期刊文献+
共找到226篇文章
< 1 2 12 >
每页显示 20 50 100
Cluster DetectionMethod of Endogenous Security Abnormal Attack Behavior in Air Traffic Control Network 被引量:1
1
作者 Ruchun Jia Jianwei Zhang +2 位作者 Yi Lin Yunxiang Han Feike Yang 《Computers, Materials & Continua》 SCIE EI 2024年第5期2523-2546,共24页
In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set f... In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set for ATC cybersecurity attacks is constructed by setting the feature states,adding recursive features,and determining the feature criticality.The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data.An autoencoder is introduced into the AI(artificial intelligence)algorithm to encode and decode the characteristics of ATC network security attack behavior to reduce the dimensionality of the ATC network security attack behavior data.Based on the above processing,an unsupervised learning algorithm for clustering detection of ATC network security attacks is designed.First,determine the distance between the clustering clusters of ATC network security attack behavior characteristics,calculate the clustering threshold,and construct the initial clustering center.Then,the new average value of all feature objects in each cluster is recalculated as the new cluster center.Second,it traverses all objects in a cluster of ATC network security attack behavior feature data.Finally,the cluster detection of ATC network security attack behavior is completed by the computation of objective functions.The experiment took three groups of experimental attack behavior data sets as the test object,and took the detection rate,false detection rate and recall rate as the test indicators,and selected three similar methods for comparative test.The experimental results show that the detection rate of this method is about 98%,the false positive rate is below 1%,and the recall rate is above 97%.Research shows that this method can improve the detection performance of security attacks in air traffic control network. 展开更多
关键词 Air traffic control network security attack behavior cluster detection behavioral characteristics information gain cluster threshold automatic encoder
在线阅读 下载PDF
Attack Behavior Extraction Based on Heterogeneous Cyberthreat Intelligence and Graph Convolutional Networks 被引量:1
2
作者 Binhui Tang Junfeng Wang +3 位作者 Huanran Qiu Jian Yu Zhongkun Yu Shijia Liu 《Computers, Materials & Continua》 SCIE EI 2023年第1期235-252,共18页
