Joint Multimodal Aspect-based Sentiment Analysis(JMASA)is a significant task in the research of multimodal fine-grained sentiment analysis,which combines two subtasks:Multimodal Aspect Term Extraction(MATE)and Multimo...Joint Multimodal Aspect-based Sentiment Analysis(JMASA)is a significant task in the research of multimodal fine-grained sentiment analysis,which combines two subtasks:Multimodal Aspect Term Extraction(MATE)and Multimodal Aspect-oriented Sentiment Classification(MASC).Currently,most existing models for JMASA only perform text and image feature encoding from a basic level,but often neglect the in-depth analysis of unimodal intrinsic features,which may lead to the low accuracy of aspect term extraction and the poor ability of sentiment prediction due to the insufficient learning of intra-modal features.Given this problem,we propose a Text-Image Feature Fine-grained Learning(TIFFL)model for JMASA.First,we construct an enhanced adjacency matrix of word dependencies and adopt graph convolutional network to learn the syntactic structure features for text,which addresses the context interference problem of identifying different aspect terms.Then,the adjective-noun pairs extracted from image are introduced to enable the semantic representation of visual features more intuitive,which addresses the ambiguous semantic extraction problem during image feature learning.Thereby,the model performance of aspect term extraction and sentiment polarity prediction can be further optimized and enhanced.Experiments on two Twitter benchmark datasets demonstrate that TIFFL achieves competitive results for JMASA,MATE and MASC,thus validating the effectiveness of our proposed methods.展开更多
Most consumers read online reviews written by different users before making purchase decisions,where each opinion expresses some sentiment.Therefore,sentiment analysis is currently a hot topic of research.In particula...Most consumers read online reviews written by different users before making purchase decisions,where each opinion expresses some sentiment.Therefore,sentiment analysis is currently a hot topic of research.In particular,aspect-based sentiment analysis concerns the exploration of emotions,opinions and facts that are expressed by people,usually in the form of polarity.It is crucial to consider polarity calculations and not simply categorize reviews as positive,negative,or neutral.Currently,the available lexicon-based method accuracy is affected by limited coverage.Several of the available polarity estimation techniques are too general and may not reect the aspect/topic in question if reviews contain a wide range of information about different topics.This paper presents a model for the polarity estimation of customer reviews using aspect-based sentiment analysis(ABSA-PER).ABSA-PER has three major phases:data preprocessing,aspect co-occurrence calculation(CAC)and polarity estimation.A multi-domain sentiment dataset,Twitter dataset,and trust pilot forum dataset(developed by us by dened judgement rules)are used to verify ABSA-PER.Experimental outcomes show that ABSA-PER achieves better accuracy,i.e.,85.7%accuracy for aspect extraction and 86.5%accuracy in terms of polarity estimation,than that of the baseline methods.展开更多
The Aspect-Based Sentiment Analysis(ABSA)task is designed to judge the sentiment polarity of a particular aspect in a review.Recent studies have proved that GCN can capture syntactic and semantic features from depende...The Aspect-Based Sentiment Analysis(ABSA)task is designed to judge the sentiment polarity of a particular aspect in a review.Recent studies have proved that GCN can capture syntactic and semantic features from dependency graphs generated by dependency trees and semantic graphs generated by Multi-headed self-attention(MHSA).However,these approaches do not highlight the sentiment information associated with aspect in the syntactic and semantic graphs.We propose the Aspect-Guided Multi-Graph Convolutional Networks(AGGCN)for Aspect-Based Sentiment Classification.Specifically,we reconstruct two kinds of graphs,changing the weight of the dependency graph by distance from aspect and improving the semantic graph by Aspect-guided MHSA.For interactive learning of syntax and semantics,we dynamically fuse syntactic and semantic diagrams to generate syntactic-semantic graphs to learn emotional features jointly.In addition,Multi-dropout is added to solve the overftting of AGGCN in training.The experimental results on extensive datasets show that our model AGGCN achieves particularly advanced results and validates the effectiveness of the model.展开更多
Aspect-oriented sentiment analysis is a meticulous sentiment analysis task that aims to analyse the sentiment polarity of specific aspects. Most of the current research builds graph convolutional networks based on dep...Aspect-oriented sentiment analysis is a meticulous sentiment analysis task that aims to analyse the sentiment polarity of specific aspects. Most of the current research builds graph convolutional networks based on dependent syntactic trees, which improves the classification performance of the models to some extent. However, the technical limitations of dependent syntactic trees can introduce considerable noise into the model. Meanwhile, it is difficult for a single graph convolutional network to aggregate both semantic and syntactic structural information of nodes, which affects the final sentence classification. To cope with the above problems, this paper proposes a bi-channel graph convolutional network model. The model introduces a phrase structure tree and transforms it into a hierarchical phrase matrix. The adjacency matrix of the dependent syntactic tree and the hierarchical phrase matrix are combined as the initial matrix of the graph convolutional network to enhance the syntactic information. The semantic information feature representations of the sentences are obtained by the graph convolutional network with a multi-head attention mechanism and fused to achieve complementary learning of dual-channel features. Experimental results show that the model performs well and improves the accuracy of sentiment classification on three public benchmark datasets, namely Rest14, Lap14 and Twitter.展开更多
