期刊文献+
共找到3,023篇文章
< 1 2 152 >
每页显示 20 50 100
ATOMISTIC/CONTINUUM SIMULATION OF INTERFACIAL FRACTURE PART Ⅱ:ATOMISTIC/DISLOCATION/CONTINUUM SIMULATION 被引量:8
1
作者 谭鸿来 杨卫 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1994年第3期237-249,共13页
Coupled atomistic/dislocation/continuum simulation of interfacial fracture is performed in this paper.The model consists of a nanoscopic core made by atomistic assembly and a surrounding elastic continuum with discret... Coupled atomistic/dislocation/continuum simulation of interfacial fracture is performed in this paper.The model consists of a nanoscopic core made by atomistic assembly and a surrounding elastic continuum with discrete dislocations. Atomistic dislocations nucleate from the crack tip and move to the continuum layer where they glide according to the dislocation dynamics curve.An atoms/continuum overlapping belt is devised to facilitate the transition between the two scales.The continuum constraint on the atomic assembly is imposed through the mechanics at- mosphere along the overlapping belt.Transmissions of mechanics parameters such as displacements,stresses,masses and momenta across the belt are realized.The present model allows us to explore interfacial fracture processes under different mode mixity.The effect of atomistic zigzag interface on the fracture process is revealed:it hinders dislocation emission from the crack tip,especially under high mode mixity. 展开更多
关键词 interfacial fracture atomistic/continuum simulation mechanics atmosphere
在线阅读 下载PDF
ATOMISTIC/CONTINUUM SIMULATION OF INTERFACIAL FRACTURE——PART Ⅰ: ATOMISTIC SIMULATION 被引量:5
2
作者 谭鸿来 杨卫 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1994年第2期150-161,共12页
The phenomenon of interfacial fracture, as manifested by atom- istic cleavage, debonding and dislocation emission, provides a challenge for combined atomistic-continuum analysis. As a precursor for fully coupled atomi... The phenomenon of interfacial fracture, as manifested by atom- istic cleavage, debonding and dislocation emission, provides a challenge for combined atomistic-continuum analysis. As a precursor for fully coupled atomistic-continuum simulation of interfacial fracture, we focus here on the atomistic behavior within a nanoscopic core surrounding the crack tip. The inter-atomic potential under Em- bedded Atom Method is recapitulated to form an essential framework of atomistic simulation. The calculations are performed for a side-cracked disc configuration un- der a remote K field loading. It is revealed that a critical loading rate defines the brittle-to-ductile transition of homogeneous materials. We further observe that the near tip mode mixity dictates the nanoscopic profile near an interfacial crack tip. A zigzag interface structure is simulated which plays a significant role in the dislocation emission from an interfacial crack tip, as will be explored in the second part of this investigation. 展开更多
关键词 interfacial fracture atomistic simulation mode mixity loading rate zigzag interface
在线阅读 下载PDF
Predicting grain boundary segregation in magnesium alloys:An atomistically informed machine learning approach
3
作者 Zhuocheng Xie Achraf Atila +3 位作者 Julien Guénolé Sandra Korte-Kerzel Talal Al-Samman Ulrich Kerzel 《Journal of Magnesium and Alloys》 2025年第6期2636-2650,共15页
Grain boundary(GB)segregation substantially influences the mechanical properties and performance of magnesium(Mg).Atomic-scale modeling,typically using ab-initio or semi-empirical approaches,has mainly focused on GB s... Grain boundary(GB)segregation substantially influences the mechanical properties and performance of magnesium(Mg).Atomic-scale modeling,typically using ab-initio or semi-empirical approaches,has mainly focused on GB segregation at highly symmetric GBs in Mg alloys,often failing to capture the diversity of local atomic environments and segregation energies,resulting in inaccurate structure-property predictions.This study employs atomistic simulations and machine learning models to systematically investigate the segregation behavior of common solute elements in polycrystalline Mg at both 0 K and finite temperatures.The machine learning models accurately predict segregation thermodynamics by incorporating energetic and structural descriptors.We found that segregation energy and vibrational free energy follow skew-normal distributions,with hydrostatic stress,an indicator of excess free volume,emerging as an important factor influencing segregation tendency.The local atomic environment's flexibility,quantified by flexibility volume,is also crucial in predicting GB segregation.Comparing the grain boundary solute concentrations calculated via the Langmuir-Mc Lean isotherm with experimental data,we identified a pronounced segregation tendency for Nd,highlighting its potential for GB engineering in Mg alloys.This work demonstrates the powerful synergy of atomistic simulations and machine learning,paving the way for designing advanced lightweight Mg alloys with tailored properties. 展开更多
关键词 Grain boundary segregation Magnesium alloys atomistic simulation Machine learning.