The continuous improvement of the cyber threat intelligence sharing mechanism provides new ideas to deal with Advanced Persistent Threats(APT).Extracting attack behaviors,i.e.,Tactics,Techniques,Procedures(TTP)from Cy... The continuous improvement of the cyber threat intelligence sharing mechanism provides new ideas to deal with Advanced Persistent Threats(APT).Extracting attack behaviors,i.e.,Tactics,Techniques,Procedures(TTP)from Cyber Threat Intelligence(CTI)can facilitate APT actors’profiling for an immediate response.However,it is difficult for traditional manual methods to analyze attack behaviors from cyber threat intelligence due to its heterogeneous nature.Based on the Adversarial Tactics,Techniques and Common Knowledge(ATT&CK)of threat behavior description,this paper proposes a threat behavioral knowledge extraction framework that integrates Heterogeneous Text Network(HTN)and Graph Convolutional Network(GCN)to solve this issue.It leverages the hierarchical correlation relationships of attack techniques and tactics in the ATT&CK to construct a text network of heterogeneous cyber threat intelligence.With the help of the Bidirectional EncoderRepresentation fromTransformers(BERT)pretraining model to analyze the contextual semantics of cyber threat intelligence,the task of threat behavior identification is transformed into a text classification task,which automatically extracts attack behavior in CTI,then identifies the malware and advanced threat actors.The experimental results show that F1 achieve 94.86%and 92.15%for the multi-label classification tasks of tactics and techniques.Extend the experiment to verify the method’s effectiveness in identifying the malware and threat actors in APT attacks.The F1 for malware and advanced threat actors identification task reached 98.45%and 99.48%,which are better than the benchmark model in the experiment and achieve state of the art.The model can effectivelymodel threat intelligence text data and acquire knowledge and experience migration by correlating implied features with a priori knowledge to compensate for insufficient sample data and improve the classification performance and recognition ability of threat behavior in text. 展开更多
关键词 attack behavior extraction cyber threat intelligence(CTI) graph convolutional network(GCN) heterogeneous textual network(HTN)
在线阅读 下载PDF
A Behavior-based Buffer Overflow Attack Blocker
3
作者 ZHANG Li-yuan Jin Li 《电脑知识与技术》 2010年第4期2544-2549,共6页
A common way to gain control of victim hosts is to launch buffer overflow attacks by remote exploits.This paper proposes a behavior-based buffer overflow attacker blocker,which can dynamically detect and prevent remot... A common way to gain control of victim hosts is to launch buffer overflow attacks by remote exploits.This paper proposes a behavior-based buffer overflow attacker blocker,which can dynamically detect and prevent remote buffer overflow attacks by