The efficient market hypothesis in traditional financial theory struggles to explain the short-term irrational fluctuations in the A-share market,where investor sentiment fluctuations often serve as the core driver of...The efficient market hypothesis in traditional financial theory struggles to explain the short-term irrational fluctuations in the A-share market,where investor sentiment fluctuations often serve as the core driver of abnormal stock price movements.Traditional sentiment measurement methods suffer from limitations such as lag,high misjudgment rates,and the inability to distinguish confounding factors.To more accurately explore the dynamic correlation between investor sentiment and stock price fluctuations,this paper proposes a sentiment analysis framework based on large language models(LLMs).By constructing continuous sentiment scoring factors and integrating them with a long short-term memory(LSTM)deep learning model,we analyze the correlation between investor sentiment and stock price fluctuations.Empirical results indicate that sentiment factors based on large language models can generate an annualized excess return of 9.3%in the CSI 500 index domain.The LSTM stock price prediction model incorporating sentiment features achieves a mean absolute percentage error(MAPE)as low as 2.72%,significantly outperforming traditional models.Through this analysis,we aim to provide quantitative references for optimizing investment decisions and preventing market risks.展开更多
Green consumption(GC)are crucial for achieving the SustainableDevelopmentGoals(SDGs).However,few studies have explored public attitudes toward GC using social media data,missing potential public concerns captured thro...Green consumption(GC)are crucial for achieving the SustainableDevelopmentGoals(SDGs).However,few studies have explored public attitudes toward GC using social media data,missing potential public concerns captured through big data.To address this gap,this study collects and analyzes public attention toward GC using web crawler technology.Based on the data from Sina Weibo,we applied RoBERTa,an advanced NLP model based on transformer architecture,to conduct fine-grained sentiment analysis of the public’s attention,attitudes and hot topics on GC,demonstrating the potential of deep learning methods in capturing dynamic and contextual emotional shifts across time and regions.Among the sample(N=188,509),53.91% expressed a positive attitude,with variation across different times and regions.Temporally,public interest in GC has shown an annual growth rate of 30.23%,gradually shifting fromfulfilling basic needs to prioritizing entertainment consumption.Spatially,GC is most prevalent in the southeast coastal regions of China,with Beijing ranking first across five evaluated domains.Individuals and government-affiliated accounts play a key role in public discussions on social networks,accounting for 45.89% and 30.01% of user reviews,respectively.A significant positive correlation exists between economic development and public attention to GC,as indicated by a Pearson correlation coefficient of 0.55.Companies,in particular,exhibit cautious behavior in the early stages of green product adoption,prioritizing profitability before making substantial investments.These findings provide valuable insights into the evolving public perception of GC,contributing to the development of more effective environmental policies in China.展开更多
Incorporation of explainability features in the decision-making web-based systems is considered a primary concern to enhance accountability,transparency,and trust in the community.Multi-domain Sentiment Analysis is a ...Incorporation of explainability features in the decision-making web-based systems is considered a primary concern to enhance accountability,transparency,and trust in the community.Multi-domain Sentiment Analysis is a significant web-based system where the explainability feature is essential for achieving user satisfaction.Conventional design methodologies such as object-oriented design methodology(OODM)have been proposed for web-based application development,which facilitates code reuse,quantification,and security at the design level.However,OODM did not provide the feature of explainability in web-based decision-making systems.X-OODM modifies the OODM with added explainable models to introduce the explainability feature for such systems.This research introduces an explainable model leveraging X-OODM for designing transparent applications for multidomain sentiment analysis.The proposed design is evaluated using the design quality metrics defined for the evaluation of the X-OODM explainable model under user context.The