在线阅读 下载PDF
Atomistic simulation of the dislocation interactions with the Al_(2)Ca Laves phase in Mg–Al–Ca alloy
4
作者 Ruixue Liu Leyun Wang +1 位作者 Mingyu Gong Xiaoqin Zeng 《Journal of Magnesium and Alloys》 2025年第7期3096-3103,共8页
The mechanical properties of Mg–Al–Ca alloys are significantly affected by their Laves phases,including the Al_(2)Ca phase.Laves phases are generally considered to be brittle and have a detrimental effect on the duc... The mechanical properties of Mg–Al–Ca alloys are significantly affected by their Laves phases,including the Al_(2)Ca phase.Laves phases are generally considered to be brittle and have a detrimental effect on the ductility of Mg.Recently,the Al_(2)Ca phase was shown to undergo plastic deformation in a dilute Mg-Al-Ca alloy to increase the ductility and work hardening of the alloy.In the present study,we investigated the extent to which the deformation of Al_(2)Ca is driven by dislocations in the Mg matrix by simulating the interactions between the basal edge dislocations and Al_(2)Ca particles.In particular,the effects of the interparticle spacing,particle orientation,and particle size were considered.Shearing of small particles and dislocation cross-slips near large particles were observed.Both events contribute to strengthening,and accommodate to plasticity.The shear resistance of the dislocation to bypass the particles increased as the particle size increased.The critical resolved shear stress(CRSS)for activating dislocations and stacking faults was easier to reach for small Al_(2)Ca particles owing to the higher local shear stress,which is consistent with the experimental observations.Overall,this work elucidates the driving force for Al_(2)Ca particles in Mg–Al–Ca alloys to undergo plastic deformation. 展开更多
关键词 Mg-Al-Ca alloy Al_(2)Ca Laves phase Precipitation strengthening DISLOCATION atomistic simulation
在线阅读 下载PDF
Anisotropic concurrent coupled atomistic and discrete dislocation for partial dislocations in FCC materials
5
作者 S.FORGHANI N.KHAJI 《Applied Mathematics and Mechanics(English Edition)》 2025年第7期1365-1382,I0028-I0032,共23页
Spurious forces are a significant challenge for multi-scale methods,e.g.,the coupled atomistic/discrete dislocation(CADD)method.The assumption of isotropic matter in the continuum domain is a critical factor leading t... Spurious forces are a significant challenge for multi-scale methods,e.g.,the coupled atomistic/discrete dislocation(CADD)method.The assumption of isotropic matter in the continuum domain is a critical factor leading to such forces.This study aims to minimize spurious forces,ensuring that atomic dislocations experience more precise forces from the continuum domain.The authors have already implemented this idea using a simplified and unrealistic slipping system.To create a comprehensive and realistic model,this paper considers all possible slip systems in the face center cubic(FCC)lattice structure,and derives the required relationships for the displacement fields.An anisotropic version of the three-dimensional CADD(CADD3D)method is presented,which generates the anisotropic displacement fields for the partial dislocations in all the twelve slip systems of the FCC lattice structure.These displacement fields are tested for the most probable slip systems of aluminum,nickel,and copper with different anisotropic levels.Implementing these anisotropic displacement fields significantly reduces the spurious forces on the slip systems of FCC materials.This improvement is particularly pronounced at greater distances from the interface and in more anisotropic materials.Furthermore,the anisotropic CADD3D method enhances the spurious stress difference between the slip systems,particularly for materials with higher anisotropy. 展开更多
关键词 multi-scale method anisotropic coupled atomistic/discrete dislocation(CADD) spurious force partial dislocation face center cubic(FCC)material
在线阅读 下载PDF
Propagation Properties of Shock Waves in Polyurethane Foam based on Atomistic Simulations 被引量:2
6
作者 Zhiqiang Hu Jianli Shao +2 位作者 Shiyu Jia Weidong Song Cheng Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期117-129,共13页
Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of poros... Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of porosity on the shock waves is studied with classical molecular dynamics simulations.Firstly,shock Hugoniot relations for different porosities are obtained,which compare well with the experimental data.The pores collapse and form local stress wave,which results in the complex multi-wave structure of the shock wave.The microstructure analysis shows that the local stress increases and the local velocity decreases gradually during the process of pore collapse to complete compaction.Finally,it leads to stress relaxation and velocity homogenization.The shock stress peaks can be fitted with two exponential functions,and the amplitude of attenuation coefficient decreases with the increase of density.Besides,the pore collapse under shock or non-shock are discussed by the entropy increase rate of the system.The energy is dissipated mainly through the multiple interactions of the waves under shock.The energy is dissipated mainly by the friction between atoms under non-shock. 展开更多
关键词 Polyurethane foam Shock wave ATTENUATION atomistic simulation
在线阅读 下载PDF
MicroMagnetic.jl:A Julia package for micromagnetic and atomistic simulations with GPU support 被引量:1
7
作者 Weiwei Wang Boyao Lyu +2 位作者 Lingyao Kong Hans Fangohr Haifeng Du 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期70-79,共10页
MicroMagnetic.jl is an open-source Julia package for micromagnetic and atomistic simulations.Using the features of the Julia programming language,MicroMagnetic.jl supports CPU and various GPU platforms,including NVIDI... MicroMagnetic.jl is an open-source Julia package for micromagnetic and atomistic simulations.Using the features of the Julia programming language,MicroMagnetic.jl supports CPU and various GPU platforms,including NVIDIA,AMD,Intel,and Apple GPUs.Moreover,MicroMagnetic.jl supports Monte Carlo simulations for atomistic models and implements the nudged-elastic-band method for energy barrier computations.With built-in support for double and single precision modes and a design allowing easy extensibility to add new features,MicroMagnetic.jl provides a versatile toolset for researchers in micromagnetics and atomistic simulations. 展开更多
关键词 micromagnetic simulations atomistic simulations graphics processing units
原文传递
Modes of grain growth and mechanism of dislocation reaction under applied biaxial strain:Atomistic and continuum modeling 被引量:4
8
作者 Ying-Jun Gao Qian-Qian Deng +3 位作者 Zhe-yuan Liu Zong-Ji Huang Yi-Xuan Li Zhi-Rong Luo 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第14期236-250,共15页
The phase field crystal method and Continuum Modeling are applied to study the cooperative dislocation motion of the grain boundary(GB)migration,the manner of the nucleation of the grain and of the grain growth in two... The phase field crystal method and Continuum Modeling are applied to study the cooperative dislocation motion of the grain boundary(GB)migration,the manner of the nucleation of the grain and of the grain growth in two dimensions(2 D)under the deviatoric deformation at high temperature.Three types of the nucleation modes of new finding are observed by the phase field crystal simulation:The first mode of the nucleation is generated by the GB splitting into two sub-GBs;the second mode is of the reaction of the sub-GB dislocations,such as,the generation and annihilation of a pair of partial Frank sessile dislocation in 2 D.The process can be considered as the nucleation of dynamic recrystallization;the third mode is caused by two oncoming rows of the dislocations of these sub-GBs,crossing and passing each other to form new gap which is the nucleation place of the new deformed grain.The research is shown that due to the nucleation of different modes the mechanism of the grain growth by means of the sub-GB migration is different,and therefore,the grain growth rates are also different.Under the deviatoric deformation of the applied biaxial strain,the grain growth is faster than that of the grain