filtering out the client requests that contain malicious executable codes.An important advantage of this approach is that it can block the attack before the exploit code begins affecting the target program.The blocker is composed of three major components,packet decoder,disassembler,and behavior-based detection engine.It decodes the network packets,extract possible instruction sequences from the payload,and analyzes whether they contain attack behaviors.Since this blocker based its effectiveness on the commonest behavior patterns of buffer overflow shellcode,it is expected to detect not only existing attacks but also zero-day attacks.Moreover,it has the capability of detecting attack-size obfuscation. 展开更多
在线阅读 下载PDF
Evacuation simulation considering action of guard in artificial attack 被引量:4
4
作者 Chang-Kun Chen Yun-He Tong 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第1期275-282,共8页
To investigate the evacuation behaviors of pedestrians considering the action of guards and to develop an effective evacuation strategy in an artificial attack, an extended floor field model is proposed. In this model... To investigate the evacuation behaviors of pedestrians considering the action of guards and to develop an effective evacuation strategy in an artificial attack, an extended floor field model is proposed. In this model, the artificial attacker's assault on pedestrians, the death of pedestrians, and the guard's capture are involved simultaneously. An alternative evacuation strategy which can largely reduce the number of casualties is developed and the effects of several key parameters such as the deterrence radius and capture distance on evacuation dynamics are studied. The results show that congestion near the exit has dual effects. More specifically, the guard can catch all attackers in a short time because the artificial attackers have a more concentrated distribution, but more casualties can occur because it is hard for pedestrians to escape the assault due to congestion. In contrast, when pedestrians have more preference of approaching the guard, although the guard will take more time to capture the attackers resulting from the dispersion of the attackers, the death toll will decrease. One of the reasons is the dispersal of the crowd, and the decrease in congestion is beneficial for escape. The other is that the attackers will be caught before launching the attack on the people who are around the guard, in other words, the guard protects a large number of pedestrians from being killed. Moreover, increasing capture distance of the guard can effectively reduce the casualties and the catch time. As the deterrence radius reflecting the tendency of escaping from the guard for attackers rises, it becomes more difficult for the guard to catch the attackers and more casualties are caused. However, when the deterrence radius reaches a certain level, the number of deaths is reduced because the attackers prefer to stay as far away as possible from the guard rather than occupy a position where they could assault more people. 展开更多