design quality metrics,transferability,simulatability,informativeness,and decomposability were introduced one after another over time to the evaluation of the X-OODM user context.Auxiliary metrics of accessibility and algorithmic transparency were added to increase the degree of explainability for the design.The study results reveal that introducing such explainability parameters with X-OODM appropriately increases system transparency,trustworthiness,and user understanding.The experimental results validate the enhancement of decision-making for multi-domain sentiment analysis with integration at the design level of explainability.Future work can be built in this direction by extending this work to apply the proposed X-OODM framework over different datasets and sentiment analysis applications to further scrutinize its effectiveness in real-world scenarios.展开更多
In the rapidly evolving landscape of natural language processing(NLP)and sentiment analysis,improving the accuracy and efficiency of sentiment classification models is crucial.This paper investigates the performance o...In the rapidly evolving landscape of natural language processing(NLP)and sentiment analysis,improving the accuracy and efficiency of sentiment classification models is crucial.This paper investigates the performance of two advanced models,the Large Language Model(LLM)LLaMA model and NLP BERT model,in the context of airline review sentiment analysis.Through fine-tuning,domain adaptation,and the application of few-shot learning,the study addresses the subtleties of sentiment expressions in airline-related text data.Employing predictive modeling and comparative analysis,the research evaluates the effectiveness of Large Language Model Meta AI(LLaMA)and Bidirectional Encoder Representations from Transformers(BERT)in capturing sentiment intricacies.Fine-tuning,including domain adaptation,enhances the models'performance in sentiment classification tasks.Additionally,the study explores the potential of few-shot learning to improve model generalization using minimal annotated data for targeted sentiment analysis.By conducting experiments on a diverse airline review dataset,the research quantifies the impact of fine-tuning,domain adaptation,and few-shot learning on model performance,providing valuable insights for industries aiming to predict recommendations and enhance customer satisfaction through a deeper understanding of sentiment in user-generated content(UGC).This research contributes to refining sentiment analysis models,ultimately fostering improved customer satisfaction in the airline industry.展开更多
Wireless technologies and the Internet of Things(IoT)are being extensively utilized for advanced development in traditional communication systems.This evolution lowers the cost of the extensive use of sensors,changing...Wireless technologies and the Internet of Things(IoT)are being extensively utilized for advanced development in traditional communication systems.This evolution lowers the cost of the extensive use of sensors,changing the way devices interact and communicate in dynamic and uncertain situations.Such a constantly evolving environment presents enormous challenges to preserving a secure and lightweight IoT system.Therefore,it leads to the design of effective and trusted routing to support sustainable smart cities.This research study proposed a Genetic Algorithm sentiment-enhanced secured optimization model,which combines big data analytics and analysis rules to evaluate user feedback.The sentiment analysis is utilized to assess the perception of network performance,allowing the classification of device behavior as positive,neutral,or negative.By integrating sentiment-driven insights,the IoT network adjusts the system configurations to enhance the performance using network behaviour in terms of latency,reliability,fault tolerance,and sentiment score.Accordingly to the analysis,the proposed model categorizes the behavior of devices as positive,neutral,or negative,facilitating real-time monitoring for crucial applications.Experimental results revealed a significant improvement in the proposed model for threat prevention and network efficiency,demonstrating its resilience for real-time IoT applications.展开更多
Dialectal Arabic text classifcation(DA-TC)provides a mechanism for performing sentiment analysis on recent Arabic social media leading to many challenges owing to the natural morphology of the Arabic language and its ...Dialectal Arabic text classifcation(DA-TC)provides a mechanism for performing sentiment analysis on recent Arabic social media leading to many challenges owing to the natural morphology of the Arabic language and its wide range of dialect variations.Te availability of annotated datasets is limited,and preprocessing of the noisy content is even more challenging,sometimes resulting in the removal of important cues of sentiment from the input.To overcome such problems,this study investigates the applicability of using transfer learning based on pre-trained transformer models to classify sentiment in Arabic texts with high accuracy.Specifcally,it uses the CAMeLBERT model fnetuned for the Multi-Domain Arabic Resources for Sentiment Analysis(MARSA)dataset containing more than 56,000 manually annotated tweets annotated across political,social,sports,and technology domains.Te proposed method avoids extensive use of preprocessing and shows that raw data provides better results because they tend to retain more linguistic features.Te fne-tuned CAMeLBERT model produces state-of-the-art accuracy of 92%,precision of 91.7%,recall of 92.3%,and F1-score of 91.5%,outperforming standard machine learning models and ensemble-based/deep learning techniques.Our performance comparisons against other pre-trained models,namely AraBERTv02-twitter and MARBERT,show that transformer-based architectures are consistently the best suited when dealing with noisy Arabic texts.Tis work leads to a strong remedy for the problems in Arabic sentiment analysis and provides recommendations on easy tuning of the pre-trained models to adapt to challenging linguistic features and domain-specifc tasks.