized to evaluate the proposedmodel.The proposedmethodology is employed on five publicly available datasets,including CUB-200-2011,ImageNet-1K,PASCAL VOC 2007,PASCAL VOC 2012,and MS COCO.The obtained visualizations have demonstrated that N-CDE’s are better appropriate for attention-based activities in comparison to conventional NODE’s. 展开更多
关键词 Differential equations neural-controlled DE image classification attention maps N-CDE’s
在线阅读 下载PDF
SSA: semantic structure aware inference on CNN networks for weakly pixel-wise dense predictions without cost
3
作者 Yanpeng SUN Zechao LI 《Frontiers of Computer Science》 2025年第2期1-10,共10页
The pixel-wise dense prediction tasks based on weakly supervisions currently use Class Attention Maps(CAMs)to generate pseudo masks as ground-truth.However,existing methods often incorporate trainable modules to expan... The pixel-wise dense prediction tasks based on weakly supervisions currently use Class Attention Maps(CAMs)to generate pseudo masks as ground-truth.However,existing methods often incorporate trainable modules to expand the immature class activation maps,which can result in significant computational overhead and complicate the training process.In this work,we investigate the semantic structure information concealed within the CNN network,and propose a semantic structure aware inference(SSA)method that utilizes this information to obtain high-quality CAM without any additional training costs.Specifically,the semantic structure modeling module(SSM)is first proposed to generate the classagnostic semantic correlation representation,where each item denotes the affinity degree between one category of objects and all the others.Then,the immature CAM are refined through a dot product operation that utilizes semantic structure information.Finally,the polished CAMs from different backbone stages are fused as the output.The advantage of SSA lies in its parameter-free nature and the absence of additional training costs,which makes it suitable for various weakly supervised pixel-dense prediction tasks.We conducted extensive experiments on weakly supervised object localization and weakly supervised semantic segmentation,and the results confirm the effectiveness of SSA. 展开更多
关键词 class attention maps semantic structure weaklysupervised object localization weakly-supervised semantic segmentation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部