关键词 EVACUATION behavior artificial attack FLOOR FIELD model
原文传递
An Unknown Trojan Detection Method Based on Software Network Behavior 被引量:2
5
作者 LIANG Yu PENG Guojun +1 位作者 ZHANG Huanguo WANG Ying 《Wuhan University Journal of Natural Sciences》 CAS 2013年第5期369-376,共8页
Aiming at the difficulty of unknown Trojan detection in the APT flooding situation, an improved detecting method has been proposed. The basic idea of this method originates from advanced persistent threat (APT) atta... Aiming at the difficulty of unknown Trojan detection in the APT flooding situation, an improved detecting method has been proposed. The basic idea of this method originates from advanced persistent threat (APT) attack intents: besides dealing with damaging or destroying facilities, the more essential purpose of APT attacks is to gather confidential data from target hosts by planting Trojans. Inspired by this idea and some in-depth analyses on recently happened APT attacks, five typical communication characteristics are adopted to describe application’s network behavior, with which a fine-grained classifier based on Decision Tree and Na ve Bayes is modeled. Finally, with the training of supervised machine learning approaches, the classification detection method is implemented. Compared with general methods, this method is capable of enhancing the detection and awareness capability of unknown Trojans with less resource consumption. 展开更多
关键词 targeted attack unknown Trojan detection software network behavior machine learning
原文传递
Calculation of the Behavior Utility of a Network System: Conception and Principle 被引量:5
6
作者 Changzhen Hu 《Engineering》 2018年第1期78-84,共7页
The service and application of a network is a behavioral process that is oriented toward its operations and tasks, whose metrics and evaluation are still somewhat of a rough comparison, This paper describes sce- nes o... The service and application of a network is a behavioral process that is oriented toward its operations and tasks, whose metrics and evaluation are still somewhat of a rough comparison, This paper describes sce- nes of network behavior as differential manifolds, Using the homeomorphic transformation of smooth differential manifolds, we provide a mathematical definition of network behavior and propose a