growth without external applied stress.It is observed that the cooperative dislocation motion of the GB migration under the deviatoric deformation accompanies with local plastic flow and the state of the stress of the system changes sharply.When the system is in the process of recrystallized grain growth,the system energy is in an unstable state due to the release of the strain energy to cause that the reverse movement of the plastic flow occurs.The area growth of the deformed grain is approximately proportional to the strain square and also to the time square.The rule of the time square of the deformed grain growth can also be deduced by establishing the continuum dynamic equation of the biaxial strain-driven migration of the GB.The copper metal is taken as an example of the calculation,and the obtained result is a good agreement with that of the experiment. 展开更多
关键词 Grain boundary splitting Grain growth Dislocation reaction atomistic simulation continuum modeling
原文传递
Adhesive contact:from atomistic model to continuum model 被引量:1
9
作者 樊康旗 贾建援 +1 位作者 朱应敏 张秀艳 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第4期286-294,共9页
Two types of Lennard-Jones potential are widely used in modeling adhesive contacts. However, the relationships between the parameters of the two types of Lennard-Jones potential are not well defined. This paper employ... Two types of Lennard-Jones potential are widely used in modeling adhesive contacts. However, the relationships between the parameters of the two types of Lennard-Jones potential are not well defined. This paper employs a self- consistent method to derive the Lennard-Jones surface force law from the interatomic Lennard-Jones potential with emphasis on the relationships between the parameters. The ei^ect of using correct parameters in the adhesion models is demonstrated in single sphere-flat contact via continuum models and an atomistic model. Furthermore, the adhesion hysteresis behaviour is investigated, and the S-shaped force-distance relation is revealed by the atomistic model. It shows that the adhesion hysteresis loop is generated by the jump-to-contact and jump-off-contact, which are illustrated by the S-shaped force-distance curve. 展开更多
关键词 Lennard-Jones potential adhesive contact atomistic model adhesion hysteresis
原文传递
Atomistic evaluation of tension–compression asymmetry in nanoscale body-centered-cubic AlCrFeCoNi high-entropy alloy
10
作者 邢润龙 刘雪鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期613-622,共10页
The tension and compression of face-centered-cubic high-entropy alloy(HEA) nanowires are significantly asymmetric, but the tension–compression asymmetry in nanoscale body-centered-cubic(BCC) HEAs is still unclear. In... The tension and compression of face-centered-cubic high-entropy alloy(HEA) nanowires are significantly asymmetric, but the tension–compression asymmetry in nanoscale body-centered-cubic(BCC) HEAs is still unclear. In this study,the tension–compression asymmetry of the BCC Al Cr Fe Co Ni HEA nanowire is investigated using molecular dynamics simulations. The results show a significant asymmetry in both the yield and flow stresses, with BCC HEA nanowire stronger under compression than under tension. The strength asymmetry originates from the completely different deformation mechanisms in tension and compression. In compression, atomic amorphization dominates plastic deformation and contributes to the strengthening, while in tension, deformation twinning prevails and weakens the HEA nanowire.The tension–compression asymmetry exhibits a clear trend of increasing with the increasing nanowire cross-sectional edge length and decreasing temperature. In particular, the compressive strengths along the [001] and [111] crystallographic orientations are stronger than the tensile counterparts, while the [110] crystallographic orientation shows the exactly opposite trend. The dependences of tension–compression asymmetry on the cross-sectional edge length, crystallographic orientation,and temperature are explained in terms of the deformation behavior of HEA nanowire as well as its variations caused by the change in these influential factors. These findings may deepen our understanding of the tension–compression asymmetry of the BCC HEA nanowires. 展开更多