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)is among the most aggressive primary liver cancers,leading to significant global mortality.While early diagnosis improves prognosis,treatment decisions,particularly between surg...BACKGROUND Hepatocellular carcinoma(HCC)is among the most aggressive primary liver cancers,leading to significant global mortality.While early diagnosis improves prognosis,treatment decisions,particularly between surgical resection and radiofrequency ablation(RFA),remain controversial.AIM To clarify this issue using sentiment analysis of medical literature alongside a meta-analysis of overall survival(OS).METHODS We included studies comparing liver resection and RFA,excluding case reports,editorials,and studies without relevant outcomes.A systematic search in PubMed and Web of Science identified 197 studies.Abstracts underwent sentiment analysis using Python’s Natural Language Toolkit library,categorizing them as favoring resection,ablation,or neutral.We also performed a meta-analysis using a random-effects model on 11 studies reporting hazard ratios(HRs)for OS.RESULTS Sentiment analysis revealed that 75.1%of abstracts were neutral,14.2%favored resection,and 10.7%favored RFA.The meta-analysis showed a significant survival advantage for liver resection,with a pooled HR of 0.5924(95%confidence interval:0.540-0.649).Heterogeneity was moderate(I²=39.98%).Despite the meta-analysis demonstrating clear survival benefits of liver resection,most abstracts maintained a neutral stance.This discrepancy highlights potential biases or hesitancy in drawing definitive conclusions.CONCLUSION The study emphasizes the need for clinicians to prioritize robust statistical evidence over narrative impressions.Liver resection remains the preferred treatment for HCC in eligible patients.展开更多
Sentiment analysis plays an important role in distilling and clarifying content from movie reviews,aiding the audience in understanding universal views towards the movie.However,the abundance of reviews and the risk o...Sentiment analysis plays an important role in distilling and clarifying content from movie reviews,aiding the audience in understanding universal views towards the movie.However,the abundance of reviews and the risk of encountering spoilers pose challenges for efcient sentiment analysis,particularly in Arabic content.Tis study proposed a Stochastic Gradient Descent(SGD)machine learning(ML)model tailored for sentiment analysis in Arabic and English movie reviews.SGD allows for fexible model complexity adjustments,which can adapt well to the Involvement of Arabic language data.Tis adaptability ensures that the model can capture the nuances and specifc local patterns of Arabic text,leading to better performance.Two distinct language datasets were utilized,and extensive pre-processing steps were employed to optimize the datasets for analysis.Te proposed SGD model,designed to accommodate the nuances of each language,aims to surpass existing models in terms of accuracy and efciency.Te SGD model achieves an accuracy of 84.89 on the Arabic dataset and 87.44 on the English dataset,making it the top-performing model in terms of accuracy on both datasets.Tis indicates that the SGD model consistently demonstrates high accuracy levels across Arabic and English datasets.Tis study helps deepen the understanding of sentiments across various linguistic datasets.Unlike many studies that focus solely on movie reviews,the Arabic dataset utilized here includes hotel reviews,ofering a broader perspective.展开更多
In the age of information explosion and artificial intelligence, sentiment analysis tailored for the tobacco industry has emerged as a pivotal avenue for cigarette manufacturers to enhance their tobacco products. Exis...In the age of information explosion and artificial intelligence, sentiment analysis tailored for the tobacco industry has emerged as a pivotal avenue for cigarette manufacturers to enhance their tobacco products. Existing solutions have primarily focused on intrinsic features within consumer reviews and achieved significant progress through deep feature extraction models. However, they still face these two key limitations: (1) neglecting the influence of fundamental tobacco information on analyzing the sentiment inclination of consumer reviews, resulting in a lack of consistent sentiment assessment criteria across thousands of tobacco brands;(2) overlooking the syntactic dependencies between Chinese word phrases and the underlying impact of sentiment scores between word phrases on sentiment inclination determination. To tackle these challenges, we propose the External Knowledge-enhanced Cross-Attention Fusion model, CITSA. Specifically, in the Cross Infusion Layer, we fuse consumer comment information and tobacco fundamental information through interactive attention mechanisms. In the Textual Attention Enhancement Layer, we introduce an emotion-oriented syntactic dependency graph and incorporate sentiment-syntactic relationships into consumer comments through a graph convolution network module. Subsequently, the Textual Attention Layer is introduced to combine these two feature representations. Additionally, we compile a Chinese-oriented tobacco sentiment analysis dataset, comprising 55,096 consumer reviews and 2074 tobacco fundamental information entries. Experimental results on our self-constructed datasets consistently demonstrate that our proposed model outperforms state-of-the-art methods in terms of accuracy, precision, recall, and F1-score.展开更多
