In this paper, the asymmetric laminar flow in a porous channel with expanding or contracting walls is investigated. The governing equations are reduced to ordinary ones by using suitable similar transformations. Homot...In this paper, the asymmetric laminar flow in a porous channel with expanding or contracting walls is investigated. The governing equations are reduced to ordinary ones by using suitable similar transformations. Homotopy analysis method (HAM) is employed to obtain the expres- sions for velocity fields. Graphs are sketched for values of parameters and associated dynamic characteristics, especially the expansion ratio, are analyzed in detail.展开更多
Since the fault dynamic of droop-controlled inverter is different from synchronous generators (SGs), protection devices may become invalid, and the fault overcurrent may damage power electronic devices and threaten th...Since the fault dynamic of droop-controlled inverter is different from synchronous generators (SGs), protection devices may become invalid, and the fault overcurrent may damage power electronic devices and threaten the safety of the microgrid. Therefore, it is imperative to conduct a comprehensive fault analysis of the inverter to guide the design of protection schemes. However, due to the complexity of droop control strategy, existing literatures have simplified asymmetric fault analysis of droop-controlled inverters to varying degrees. Therefore, accurate fault analysis of a droop-controlled inverter is needed. In this paper, by analyzing the control system, an accurate fault model is established. Based on this, a calculation method for instantaneous asymmetrical fault current is proposed. In addition, the current components and current characteristics are analyzed. It was determined that fault currents are affected by control loops, fault types, fault distance and nonlinear limiters. In particular, the influences of limiters on the fault model, fault current calculation and fault current characteristics were analyzed. Through detailed analysis, it was found that dynamics of the control loop cannot be ignored, the fault type and fault distance determine fault current level, and part of the limiters will totally change the fault current trend. Finally, calculation and experimental results verify the correctness of the proposed method.展开更多
With the wide application of power electronized resources(PERs),the amplitude and frequency of voltages show significant time-varying characteristics under asymmetrical faults.As a result,the traditional phasor model,...With the wide application of power electronized resources(PERs),the amplitude and frequency of voltages show significant time-varying characteristics under asymmetrical faults.As a result,the traditional phasor model,impedance model,and symmetrical components method based on the constant amplitude and frequency of voltages are facing great challenges.Hence,a novel asymmetrical fault analysis method based on conjugate vectors is proposed in this paper which can meet the modeling and analysis requirements of the network excited by voltages with time-varying amplitude/frequency.Furthermore,asymmetrical fault characteristics are extracted.As an application,a faulted phase identification(FPI)strategy is proposed based on the fault characteristics.The correctness and superiority of the asymmetrical fault analysis method and FPI strategy are verified in time-domain simulations and a real-time digital simulator.展开更多
Understanding the relationship between attribute performance(AP)and customer satisfaction(CS)is crucial for the hospitality industry.However,accurately modeling this relationship remains challenging.To address this is...Understanding the relationship between attribute performance(AP)and customer satisfaction(CS)is crucial for the hospitality industry.However,accurately modeling this relationship remains challenging.To address this issue,we propose an interpretable machine learning-based dynamic asymmetric analysis(IML-DAA)approach that leverages interpretable machine learning(IML)to improve traditional relationship analysis methods.The IML-DAA employs extreme gradient boosting(XGBoost)and SHapley Additive exPlanations(SHAP)to construct relationships and explain the significance of each attribute.Following this,an improved version of penalty-reward contrast analysis(PRCA)is used to classify attributes,whereas asymmetric impact-performance analysis(AIPA)is employed to determine the attribute improvement priority order.A total of 29,724 user ratings in New York City collected from TripAdvisor were investigated.The results suggest that IML-DAA can effectively capture non-linear relationships and that there is a dynamic asymmetric effect between AP and CS,as identified by the dynamic AIPA model.This study enhances our understanding of the relationship between AP and CS and contributes to the literature on the hotel service industry.展开更多
基金supported by the National Natural Science Foundations of China (50936003, 50905013)The Open Project of State Key Lab. for Adv. Matals and Materials (2009Z-02)Research Foundation of Engineering Research Institute of USTB
文摘In this paper, the asymmetric laminar flow in a porous channel with expanding or contracting walls is investigated. The governing equations are reduced to ordinary ones by using suitable similar transformations. Homotopy analysis method (HAM) is employed to obtain the expres- sions for velocity fields. Graphs are sketched for values of parameters and associated dynamic characteristics, especially the expansion ratio, are analyzed in detail.