关键词 high-entropy alloys body-centered-cubic NANOWIRE tension–compression asymmetry atomistic simulations
原文传递
Nanoscale finite element models for vibrations of single-walled carbon nanotubes: atomistic versus continuum
11
作者 R. ANSARI S. ROUHI M. ARYAYI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第10期1187-1200,共14页
By the atomistic and continuum finite element models, the free vibration behavior of single-walled carbon nanotubes (SWCNTs) is studied. In the atomistic finite element model, the bonds and atoms are modeled by the ... By the atomistic and continuum finite element models, the free vibration behavior of single-walled carbon nanotubes (SWCNTs) is studied. In the atomistic finite element model, the bonds and atoms are modeled by the beam and point mass elements, respectively. The molecular mechanics is linked to structural mechanics to determine the elastic properties of the mentioned beam elements. In the continuum finite element approach, by neglecting the discrete nature of the atomic structure of the nanotubes, they are modeled with shell elements. By both models, the natural frequencies of SWCNTs are computed, and the effects of the geometrical parameters, the atomic structure, and the boundary conditions are investigated. The accuracy of the utilized methods is verified in comparison with molecular dynamic simulations. The molecular structural model leads to more reliable results, especially for lower aspect ratios. The present analysis provides valuable information about application of continuum models in the investigation of the mechanical behaviors of nanotubes. 展开更多
关键词 vibration single-walled carbon nanotube (SWCNT) molecular structural model continuum shell model
在线阅读 下载PDF
Independent dual-band bound states in the continuum based on terahertz all-dielectric metasurfaces
12
作者 WANG Yu LIU Yang +5 位作者 HAO Xiao-yu ZHENG Si-yu LIU Meng ZHANG Yu-ping ZHAN Yi ZHANG Hui-yun 《中国光学(中英文)》 北大核心 2025年第5期1230-1242,共13页
Compared to traditional single-frequency bound states in the continuum(BIC),dual-band BIC of-fers higher degrees of freedom and functionality.Moveover,implementing independent control of dual-band BICs can further enh... Compared to traditional single-frequency bound states in the continuum(BIC),dual-band BIC of-fers higher degrees of freedom and functionality.Moveover,implementing independent control of dual-band BICs can further enhance their advantages and maximize their performance.This study presents a design for a dielectric metasurface that achieves dual-band BICs in the terahertz(THz)range.By adjusting two asym-metry parameters of the structure,independent control of the two symmetry-protected BICs is achieved.Fur-thermore,by varying the shape of the silicon holes,the design's robustness to geometric variations is demon-strated.Finally,the test results show that the figures of merit(FOMs)for both BICs reach 109.This work provides a new approach for realizing and tuning dual-frequency BICs,offering expanded possibilities for applications in multimode lasers,nonlinear optics,multi-channel filtering,and optical sensing. 展开更多
关键词 dual-band bound states in the continuum metasurface terahertz sensing symmetry protection
在线阅读 下载PDF
Factors Influencing the Continuum of Care for Children and Adolescents Treated for HIV at the Pediatric Teaching Hospital of Bangui
13
作者 Simplice Cyriaque Kango Marie Christine Awa Sepou Yanza +3 位作者 Dimitri Horeb Ombellet Carine Judith Kiteze Nguinzanemou Jess Elio Kosh Komba Jean Chrysostome Gody 《Open Journal of Pediatrics》 2025年第1期119-129,共11页