mathe- matical description of the network behavior path and behavior utility, Based on the principle of differen- tial geometry, this paper puts forward the function of network behavior and a calculation method to determine behavior utility, and establishes the calculation principle of network behavior utility, We also provide a calculation framework for assessment of the network's attack-defense confrontation on the strength of behavior utility, Therefore, this paper establishes a mathematical foundation for the objective measurement and precise evaluation of network behavior, 展开更多
关键词 NETWORK metric evaluation Differential MANIFOLD NETWORK behavior UTILITY NETWORK attack-defense CONFRONTATION
在线阅读 下载PDF
Two-Tier GCT Based Approach for Attack Detection
7
作者 Zhiwen Wang Qin Xia Ke Lu 《Journal of Software Engineering and Applications》 2008年第1期60-67,共8页
The frequent attacks on network infrastructure, using various forms of denial of service attacks, have led to an increased need for developing new techniques for analyzing network traffic. If efficient analysis tools ... The frequent attacks on network infrastructure, using various forms of denial of service attacks, have led to an increased need for developing new techniques for analyzing network traffic. If efficient analysis tools were available, it could become possible to detect the attacks and to take action to weaken those attacks appropriately before they have had time to propagate across the network. In this paper, we propose an SNMP MIB oriented approach for detecting attacks, which is based on two-tier GCT by analyzing causal relationship between attacking variable at the attacker and abnormal variable at the target. According to the abnormal behavior at the target, GCT is executed initially to determine preliminary attacking variable, which has whole causality with abnormal variable in network behavior. Depending on behavior feature extracted from abnormal behavior, we can recognize attacking variable by using GCT again, which has local causality with abnormal variable in local behavior. Proactive detecting rules can be constructed with the causality between attacking variable and abnormal variable, which can be used to give alarms in network management system. The results of experiment showed that the approach with two-tier GCT was proved to detect attacks early, with which attack propagation could be slowed through early detection. 展开更多
关键词 Network behavior attack Detection GRANGER CAUSALITY Test Management Information BASE
暂未订购
躁狂症患者外周血CRP、IL-17表达与躁狂程度及破坏攻击行为的关系
8
作者 卢立荣 刘端甫 刘志云 《中国医学创新》 2025年第25期163-166,共4页
