期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Atomic Quantum Mechanics Based on Atomic Functions
1
作者 Sergei Yu. Eremenko 《Journal of Applied Mathematics and Physics》 2024年第11期3941-3963,共23页
Based on theorems, the Atomic AString Functions theory, evolving since the 1970s, is introduced into Quantum Mechanics to represent a wave function via the shifts and stretches of smooth finite Atomic Function pulses/... Based on theorems, the Atomic AString Functions theory, evolving since the 1970s, is introduced into Quantum Mechanics to represent a wave function via the shifts and stretches of smooth finite Atomic Function pulses/solitonic atoms. It leads to a novel ‘atomic interpretation’ where wave functions become the superpositions of localized Atomic Wave Functions, which can also describe collapsed wave functions, represent Gaussians, uphold Heisenberg’s uncertainly principle, and a more generic concept of Atomic Harmonic Oscillator. Atomic Functions can solve the boundary wave function discontinuity problem for particle-in-a-box and other solutions by introducing atomic wave packets. It highlights some limitations of the Schrödinger equation, yielding harmonic representations that may not be flexible enough to satisfy complex boundary conditions. The theory follows more generic research on Atomic Spacetime, quantum gravity, and field theories to derive common mathematical blocks of unified fields similar to loop quantum gravity and strings theories. 展开更多
关键词 Quantum Mechanics atomic function atomic wave function atomic Oscillator atomic Spacetime Unified Theories
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部