Introduction: Reducing and maintaining viral load is crucial to reducing morbidity and mortality associated with HIV infection in children. The aim of this study was to determine the factors influencing the maintenanc... Introduction: Reducing and maintaining viral load is crucial to reducing morbidity and mortality associated with HIV infection in children. The aim of this study was to determine the factors influencing the maintenance of children and adolescents on antiretroviral therapy in the continuum of care. Methodology: This was a descriptive and analytical cross-sectional study conducted from August 1 to August 31, 2023. It included all children living with HIV, under 15 years of age, with at least two viral load results and whose parents consented to participate in the study. Participants were recruited during their child’s treatment renewal consultations. Results: The study included 143 children, mostly boys (55.2%), with a mean age of 11.54 years (±2.8). More than half (55.2) were unaware of their HIV-positive status, and most treatments were administered by parents (60.8%). Of the 99 children with an undetectable viral load at the first test, 23 (23.2%) showed a viral rebound at the last test, mainly due to poor treatment compliance (p Conclusion: Virological rebound after suppression in children is worrying. It is crucial that the national AIDS program improves Therapeutic Education, trains health workers to communicate results and encourages ongoing dialogue with young people to reinforce adherence and maintain viral suppression. 展开更多
关键词 Influencing Factors continuum of Care Children/Adolescents HIV Bangui
暂未订购
A Posteriori Error Estimate and Adaptive Mesh Refinement Algorithm for Atomistic/Continuum Coupling with Finite Range Interactions in Two Dimensions
14
作者 Mingjie Liao Ping Lin Lei Zhang 《Communications in Computational Physics》 SCIE 2020年第1期198-226,共29页
In this paper,we develop the residual based a posteriori error estimates and the corresponding adaptive mesh refinement algorithm for atomistic/continuum(a/c)coupling with finite range interactions in two dimensions.W... In this paper,we develop the residual based a posteriori error estimates and the corresponding adaptive mesh refinement algorithm for atomistic/continuum(a/c)coupling with finite range interactions in two dimensions.We have systematically derived a new explicitly computable stress tensor formula for finite range in-teractions.In particular,we use the geometric reconstruction based consistent atomistic/continuum(GRAC)coupling scheme,which is quasi-optimal if the continuum model is discretized by P1 finite elements.The numerical results of the adaptive mesh refinement algorithm is consistent with the quasi-optimal a priori error estimates. 展开更多
关键词 atomistic models coarse graining atomistic-to-continuum coupling quasicontin-uum method a posteriori error estimate
原文传递
Countability of Infinite Paths in the Infinity Tree: Proof of the Continuum Hypothesis in a Non-Cantorian Infinity Theory
15
作者 Philip C. Jackson 《Advances in Pure Mathematics》 2025年第1期73-90,共18页
A previous paper showed that the real numbers between 0 and 1 could be represented by an infinite tree structure, called the ‘infinity tree’, which contains only a countably infinite number of nodes and arcs. This p... A previous paper showed that the real numbers between 0 and 1 could be represented by an infinite tree structure, called the ‘infinity tree’, which contains only a countably infinite number of nodes and arcs. This paper discusses how a finite-state Turing machine could, in a countably infinite number of state transitions, write all the infinite paths in the infinity tree to a countably infinite tape. Hence it is argued that the real numbers in the interval [0, 1] are countably infinite in a non-Cantorian theory of infinity based on Turing machines using countably infinite space and time. In this theory, Cantor’s Continuum Hypothesis can also be proved. And in this theory, it follows that the power set of the natural numbers P(ℕ) is countably infinite, which contradicts the claim of Cantor’s Theorem for the natural numbers. However, this paper does not claim there is an error in Cantor’s arguments that [0, 1] is uncountably infinite. Rather, this paper considers the situation as a paradox, resulting from different choices about how to represent and count the continuum of real numbers. 展开更多