目的:探讨躁狂症患者外周血CRP、IL-17表达与躁狂程度及破坏攻击行为的关系。方法:选取2023年1月—2024年8月吉安市第三人民医院收治的102例躁狂症患者(躁狂症组),另选取同期50例健康体检志愿者为对照组,均行外周血CRP、IL-17检测,并采... 目的:探讨躁狂症患者外周血CRP、IL-17表达与躁狂程度及破坏攻击行为的关系。方法:选取2023年1月—2024年8月吉安市第三人民医院收治的102例躁狂症患者(躁狂症组),另选取同期50例健康体检志愿者为对照组,均行外周血CRP、IL-17检测,并采用贝克拉范森躁狂量表(BRMS)、修改版外显攻击行为量表(MOAS)评估躁狂症患者躁狂程度及破坏攻击行为,比较各组外周血CRP、IL-17水平,并采用相关性分析躁狂症患者外周血CRP、IL-17表达与躁狂程度及破坏攻击行为的关系。结果:躁狂症组外周血CRP、IL-17水平高于对照组,差异有统计学意义(P<0.001)。重度躁狂组外周血CRP、IL-17水平高于中度躁狂组和轻度躁狂组,差异有统计学意义(P<0.001);中度躁狂组外周血CRP、IL-17水平高于轻度躁狂组,差异有统计学意义(P<0.001)。躁狂症组MOAS评分高于对照组,差异有统计学意义(P<0.001)。外周血CRP、IL-17表达与躁狂程度的相关性采用Spearman秩相关分析,外周血CRP、IL-17表达与MOAS评分的相关性采用线性相关分析,结果显示,躁狂症外周血CRP、IL-17表达与躁狂程度及MOAS评分呈正相关(P<0.001)。结论:躁狂症患者外周血CRP、IL-17呈高表达水平,且与躁狂程度及破坏攻击行为密切相关。 展开更多
关键词 躁狂症 CRP IL-17 躁狂程度 破坏攻击行为
暂未订购
基于联邦学习的工控机业务行为分布式安全检测 被引量:1
9
作者 李健俊 王万江 +4 位作者 陈鹏 张帅 张利宏 李威 董惠良 《计算机集成制造系统》 北大核心 2025年第3期841-854,共14页
工业互联网时代,不同厂商希望通过共享本地数据得到更完善的安全检测模型,但接入互联网后本地数据更易遭到窃取,而联邦学习可以通过交换模型参数的方式达到数据隐私保护和共享的目的。现有针对工业计算机的安全检测方法还存在一些缺陷:... 工业互联网时代,不同厂商希望通过共享本地数据得到更完善的安全检测模型,但接入互联网后本地数据更易遭到窃取,而联邦学习可以通过交换模型参数的方式达到数据隐私保护和共享的目的。现有针对工业计算机的安全检测方法还存在一些缺陷:①很少考虑从业务行为方面提取特征模型;②难以解决本地数据被篡改而导致的模型偏移问题;③检测系统前端检测、后端分析的网络结构会增加从后端管理网到前端控制网之间的通信通道,从而给管理网引入新的攻击路径。针对上述问题,提出基于联邦学习的工控机业务行为分布式安全检测方法,包括工控机业务行为特征检测方法、基于信息熵分配权重的联邦学习模型聚合方法、基于转发硬件的数据传输重构方法;能够提高针对工控应用协议的攻击识别准确率,减轻工业控制计算机数据污染导致的模型偏移,防止攻击者利用管理网的分析后台进行远程攻击;实现了原型系统,并在卷接设备控制系统中进行了实验验证,与采用非业务行为建模的相关方法相比,所提方法对中间人攻击和远程攻击检测准确率分别提高了17%和24%;在自有和公开数据集上的验证结果表明,方法比常用的3种聚合算法的准确率提高了0.6%~2.4%,遭到数据毒化攻击后,所提方法准确率下降为0.6%和1.1%,而其他算法下降了1.1%~7.5%和1.5%~4.5%;并能够防止攻击者利用管理网检测后台漏洞发起向控制网的远程攻击,减小攻击面。 展开更多
关键词 工业控制系统 业务行为检测 联邦学习 数据毒化 攻击过滤
在线阅读 下载PDF
硫酸盐侵蚀环境下麻刀黏土灰浆青砖砌体抗剪性能研究
10
作者 张家玮 许耀蓉 +3 位作者 黄玮 刘生纬 刘廷滨 谭靖琛 《兰州交通大学学报》 2025年第3期20-28,共9页
为研究硫酸盐侵蚀环境对麻刀黏土灰浆青砖砌体抗剪性能的影响,以实际砖质文物建筑灰缝中的盐浓度为试验背景,通过半浸泡-干湿循环试验,模拟硫酸盐的毛细迁移路线,研究了青砖砌体的抗剪性能、破坏形态和荷载-位移曲线。结果表明:随着循... 为研究硫酸盐侵蚀环境对麻刀黏土灰浆青砖砌体抗剪性能的影响,以实际砖质文物建筑灰缝中的盐浓度为试验背景,通过半浸泡-干湿循环试验,模拟硫酸盐的毛细迁移路线,研究了青砖砌体的抗剪性能、破坏形态和荷载-位移曲线。结果表明:随着循环次数的增加,青砖和灰缝边缘处分别出现片状和块状的剥落现象;硫酸盐环境下青砖砌体的抗剪强度呈现出先增加后降低的趋势,抗剪强度在循环9次时达到最大值,在循环15次时抗剪强度降低到最小值0.032 MPa,相较于去离子水组下降了33.33%;青砖砌体试件破坏均表现为脆性破坏,粘结界面破坏形态主要表现为界面粘结滑移破坏和灰浆破坏。循环前后试件微观结构揭示了硫酸盐在循环前期的积累使得试件孔隙闭塞,可以提升麻刀黏土灰浆青砖砌体的抗剪性能;在循环后期会对试件孔隙造成破坏,导致其抗剪性能有所下降。 展开更多
关键词 硫酸盐侵蚀 砖砌体 抗剪性能 破坏形态 荷载-位移曲线
在线阅读 下载PDF
基于归一化处理和TrafficLLM的网络攻击缓解框架 被引量:1
11
作者 成凯 汤卫东 +2 位作者 谈林涛 陈佳 李鑫 《计算机科学》 北大核心 2025年第S1期994-1002,共9页
随着电力配变网络基础设施规模的不断扩大,各类安全二次设备、边缘终端节点和业务系统产生的信息通信流量数据在格式、协议、语义特征层面存在显著差异。主要存在现有缓解框架缺乏多源异构网络异常流量检测数据归一化处理算法,网络攻击... 随着电力配变网络基础设施规模的不断扩大,各类安全二次设备、边缘终端节点和业务系统产生的信息通信流量数据在格式、协议、语义特征层面存在显著差异。主要存在现有缓解框架缺乏多源异构网络异常流量检测数据归一化处理算法,网络攻击行为分析依赖人工特征提取的规则引擎,以及难以确定有效的网络攻击缓解措施等痛点。针对以上痛点,提出了一种基于归一化处理和TrafficLLM的网络攻击缓解框架(Network Attack Mitigation Framework Based on Normalized Processing and TrafficLLM,NAMF-NPTLLM)。该框架涵盖数据解析、归一化处理、模型微调和生成攻击缓解方案4个核心阶段。首先,在特征选择阶段,通过构建集成学习模型,融合多类基学习器的特征评估结果,精准提取对分类结果影响较大的关键特征。其次,将选取的关键特征通过归一化处理,生成统一的自然语言token序列形式表达,为该网络攻击缓解框架的流量异常分析TrafficLLM模型提供标准化输入。然后,对TrafficLLM模型进行微调,使该模型能够理解提示词模板指令并学习攻击行为的流量模式。最后,通过微调后的大模型进行推理,生成攻击缓解指令,使得该框架能够根据攻击行为特征动态调整网络攻击缓解策略。通过在CIC-DDoS2019数据集上进行实验验证,与传统方法相比,该框架将网络攻击行为分类的准确率达到99.80%,提高了1.3%。实验结果表明,该框架对于缓解海量多源异构电力网络终端流量攻击,具有更好的准确性和有效性。 展开更多
