期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Density Estimation Using Gumbel Kernel Estimator
1
作者 Javaria Ahmad Khan Atif Akbar 《Open Journal of Statistics》 2021年第2期319-328,共10页
In this article, our proposed kernel estimator, named as Gumbel kernel, which broadened the class of non-negative, asymmetric kernel density estimators. Such kernel estimator can be used in nonparametric estimation of... In this article, our proposed kernel estimator, named as Gumbel kernel, which broadened the class of non-negative, asymmetric kernel density estimators. Such kernel estimator can be used in nonparametric estimation of the probability density function (</span><i><span style="font-family:Verdana;">pdf</span></i><span style="font-family:Verdana;">). When the density functions have limited bounded support on [0, ∞) and they are liberated of boundary bias, always non-negative and obtain the optimal rate of convergence for the mean integrated squared error (MISE). The bias, variance and the optimal bandwidth of the proposed estimators are investigated on theoretical grounds as well as on simulation basis. Further, the applicability of the proposed estimator is compared to Weibul</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">l</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> kernel estimator, where performance of newly proposed kernel is outstanding. 展开更多
关键词 asymmetrical kernels Boundary Problems Density Estimation Flood Data Gumbel Kernel Estimator
在线阅读 下载PDF
A tool wear monitoring method based on improved DenseNet and GRU
2
作者 WANG Yue MA Yajie +1 位作者 ZHOU Jiangnan WU Yanxia 《Journal of Systems Engineering and Electronics》 2025年第6期1562-1578,共17页
The precision and quality of machining in computer numerical control(CNC)machines are significantly impacted by the state of the tool.Therefore,it is essential and crucial to monitor the tool’s condition in real time... The precision and quality of machining in computer numerical control(CNC)machines are significantly impacted by the state of the tool.Therefore,it is essential and crucial to monitor the tool’s condition in real time during operation.To improve the monitoring accuracy of tool wear values,a tool wear monitoring approach is developed in this work,which is based on an improved integrated model of densely connected convolutional network(DenseNet)and gated recurrent unit(GRU),which incorporates data preprocessing via wavelet packet transform(WPT).Firstly,wavelet packet decomposition(WPD)is used to extract time-frequency domain features from the original timeseries monitoring signals of the tool.Secondly,the multidimensional deep features are extracted from DenseNet containing asymmetric convolution kernels,and feature fusion is performed.A dilation scheme is employed to acquire more historical data by utilizing dilated convolutional kernels with different dilation rates.Finally,the GRU is utilized to extract temporal features from the extracted deep-level signal features,and the feature mapping of these temporal features is then carried out by a fully connected neural network,which ultimately achieves the monitoring of tool wear values.Comprehensive experiments conducted on reference datasets show that the proposed model performs better in terms of accuracy and generalization than other cutting-edge tool wear monitoring algorithms. 展开更多
关键词 tool wear monitoring densely connected convolutional network(DenseNet) asymmetric convolutional kernel dilated convolutional kernel gated recurrent unit(GRU)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部