With the increasing importance of multimodal data in emotional expression on social media,mainstream methods for sentiment analysis have shifted from unimodal to multimodal approaches.However,the challenges of extract...With the increasing importance of multimodal data in emotional expression on social media,mainstream methods for sentiment analysis have shifted from unimodal to multimodal approaches.However,the challenges of extracting high-quality emotional features and achieving effective interaction between different modalities remain two major obstacles in multimodal sentiment analysis.To address these challenges,this paper proposes a Text-Gated Interaction Network with Inter-Sample Commonality Perception(TGICP).Specifically,we utilize a Inter-sample Commonality Perception(ICP)module to extract common features from similar samples within the same modality,and use these common features to enhance the original features of each modality,thereby obtaining a richer and more complete multimodal sentiment representation.Subsequently,in the cross-modal interaction stage,we design a Text-Gated Interaction(TGI)module,which is text-driven.By calculating the mutual information difference between the text modality and nonverbal modalities,the TGI module dynamically adjusts the influence of emotional information from the text modality on nonverbal modalities.This helps to reduce modality information asymmetry while enabling full cross-modal interaction.Experimental results show that the proposed model achieves outstanding performance on both the CMU-MOSI and CMU-MOSEI baseline multimodal sentiment analysis datasets,validating its effectiveness in emotion recognition tasks.展开更多
Sentiment Analysis,a significant domain within Natural Language Processing(NLP),focuses on extracting and interpreting subjective information-such as emotions,opinions,and attitudes-from textual data.With the increasi...Sentiment Analysis,a significant domain within Natural Language Processing(NLP),focuses on extracting and interpreting subjective information-such as emotions,opinions,and attitudes-from textual data.With the increasing volume of user-generated content on social media and digital platforms,sentiment analysis has become essential for deriving actionable insights across various sectors.This study presents a systematic literature review of sentiment analysis methodologies,encompassing traditional machine learning algorithms,lexicon-based approaches,and recent advancements in deep learning techniques.The review follows a structured protocol comprising three phases:planning,execution,and analysis/reporting.During the execution phase,67 peer-reviewed articles were initially retrieved,with 25 meeting predefined inclusion and exclusion criteria.The analysis phase involved a detailed examination of each study’s methodology,experimental setup,and key contributions.Among the deep learning models evaluated,Long Short-Term Memory(LSTM)networks were identified as the most frequently adopted architecture for sentiment classification tasks.This review highlights current trends,technical challenges,and emerging opportunities in the field,providing valuable guidance for future research and development in applications such as market analysis,public health monitoring,financial forecasting,and crisis management.展开更多
Sentiment analysis,a cornerstone of natural language processing,has witnessed remarkable advancements driven by deep learning models which demonstrated impressive accuracy in discerning sentiment from text across vari...Sentiment analysis,a cornerstone of natural language processing,has witnessed remarkable advancements driven by deep learning models which demonstrated impressive accuracy in discerning sentiment from text across various domains.However,the deployment of such models in resource-constrained environments presents a unique set of challenges that require innovative solutions.Resource-constrained environments encompass scenarios where computing resources,memory,and energy availability are restricted.To empower sentiment analysis in resource-constrained environments,we address the crucial need by leveraging lightweight pre-trained models.These models,derived from popular architectures such as DistilBERT,MobileBERT,ALBERT,TinyBERT,ELECTRA,and SqueezeBERT,offer a promising solution to the resource limitations imposed by these environments.By distilling the knowledge from larger models into smaller ones and employing various optimization techniques,these lightweight models aim to strike a balance between performance and resource efficiency.This paper endeavors to explore the performance of multiple lightweight pre-trained models in sentiment analysis tasks specific to such environments and provide insights into their viability for practical deployment.展开更多