关键词 攻击行为检测 数据解析 归一化处理 集成学习模型 网络攻击缓解 参数微调
在线阅读 下载PDF
基于攻击行为链的网络安全态势预测技术
12
作者 李德军 黄金涛 +1 位作者 陈海英 吉庆兵 《信息安全与通信保密》 2025年第8期40-49,共10页
后续网络攻击预测是网络安全态势预测的关键性、典型性环节,同时也是实施难度极高的环节,其预测模型的效能直接决定着能否准确判别后续的潜在攻击行为和复合网络攻击行为,为提前部署网络防御措施和调整安全策略提供有效支撑。针对高级... 后续网络攻击预测是网络安全态势预测的关键性、典型性环节,同时也是实施难度极高的环节,其预测模型的效能直接决定着能否准确判别后续的潜在攻击行为和复合网络攻击行为,为提前部署网络防御措施和调整安全策略提供有效支撑。针对高级持续性威胁(Advanced Persistent Threat,APT)难以被提前发现的问题,提出一种基于攻击行为链的网络安全态势预测技术,构建多步攻击预测模型。采用基于对抗性战术、技术与通用知识框架(Adversarial Tactics,Techniques,and Common Knowledge Framework,ATT&CK)分析矩阵构建攻击序列集合,进一步结合半监督的时序预测和异常识别,对网络安全态势事件序列进行学习,从而提前获得网络攻击预警信息,实现从被动响应转向主动防御,有助于构建更加稳健、反应快速的安全防御体系。 展开更多
关键词 行为链 时间序列分析 攻击预测 马尔可夫决策 序列到序列模型
在线阅读 下载PDF
基于集成学习的网络攻击行为检测方法 被引量:1
13
作者 周侠 朱义杰 +1 位作者 吴宇佳 杨义 《无线互联科技》 2025年第9期100-104,共5页
针对传统网络攻击入侵检测方法难以有效应对复杂多变的新形式网络攻击的问题,文章提出了一种基于集成学习的网络攻击行为检测方法。该方法将随机森林、朴素贝叶斯和神经网络3种弱学习器组合形成强学习器,通过加权平均各弱学习器对输入... 针对传统网络攻击入侵检测方法难以有效应对复杂多变的新形式网络攻击的问题,文章提出了一种基于集成学习的网络攻击行为检测方法。该方法将随机森林、朴素贝叶斯和神经网络3种弱学习器组合形成强学习器,通过加权平均各弱学习器对输入样本的预测概率以获得最终的预测结果。在公开数据集上的实验结果表明,该算法的检测准确率达到96.9%,较支持向量机、随机森林和神经网络方法提升了约5%,较逻辑回归方法提升了12.4%,较朴素贝叶斯方法提升了10.0%;同时,其他指标也有不同程度的提升,有效地完成了网络攻击行为检测任务。 展开更多
关键词 攻击行为检测 集成学习 人工智能 特征选择
在线阅读 下载PDF
初中生特质愤怒与攻击行为双向关系的交叉滞后分析
14
作者 程时祥 张华威 张萌 《校园心理》 2025年第6期484-489,共6页
目的探究初中生特质愤怒与攻击行为的相互影响关系。方法采用特质愤怒问卷、Buss-Warren攻击问卷,从2023年3月至2024年3月对山东省某初中298名学生进行为期12个月的3次追踪测量分别为开始(T1)、6个月(T2)、12个月(T3)。对数据进行重复... 目的探究初中生特质愤怒与攻击行为的相互影响关系。方法采用特质愤怒问卷、Buss-Warren攻击问卷,从2023年3月至2024年3月对山东省某初中298名学生进行为期12个月的3次追踪测量分别为开始(T1)、6个月(T2)、12个月(T3)。对数据进行重复测量方差分析和交叉滞后分析。结果①3个时间点3次测量的初中生特质愤怒和攻击行为均呈正相关。②初中生特质愤怒和攻击行为存在时间主效应,多重比较结果发现,3次特质愤怒差异无统计学意义,T3的攻击行为水平高于T1、T2。③交叉滞后分析结果表明,T1特质愤怒正向预测T2攻击行为,T2特质愤怒正向预测T3攻击行为;T1攻击行为正向预测T2特质愤怒,T2攻击行为正向预测T3特质愤怒。(P均<0.05)。结论初中生特质愤怒和攻击行为跨时间相互正向影响。家长和学校应采取措施,干预特质愤怒与攻击的循环,以保障初中生健康成长,维护校园安全。 展开更多
关键词 攻击行为 特质愤怒 校园安全 初中生
在线阅读 下载PDF
基于对抗机器学习的网络攻击行为检测分析 被引量:1
15
作者 温何雨 《软件》 2025年第11期178-180,共3页
针对日益严峻的网络安全形势,本文研究一种基于对抗机器学习的网络攻击行为检测方法。首先,构建多维特征体系,以攻击特征向量、攻击规模等为输入,通过对抗性训练策略智能提取网络异常行为;其次,通过多分类器协同检测机制的设计、分类器... 针对日益严峻的网络安全形势,本文研究一种基于对抗机器学习的网络攻击行为检测方法。首先,构建多维特征体系,以攻击特征向量、攻击规模等为输入,通过对抗性训练策略智能提取网络异常行为;其次,通过多分类器协同检测机制的设计、分类器权重的动态调整及检测结果的融合,有效提高检测精度。试验结果显示,本文方法在测试数据集上的检测率不低于98%,显著优于比较方法,在DoS、R2L、U2R等典型网络攻击及一些新型攻击模式中具有良好的检测能力,可以为网络安全防护提供有效的技术解决方案。 展开更多
关键词 计算机技术 对抗机器学习 网络攻击行为检测
在线阅读 下载PDF
突发攻击行为教室人群疏散最佳出口布局研究
16
作者 菅肖霞 李文宇 林志阳 《安全与环境学报》 北大核心 2025年第1期216-226,共11页