关键词 INFINITY Countable UNCOUNTABLE Diagonalization Real Numbers Infinity Tree continuum Hypothesis Turing Machine Infinite Time Turing Machine Non-Cantorian
在线阅读 下载PDF
Design of a Bio-inspired Extensible Continuum Manipulator with Variable Stiffness
16
作者 Dongbao Sui Sikai Zhao +3 位作者 Tianshuo Wang Yubin Liu Yanhe Zhu Jie Zhao 《Journal of Bionic Engineering》 2025年第1期181-194,共14页
This paper presents a continuum manipulator inspired by the anatomical characteristics of the elephant trunk.Specifically,the manipulator mimics the conoid profile of the elephant trunk,which helps to enhance its stre... This paper presents a continuum manipulator inspired by the anatomical characteristics of the elephant trunk.Specifically,the manipulator mimics the conoid profile of the elephant trunk,which helps to enhance its strength.The design features two concentric parts:inner pneumatically actuated bellows and an outer tendon-driven helical spring.The tendons control the omnidirectional bending of the manipulator,while the fusion of the pneumatic bellows with the tendon-driven spring results in an antagonistic actuation mechanism that provides the manipulator with variable stiffness and extensibility.This paper presents a new design for extensible manipulator and analyzes its stiffness and motion characteristics.Experimental results are consistent with theoretical analysis,thereby demonstrating the validity of the theoretical approach and the versatile practical mechanical properties of the continuum manipulator.The impressive extensibility and variable stiffness of the manipulator were further demonstrated by performing a pin-hole assembly task. 展开更多
关键词 Bioinspired robots continuum robots Soft robotics Variable stiffness
在线阅读 下载PDF
A direct evidence for kilometric continuum generation through mode conversion
17
作者 ZhouKun Deng FuLiang Xiao +5 位作者 QingHua Zhou YiHua He Sai Zhang Si Liu JiaWen Tang Ping Li 《Earth and Planetary Physics》 2025年第4期995-1000,共6页
The origin of the Kilometric Continuum(KC)is usually attributed to the linear mode conversion window theory,yet direct evidence has been lacking.Here we present an event where electrostatic waves,Z-mode,and KC were ob... The origin of the Kilometric Continuum(KC)is usually attributed to the linear mode conversion window theory,yet direct evidence has been lacking.Here we present an event where electrostatic waves,Z-mode,and KC were observed simultaneously near the magnetic equator by the Van Allen Probes.We identify the radio window(the region for mode conversion taking place)at L=4.059 by solving the fully-thermal dispersion relation.Ray tracing simulations show that the backward-propagating electrostatic mode can smoothly transition to Z-mode.Then,Z-mode can convert to KC when its direction shifts to parallel or anti-parallel propagation at the radio window,which aligns with observations.This study provides direct evidence that supports the linear mode conversion theory as an effective mechanism for KC generation. 展开更多
关键词 kilometric continuum ray trace linear mode conversion
在线阅读 下载PDF
Ammonium removal through anaerobic ammonium oxidation coupled to iron(III) reduction along the Yangtze river–estuary continuum
18
作者 Anxing Lai Shiming Fan +6 位作者 Jingya Xue Hongwei Wang Ke Xie Huabing Li Hai Xu Biao Li Qinglong L.Wu 《Journal of Environmental Sciences》 2025年第6期178-187,共10页
Anaerobic ammonium oxidation coupled to iron(III)reduction(Feammox)process has recently been recognized as an important pathway for removing ammonium in various natural habitats.However,our understanding for Feammox i... Anaerobic ammonium oxidation coupled to iron(III)reduction(Feammox)process has recently been recognized as an important pathway for removing ammonium in various natural habitats.However,our understanding for Feammox in river–estuary continuum is limited.In this study,stable isotope tracers and high-throughput amplicon sequencing were employed to determine Feammox rates and identify associated microbial communities in sediments along the Yangtze river–estuary continuum.Feammox rates averaged 0.0058±0.0069 mg N/(kg·d)and accounted for approximately 22.3%of the ammonium removed from the sediments.Sediment Fe(III),ammonium(NH_(4)^(+)),total organic carbon(TOC),and pH were identified as important factors influencing Feammox rates.Additionally,Spirochaeta,Caldilineaceae_uncultured,and Ignavibacterium were found potentially associated with Feammox,which had not been documented as Feammox-associated microbial taxa previously.This study demonstrates that Feammox plays a vital role in ammonium removal within the Yangtze river–estuary continuum,providing greater insight into nitrogen removal and cycling in aquatic ecosystems. 展开更多
