Sinus floor elevation with a lateral window approach requires bone graft(BG)to ensure sufficient bone mass,and it is necessary to measure and analyse the BG region for follow-up of postoperative patients.However,the B...Sinus floor elevation with a lateral window approach requires bone graft(BG)to ensure sufficient bone mass,and it is necessary to measure and analyse the BG region for follow-up of postoperative patients.However,the BG region from cone-beam computed tomography(CBCT)images is connected to the margin of the maxillary sinus,and its boundary is blurred.Common segmentation methods are usually performed manually by experienced doctors,and are complicated by challenges such as low efficiency and low precision.In this study,an auto-segmentation approach was applied to the BG region within the maxillary sinus based on an atrous spatial pyramid convolution(ASPC)network.The ASPC module was adopted using residual connections to compose multiple atrous convolutions,which could extract more features on multiple scales.Subsequently,a segmentation network of the BG region with multiple ASPC modules was established,which effectively improved the segmentation performance.Although the training data were insufficient,our networks still achieved good auto-segmentation results,with a dice coefficient(Dice)of 87.13%,an Intersection over Union(Iou)of 78.01%,and a sensitivity of 95.02%.Compared with other methods,our method achieved a better segmentation effect,and effectively reduced the misjudgement of segmentation.Our method can thus be used to implement automatic segmentation of the BG region and improve doctors’work efficiency,which is of great importance for developing preliminary studies on the measurement of postoperative BG within the maxillary sinus.展开更多
Pulmonary nodules represent an early manifestation of lung cancer.However,pulmonary nodules only constitute a small portion of the overall image,posing challenges for physicians in image interpretation and potentially...Pulmonary nodules represent an early manifestation of lung cancer.However,pulmonary nodules only constitute a small portion of the overall image,posing challenges for physicians in image interpretation and potentially leading to false positives or missed detections.To solve these problems,the YOLOv8 network is enhanced by adding deformable convolution and atrous spatial pyramid pooling(ASPP),along with the integration of a coordinate attention(CA)mechanism.This allows the network to focus on small targets while expanding the receptive field without losing resolution.At the same time,context information on the target is gathered and feature expression is enhanced by attention modules in different directions.It effectively improves the positioning accuracy and achieves good results on the LUNA16 dataset.Compared with other detection algorithms,it improves the accuracy of pulmonary nodule detection to a certain extent.展开更多
With the rise in drowning accidents in swimming pools,the demand for the precision and speed in artificial intelligence(AI)drowning detection methods has become increasingly crucial.Here,an improved YOLO-based method,...With the rise in drowning accidents in swimming pools,the demand for the precision and speed in artificial intelligence(AI)drowning detection methods has become increasingly crucial.Here,an improved YOLO-based method,named DrownACB-YOLO,for drowning detection in swimming pools is proposed.Since existing methods focus on the drowned state,a transition label is added to the original dataset to provide timely alerts.Following this expanded dataset,two improvements are implemented in the original YOLOv5.Firstly,the spatial pyramid pooling(SPP)module and the default upsampling operator are replaced by the atrous spatial pyramid pooling(ASPP)module and the content-aware reassembly of feature(CARAFE)module,respectively.Secondly,the cross stage partial bottleneck with three convolutions(C3)module at the end of the backbone is replaced with the bottleneck transformer(BotNet)module.The results of comparison experiments demonstrate that DrownACB-YOLO performs better than other models.展开更多
基金the National Key Research and Development Program of China(No.2017YFB1302900)the National Natural Science Foundation of China(Nos.81971709,M-0019,and 82011530141)+2 种基金the Foundation of Science and Technology Commission of Shanghai Municipality(Nos.19510712200,and 20490740700)the Shanghai Jiao Tong University Foundation on Medical and Technological Joint Science Research(Nos.ZH2018ZDA15,YG2019ZDA06,and ZH2018QNA23)the 2020 Key Research Project of Xiamen Municipal Government(No.3502Z20201030)。
文摘Sinus floor elevation with a lateral window approach requires bone graft(BG)to ensure sufficient bone mass,and it is necessary to measure and analyse the BG region for follow-up of postoperative patients.However,the BG region from cone-beam computed tomography(CBCT)images is connected to the margin of the maxillary sinus,and its boundary is blurred.Common segmentation methods are usually performed manually by experienced doctors,and are complicated by challenges such as low efficiency and low precision.In this study,an auto-segmentation approach was applied to the BG region within the maxillary sinus based on an atrous spatial pyramid convolution(ASPC)network.The ASPC module was adopted using residual connections to compose multiple atrous convolutions,which could extract more features on multiple scales.Subsequently,a segmentation network of the BG region with multiple ASPC modules was established,which effectively improved the segmentation performance.Although the training data were insufficient,our networks still achieved good auto-segmentation results,with a dice coefficient(Dice)of 87.13%,an Intersection over Union(Iou)of 78.01%,and a sensitivity of 95.02%.Compared with other methods,our method achieved a better segmentation effect,and effectively reduced the misjudgement of segmentation.Our method can thus be used to implement automatic segmentation of the BG region and improve doctors’work efficiency,which is of great importance for developing preliminary studies on the measurement of postoperative BG within the maxillary sinus.
文摘Pulmonary nodules represent an early manifestation of lung cancer.However,pulmonary nodules only constitute a small portion of the overall image,posing challenges for physicians in image interpretation and potentially leading to false positives or missed detections.To solve these problems,the YOLOv8 network is enhanced by adding deformable convolution and atrous spatial pyramid pooling(ASPP),along with the integration of a coordinate attention(CA)mechanism.This allows the network to focus on small targets while expanding the receptive field without losing resolution.At the same time,context information on the target is gathered and feature expression is enhanced by attention modules in different directions.It effectively improves the positioning accuracy and achieves good results on the LUNA16 dataset.Compared with other detection algorithms,it improves the accuracy of pulmonary nodule detection to a certain extent.
文摘With the rise in drowning accidents in swimming pools,the demand for the precision and speed in artificial intelligence(AI)drowning detection methods has become increasingly crucial.Here,an improved YOLO-based method,named DrownACB-YOLO,for drowning detection in swimming pools is proposed.Since existing methods focus on the drowned state,a transition label is added to the original dataset to provide timely alerts.Following this expanded dataset,two improvements are implemented in the original YOLOv5.Firstly,the spatial pyramid pooling(SPP)module and the default upsampling operator are replaced by the atrous spatial pyramid pooling(ASPP)module and the content-aware reassembly of feature(CARAFE)module,respectively.Secondly,the cross stage partial bottleneck with three convolutions(C3)module at the end of the backbone is replaced with the bottleneck transformer(BotNet)module.The results of comparison experiments demonstrate that DrownACB-YOLO performs better than other models.