The aspect-based sentiment analysis(ABSA)consists of two subtasksaspect term extraction and aspect sentiment prediction.Most methods conduct the ABSA task by handling the subtasks in a pipeline manner,whereby problems...The aspect-based sentiment analysis(ABSA)consists of two subtasksaspect term extraction and aspect sentiment prediction.Most methods conduct the ABSA task by handling the subtasks in a pipeline manner,whereby problems in performance and real application emerge.In this study,we propose an end-to-end ABSA model,namely,SSi-LSi,which fuses the syntactic structure information and the lexical semantic information,to address the limitation that existing end-to-end methods do not fully exploit the text information.Through two network branches,the model extracts syntactic structure information and lexical semantic information,which integrates the part of speech,sememes,and context,respectively.Then,on the basis of an attention mechanism,the model further realizes the fusion of the syntactic structure information and the lexical semantic information to obtain higher quality ABSA results,in which way the text information is fully used.Subsequent experiments demonstrate that the SSi-LSi model has certain advantages in using different text information.展开更多
The aspect-based sentiment analysis(ABSA) consists of two subtasks—aspect term extraction and aspect sentiment prediction. Existing methods deal with both subtasks one by one in a pipeline manner, in which there lies...The aspect-based sentiment analysis(ABSA) consists of two subtasks—aspect term extraction and aspect sentiment prediction. Existing methods deal with both subtasks one by one in a pipeline manner, in which there lies some problems in performance and real application. This study investigates the end-to-end ABSA and proposes a novel multitask multiview network(MTMVN) architecture. Specifically, the architecture takes the unified ABSA as the main task with the two subtasks as auxiliary tasks. Meanwhile, the representation obtained from the branch network of the main task is regarded as the global view, whereas the representations of the two subtasks are considered two local views with different emphases. Through multitask learning, the main task can be facilitated by additional accurate aspect boundary information and sentiment polarity information. By enhancing the correlations between the views under the idea of multiview learning, the representation of the global view can be optimized to improve the overall performance of the model. The experimental results on three benchmark datasets show that the proposed method exceeds the existing pipeline methods and end-to-end methods, proving the superiority of our MTMVN architecture.展开更多
Peer reviews of academic articles contain reviewers’ overall impressions and specific comments on the contributed articles,which have a lot of sentimental information.By exploring the fine-grained sentiments in peer ...Peer reviews of academic articles contain reviewers’ overall impressions and specific comments on the contributed articles,which have a lot of sentimental information.By exploring the fine-grained sentiments in peer reviews,we can discover critical aspects of interest to the reviewers.The results can also assist editors and chairmen in making final decisions.However,current research on the aspects of peer reviews is coarse-grained,and mostly focuses on the overall evaluation of the review objects.Therefore,this paper constructs a multi-level fine-grained aspect set of peer reviews for further study.First,this paper uses the multi-level aspect extraction method to extract the aspects from peer reviews of ICLR conference papers.Comparative experiments confirm the validity of the method.Secondly,various Deep Learning models are used to classify aspects’ sentiments automatically,with LCFS-BERT performing best.By calculating the correlation between sentimental scores of the review aspects and the acceptance result of papers,we can find the important aspects affecting acceptance.Finally,this paper predicts acceptance results of papers(accepted/rejected) according to the peer reviews.The optimal acceptance prediction model is XGboost,achieving a Macro_F1 score of 87.43%.展开更多
Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and sha...Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and share such multimodal data.However,due to professional discrepancies among annotators and lax quality control,noisy labels might be introduced.Recent research suggests that deep neural networks(DNNs)will overfit noisy labels,leading to the poor performance of the DNNs.To address this challenging problem,we present a Multimodal Robust Meta Learning framework(MRML)for multimodal sentiment analysis to resist noisy labels and correlate distinct modalities simultaneously.Specifically,we propose a two-layer fusion net to deeply fuse different modalities and improve the quality of the multimodal data features for label correction and network training.Besides,a multiple meta-learner(label corrector)strategy is proposed to enhance the label correction approach and prevent models from overfitting to noisy labels.We conducted experiments on three popular multimodal datasets to verify the superiority of ourmethod by comparing it with four baselines.展开更多
基金supported by the Science and Technology Project of Henan Province(No.222102210081).