关键词 Feammox ANAMMOX River-estuary continuum Ammonium removal Stable isotope tracing
原文传递
Continuum estimation in low-resolution gamma-ray spectra based on deep learning
19
作者 Ri Zhao Li-Ye Liu +5 位作者 Xin Liu Zhao-Xing Liu Run-Cheng Liang Ren-Jing Ling-Hu Jing Zhang Fa-Guo Chen 《Nuclear Science and Techniques》 2025年第2期5-17,共13页
In this study,an end-to-end deep learning method is proposed to improve the accuracy of continuum estimation in low-resolution gamma-ray spectra.A novel process for generating the theoretical continuum of a simulated ... In this study,an end-to-end deep learning method is proposed to improve the accuracy of continuum estimation in low-resolution gamma-ray spectra.A novel process for generating the theoretical continuum of a simulated spectrum is established,and a convolutional neural network consisting of 51 layers and more than 105 parameters is constructed to directly predict the entire continuum from the extracted global spectrum features.For testing,an in-house NaI-type whole-body counter is used,and 106 training spectrum samples(20%of which are reserved for testing)are generated using Monte Carlo simulations.In addition,the existing fitting,step-type,and peak erosion methods are selected for comparison.The proposed method exhibits excellent performance,as evidenced by its activity error distribution and the smallest mean activity error of 1.5%among the evaluated methods.Additionally,a validation experiment is performed using a whole-body counter to analyze a human physical phantom containing four radionuclides.The largest activity error of the proposed method is−5.1%,which is considerably smaller than those of the comparative methods,confirming the test results.The multiscale feature extraction and nonlinear relation modeling in the proposed method establish a novel approach for accurate and convenient continuum estimation in a low-resolution gamma-ray spectrum.Thus,the proposed method is promising for accurate quantitative radioactivity analysis in practical applications. 展开更多
关键词 Gamma-ray spectrum continuum estimation Deep learning Convolutional neural network End-to-end prediction
在线阅读 下载PDF
Bifurcation of the bound states in the continuum in a dissipative cavity magnonic system
20
作者 Xinlin Mi Lijun Yan +3 位作者 Bimu Yao Shishen Yan Jinwei Rao Lihui Bai 《Chinese Physics B》 2025年第6期177-181,共5页
We report the bifurcation of bound states in the continuum(BICs) in a dissipative cavity magnonic system, where a BIC splits into a pair of BICs. We theoretically analyze BICs in a dissipative cavity magnonic system a... We report the bifurcation of bound states in the continuum(BICs) in a dissipative cavity magnonic system, where a BIC splits into a pair of BICs. We theoretically analyze BICs in a dissipative cavity magnonic system and derive the critical condition for BICs bifurcation. Based on the theoretical results, we experimentally tune the dissipative photon–magnon coupling strength and demonstrate precise control over the detuning and number of BICs. When the dissipative coupling strength reaches a critical value, we observe the bifurcation of BICs, which is consistent with the theoretical prediction. Our systematic investigation of the evolution of BICs concerning the dissipative coupling strength and the discovery of the BIC bifurcation may enhance the sensitivity of BICs to external perturbations, potentially enabling applications in ultrasensitive detection. 展开更多
关键词 magnonics cavity magnon polaritons bound states in the continuum(BICs)
原文传递
上一页 1 2 152 下一页 到第
使用帮助 返回顶部