基金supported by National Natural Science Foundation of China under Grant 51977066。
文摘Since the fault dynamic of droop-controlled inverter is different from synchronous generators (SGs), protection devices may become invalid, and the fault overcurrent may damage power electronic devices and threaten the safety of the microgrid. Therefore, it is imperative to conduct a comprehensive fault analysis of the inverter to guide the design of protection schemes. However, due to the complexity of droop control strategy, existing literatures have simplified asymmetric fault analysis of droop-controlled inverters to varying degrees. Therefore, accurate fault analysis of a droop-controlled inverter is needed. In this paper, by analyzing the control system, an accurate fault model is established. Based on this, a calculation method for instantaneous asymmetrical fault current is proposed. In addition, the current components and current characteristics are analyzed. It was determined that fault currents are affected by control loops, fault types, fault distance and nonlinear limiters. In particular, the influences of limiters on the fault model, fault current calculation and fault current characteristics were analyzed. Through detailed analysis, it was found that dynamics of the control loop cannot be ignored, the fault type and fault distance determine fault current level, and part of the limiters will totally change the fault current trend. Finally, calculation and experimental results verify the correctness of the proposed method.
基金supported in part by the National Natural Science Foundation of China(52107096)in part by the Young Elite Scientists Sponsorship Program by CAST(2021QNRC001)in part by the National Science Foundation for Distinguished Young Scholars of China(52225704).
文摘With the wide application of power electronized resources(PERs),the amplitude and frequency of voltages show significant time-varying characteristics under asymmetrical faults.As a result,the traditional phasor model,impedance model,and symmetrical components method based on the constant amplitude and frequency of voltages are facing great challenges.Hence,a novel asymmetrical fault analysis method based on conjugate vectors is proposed in this paper which can meet the modeling and analysis requirements of the network excited by voltages with time-varying amplitude/frequency.Furthermore,asymmetrical fault characteristics are extracted.As an application,a faulted phase identification(FPI)strategy is proposed based on the fault characteristics.The correctness and superiority of the asymmetrical fault analysis method and FPI strategy are verified in time-domain simulations and a real-time digital simulator.
基金National Key R&D Program of China(Grant No.:2022YFF0903000)National Natural Science Foundation of China(Grant Nos.:72101197 and 71988101).
文摘Understanding the relationship between attribute performance(AP)and customer satisfaction(CS)is crucial for the hospitality industry.However,accurately modeling this relationship remains challenging.To address this issue,we propose an interpretable machine learning-based dynamic asymmetric analysis(IML-DAA)approach that leverages interpretable machine learning(IML)to improve traditional relationship analysis methods.The IML-DAA employs extreme gradient boosting(XGBoost)and SHapley Additive exPlanations(SHAP)to construct relationships and explain the significance of each attribute.Following this,an improved version of penalty-reward contrast analysis(PRCA)is used to classify attributes,whereas asymmetric impact-performance analysis(AIPA)is employed to determine the attribute improvement priority order.A total of 29,724 user ratings in New York City collected from TripAdvisor were investigated.The results suggest that IML-DAA can effectively capture non-linear relationships and that there is a dynamic asymmetric effect between AP and CS,as identified by the dynamic AIPA model.This study enhances our understanding of the relationship between AP and CS and contributes to the literature on the hotel service industry.