文摘Joint Multimodal Aspect-based Sentiment Analysis(JMASA)is a significant task in the research of multimodal fine-grained sentiment analysis,which combines two subtasks:Multimodal Aspect Term Extraction(MATE)and Multimodal Aspect-oriented Sentiment Classification(MASC).Currently,most existing models for JMASA only perform text and image feature encoding from a basic level,but often neglect the in-depth analysis of unimodal intrinsic features,which may lead to the low accuracy of aspect term extraction and the poor ability of sentiment prediction due to the insufficient learning of intra-modal features.Given this problem,we propose a Text-Image Feature Fine-grained Learning(TIFFL)model for JMASA.First,we construct an enhanced adjacency matrix of word dependencies and adopt graph convolutional network to learn the syntactic structure features for text,which addresses the context interference problem of identifying different aspect terms.Then,the adjective-noun pairs extracted from image are introduced to enable the semantic representation of visual features more intuitive,which addresses the ambiguous semantic extraction problem during image feature learning.Thereby,the model performance of aspect term extraction and sentiment polarity prediction can be further optimized and enhanced.Experiments on two Twitter benchmark datasets demonstrate that TIFFL achieves competitive results for JMASA,MATE and MASC,thus validating the effectiveness of our proposed methods.
基金funded by the University of Jeddah,Saudi Arabia,under Grant No.(UJ-12-18-DR).
文摘Most consumers read online reviews written by different users before making purchase decisions,where each opinion expresses some sentiment.Therefore,sentiment analysis is currently a hot topic of research.In particular,aspect-based sentiment analysis concerns the exploration of emotions,opinions and facts that are expressed by people,usually in the form of polarity.It is crucial to consider polarity calculations and not simply categorize reviews as positive,negative,or neutral.Currently,the available lexicon-based method accuracy is affected by limited coverage.Several of the available polarity estimation techniques are too general and may not reect the aspect/topic in question if reviews contain a wide range of information about different topics.This paper presents a model for the polarity estimation of customer reviews using aspect-based sentiment analysis(ABSA-PER).ABSA-PER has three major phases:data preprocessing,aspect co-occurrence calculation(CAC)and polarity estimation.A multi-domain sentiment dataset,Twitter dataset,and trust pilot forum dataset(developed by us by dened judgement rules)are used to verify ABSA-PER.Experimental outcomes show that ABSA-PER achieves better accuracy,i.e.,85.7%accuracy for aspect extraction and 86.5%accuracy in terms of polarity estimation,than that of the baseline methods.
基金supported by the National Natural Science Foundation of China under Grant 61976158 and Grant 61673301.
文摘The Aspect-Based Sentiment Analysis(ABSA)task is designed to judge the sentiment polarity of a particular aspect in a review.Recent studies have proved that GCN can capture syntactic and semantic features from dependency graphs generated by dependency trees and semantic graphs generated by Multi-headed self-attention(MHSA).However,these approaches do not highlight the sentiment information associated with aspect in the syntactic and semantic graphs.We propose the Aspect-Guided Multi-Graph Convolutional Networks(AGGCN)for Aspect-Based Sentiment Classification.Specifically,we reconstruct two kinds of graphs,changing the weight of the dependency graph by distance from aspect and improving the semantic graph by Aspect-guided MHSA.For interactive learning of syntax and semantics,we dynamically fuse syntactic and semantic diagrams to generate syntactic-semantic graphs to learn emotional features jointly.In addition,Multi-dropout is added to solve the overftting of AGGCN in training.The experimental results on extensive datasets show that our model AGGCN achieves particularly advanced results and validates the effectiveness of the model.
文摘Aspect-oriented sentiment analysis is a meticulous sentiment analysis task that aims to analyse the sentiment polarity of specific aspects. Most of the current research builds graph convolutional networks based on dependent syntactic trees, which improves the classification performance of the models to some extent. However, the technical limitations of dependent syntactic trees can introduce considerable noise into the model. Meanwhile, it is difficult for a single graph convolutional network to aggregate both semantic and syntactic structural information of nodes, which affects the final sentence classification. To cope with the above problems, this paper proposes a bi-channel graph convolutional network model. The model introduces a phrase structure tree and transforms it into a hierarchical phrase matrix. The adjacency matrix of the dependent syntactic tree and the hierarchical phrase matrix are combined as the initial matrix of the graph convolutional network to enhance the syntactic information. The semantic information feature representations of the sentences are obtained by the graph convolutional network with a multi-head attention mechanism and fused to achieve complementary learning of dual-channel features. Experimental results show that the model performs well and improves the accuracy of sentiment classification on three public benchmark datasets, namely Rest14, Lap14 and Twitter.