为了研究突发攻击行为下的多障碍物教室人群疏散动态,并设计最佳出口布局,基于势函数元胞自动机模型构建了突发攻击行为教室人群疏散模型,考虑到攻击行为对疏散的影响,重构行人更新规则。模拟单侧两出口、三出口布局下,所有出口宽度分别... 为了研究突发攻击行为下的多障碍物教室人群疏散动态,并设计最佳出口布局,基于势函数元胞自动机模型构建了突发攻击行为教室人群疏散模型,考虑到攻击行为对疏散的影响,重构行人更新规则。模拟单侧两出口、三出口布局下,所有出口宽度分别为0.8 m、1.2 m、1.6 m时,一名攻击者位于教室前方、中部、后方的高密度人群疏散动态。结果表明:在相同出口布局下,攻击者位于教室后方时,人群不能兼顾向前逃生与向后观察攻击者,而导致疏散时间耗费最多;在两出口情况下,出口宽度的增加使行人可选目标位置变多,攻击者可选目标位置同样变多,使场景内伤亡人数呈现先增加后减少的趋势;在三出口情况下,出口宽度为1.6 m时,疏散时间为所有情形下最短,比两出口情况缩短29.2%。 展开更多
关键词 公共安全 行人疏散 势函数元胞自动机模型 突发攻击行为 出口布局
原文传递
基于Python的嵌入式通信软件DDoS攻击溯源方法
17
作者 陈梦娟 刘亚 《长江信息通信》 2025年第5期117-119,共3页
为实现对DDoS攻击的实时检测与预警,基于Python的应用,以某嵌入式通信软件为例,开展DDoS攻击溯源方法的设计研究。引进熵值指标,利用Python的数据交互功能,交换软件在运行中底层信息,进行DDoS攻击流量特征的提取与实时监测;利用监测的... 为实现对DDoS攻击的实时检测与预警,基于Python的应用,以某嵌入式通信软件为例,开展DDoS攻击溯源方法的设计研究。引进熵值指标,利用Python的数据交互功能,交换软件在运行中底层信息,进行DDoS攻击流量特征的提取与实时监测;利用监测的流量特征数据,进行通信软件DDoS攻击行为序列关联匹配;标记关联匹配确认的攻击数据包,实现对攻击路径的记录与溯源。对比实验结果表明,设计的方法不仅可以实现对嵌入式通信软件DDoS攻击流量的准确监测,还能在实现攻击即时预警的基础上,精准追溯攻击源。 展开更多
关键词 PYTHON 关联匹配 攻击行为序列 溯源方法 DDOS攻击
在线阅读 下载PDF
基于对抗机器学习的网络攻击行为识别研究
18
作者 刘笑梅 《无线互联科技》 2025年第8期98-101,共4页
为了实现对网络节点风险的精准度量,提高攻击行为检测结果的可靠性,文章根据对抗机器学习开展网络攻击行为识别方法设计。引入对抗性训练策略,通过对抗机器学习进行网络异常行为特征的提取,利用提取到的异常行为特征构建风险性度量模型... 为了实现对网络节点风险的精准度量,提高攻击行为检测结果的可靠性,文章根据对抗机器学习开展网络攻击行为识别方法设计。引入对抗性训练策略,通过对抗机器学习进行网络异常行为特征的提取,利用提取到的异常行为特征构建风险性度量模型,从而实现异常行为风险性度量。结合网络行为偏离正常状态的程度,引入支持向量回归(Support Vector Regression,SVR)模型,将度量结果作为SVR模型的输入特征,实现对攻击行为的识别。对比实验结果表明,设计方法不仅可以实现对节点风险值的精确度量,还能精准识别网络异常数据,保证异常攻击行为的识别精度。 展开更多
关键词 对抗机器学习 风险性度量 特征提取 支持向量回归模型 网络攻击行为
在线阅读 下载PDF
一种抗标签翻转攻击的联邦学习方法
19
作者 周景贤 韩威 +1 位作者 张德栋 李志平 《信息安全研究》 北大核心 2025年第3期205-213,共9页
由于联邦学习参与训练的用户自主性较高且身份难以辨别,从而易遭受标签翻转攻击,使模型从错误的标签中学习到错误的规律,降低模型整体性能.为有效抵抗标签翻转攻击,提出了一种多阶段训练模型的稀释防护联邦学习方法.该方法通过对训练数... 由于联邦学习参与训练的用户自主性较高且身份难以辨别,从而易遭受标签翻转攻击,使模型从错误的标签中学习到错误的规律,降低模型整体性能.为有效抵抗标签翻转攻击,提出了一种多阶段训练模型的稀释防护联邦学习方法.该方法通过对训练数据集进行随机划分,采用稀释防护联邦学习算法将部分数据分发给参与训练的客户端,以限制客户端所拥有的数据量,避免拥有大量数据的恶意参与者对模型造成较大影响.在每次训练结束后,对该阶段中所有训练轮次的梯度通过降维算法进行梯度聚类,以便识别潜在的恶意参与者,并在下一阶段中限制其训练.同时,在每个阶段训练结束后保存全局模型参数,确保每个阶段的训练都基于上一个阶段的模型基础.在数据集上的实验结果表明,该方法在降低攻击影响的同时不损害模型准确率,并且模型收敛速度平均提升了25.2%~32.3%. 展开更多
关键词 联邦学习 数据安全 恶意行为 标签翻转攻击 防御
在线阅读 下载PDF
网络安全背景下大规模网络攻击流量异常行为识别研究
20
作者 方慧婷 《信息化研究》 2025年第4期54-62,68,共10页
由于大规模网络攻击流量数据存在高维特征,导致网络攻击流量异常行为识别准确率低的问题,提出网络安全背景下大规模网络攻击流量异常行为识别研究。该研究通过接入多种网络安全设备捕获攻击者行为,联动外部威胁情报源进行画像,获取识别... 由于大规模网络攻击流量数据存在高维特征,导致网络攻击流量异常行为识别准确率低的问题,提出网络安全背景下大规模网络攻击流量异常行为识别研究。该研究通过接入多种网络安全设备捕获攻击者行为,联动外部威胁情报源进行画像,获取识别样本;利用Stacking集成方法,构建包含孤立森林、支持向量机、随机森林和逻辑回归分类器的流量异常行为识别模型,解决高维特征问题。模型依据分层抽样准则和K折交叉验证原理,实现大规模网络攻击流量异常行为识别。实验结果表明,该方法各标签对应的最小Kappa系数在0.96以上,接近1;识别准确率平均为93.4%,高于其他对比方法;能准确定位异常区域,发现攻击主要集中在内网主机、以DDoS和DoS攻击为主,且多发生在20点至24点,报警级别合理。该方法能够有效识别大规模网络攻击流量异常行为,具有较强的应用价值,适合解决网络异常问题。 展开更多
关键词 网络安全 网络流量 网络攻击 Stacking集成框架 异常行为识别
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部