In this paper, the growth characteristics of Acidithiobacillus ferrooxidans (At.f) and Acidithiobacillus thiooxidans (At. f) in mixed culture has been studied, explored mixed bacteria phosphate solubilization effe...In this paper, the growth characteristics of Acidithiobacillus ferrooxidans (At.f) and Acidithiobacillus thiooxidans (At. f) in mixed culture has been studied, explored mixed bacteria phosphate solubilization effect, from a kind of low-grade phosphate rock. The results show that mixed bacteria has strong ability to produce acid, and have stronger oxidation activity to energy source -Fe^2+. Mixed bacteria can significantly increase the rate of phosphate solubilization from phosphate rock in low concentration pulp. It goes against mixed bacteria reproduction when pulp concentration increased, makes phosphate solubilization rate decreased.展开更多
The effects of Acidithiobacillus ferrooxidans(At. f) mutated with diethyl sulfate(DES) as a mutagen on the bioleaching of soluble phosphorus(P) from rock phosphate(RP) were investigated. The results show that the oxid...The effects of Acidithiobacillus ferrooxidans(At. f) mutated with diethyl sulfate(DES) as a mutagen on the bioleaching of soluble phosphorus(P) from rock phosphate(RP) were investigated. The results show that the oxidative activity of At. f is greatly improved by 1.0%(volume fraction) of DES. Correspondingly,the highest leaching rate of soluble P is also obtained to be 14.9% by the At. f mutated,which is 85.8% higher than that of the adapted At. f without mutation. In addition,the SEM images are significantly performed that the corrosion of RP residue surfaces leached by 1.0% DES-induced At.f is much worse than that of leached by the adapted At. f. All the above indicate that the leaching efficiency of soluble P from RP with pyrite can be greatly improved by using DES-induced At. f to a certain extent.展开更多
文摘In this paper, the growth characteristics of Acidithiobacillus ferrooxidans (At.f) and Acidithiobacillus thiooxidans (At. f) in mixed culture has been studied, explored mixed bacteria phosphate solubilization effect, from a kind of low-grade phosphate rock. The results show that mixed bacteria has strong ability to produce acid, and have stronger oxidation activity to energy source -Fe^2+. Mixed bacteria can significantly increase the rate of phosphate solubilization from phosphate rock in low concentration pulp. It goes against mixed bacteria reproduction when pulp concentration increased, makes phosphate solubilization rate decreased.
基金Project (Z200515002) supported by the Key Project Foundation of the Education Department of Hubei Province, China
文摘The effects of Acidithiobacillus ferrooxidans(At. f) mutated with diethyl sulfate(DES) as a mutagen on the bioleaching of soluble phosphorus(P) from rock phosphate(RP) were investigated. The results show that the oxidative activity of At. f is greatly improved by 1.0%(volume fraction) of DES. Correspondingly,the highest leaching rate of soluble P is also obtained to be 14.9% by the At. f mutated,which is 85.8% higher than that of the adapted At. f without mutation. In addition,the SEM images are significantly performed that the corrosion of RP residue surfaces leached by 1.0% DES-induced At.f is much worse than that of leached by the adapted At. f. All the above indicate that the leaching efficiency of soluble P from RP with pyrite can be greatly improved by using DES-induced At. f to a certain extent.