文摘The efficient market hypothesis in traditional financial theory struggles to explain the short-term irrational fluctuations in the A-share market,where investor sentiment fluctuations often serve as the core driver of abnormal stock price movements.Traditional sentiment measurement methods suffer from limitations such as lag,high misjudgment rates,and the inability to distinguish confounding factors.To more accurately explore the dynamic correlation between investor sentiment and stock price fluctuations,this paper proposes a sentiment analysis framework based on large language models(LLMs).By constructing continuous sentiment scoring factors and integrating them with a long short-term memory(LSTM)deep learning model,we analyze the correlation between investor sentiment and stock price fluctuations.Empirical results indicate that sentiment factors based on large language models can generate an annualized excess return of 9.3%in the CSI 500 index domain.The LSTM stock price prediction model incorporating sentiment features achieves a mean absolute percentage error(MAPE)as low as 2.72%,significantly outperforming traditional models.Through this analysis,we aim to provide quantitative references for optimizing investment decisions and preventing market risks.
基金supported by the National Nature Foundation of China under Grants(No.72104108)the College Students’Innovation and Entrepreneurship Training Program(No.202410298155Y).
文摘Green consumption(GC)are crucial for achieving the SustainableDevelopmentGoals(SDGs).However,few studies have explored public attitudes toward GC using social media data,missing potential public concerns captured through big data.To address this gap,this study collects and analyzes public attention toward GC using web crawler technology.Based on the data from Sina Weibo,we applied RoBERTa,an advanced NLP model based on transformer architecture,to conduct fine-grained sentiment analysis of the public’s attention,attitudes and hot topics on GC,demonstrating the potential of deep learning methods in capturing dynamic and contextual emotional shifts across time and regions.Among the sample(N=188,509),53.91% expressed a positive attitude,with variation across different times and regions.Temporally,public interest in GC has shown an annual growth rate of 30.23%,gradually shifting fromfulfilling basic needs to prioritizing entertainment consumption.Spatially,GC is most prevalent in the southeast coastal regions of China,with Beijing ranking first across five evaluated domains.Individuals and government-affiliated accounts play a key role in public discussions on social networks,accounting for 45.89% and 30.01% of user reviews,respectively.A significant positive correlation exists between economic development and public attention to GC,as indicated by a Pearson correlation coefficient of 0.55.Companies,in particular,exhibit cautious behavior in the early stages of green product adoption,prioritizing profitability before making substantial investments.These findings provide valuable insights into the evolving public perception of GC,contributing to the development of more effective environmental policies in China.
基金support of the Deanship of Research and Graduate Studies at Ajman University under Projects 2024-IRG-ENiT-36 and 2024-IRG-ENIT-29.
文摘Incorporation of explainability features in the decision-making web-based systems is considered a primary concern to enhance accountability,transparency,and trust in the community.Multi-domain Sentiment Analysis is a significant web-based system where the explainability feature is essential for achieving user satisfaction.Conventional design methodologies such as object-oriented design methodology(OODM)have been proposed for web-based application development,which facilitates code reuse,quantification,and security at the design level.However,OODM did not provide the feature of explainability in web-based decision-making systems.X-OODM modifies the OODM with added explainable models to introduce the explainability feature for such systems.This research introduces an explainable model leveraging X-OODM for designing transparent applications for multidomain sentiment analysis.The proposed design is evaluated using the design quality metrics defined for the evaluation of the X-OODM explainable model under user context.The design quality metrics,transferability,simulatability,informativeness,and decomposability were introduced one after another over time to the evaluation of the X-OODM user context.Auxiliary metrics of accessibility and algorithmic transparency were added to increase the degree of explainability for the design.The study results reveal that introducing such explainability parameters with X-OODM appropriately increases system transparency,trustworthiness,and user understanding.The experimental results validate the enhancement of decision-making for multi-domain sentiment analysis with integration at the design level of explainability.Future work can be built in this direction by extending this work to apply the proposed X-OODM framework over different datasets and sentiment analysis applications to further scrutinize its effectiveness in real-world scenarios.
文摘In the rapidly evolving landscape of natural language processing(NLP)and sentiment analysis,improving the accuracy and efficiency of sentiment classification models is crucial.This paper investigates the performance of two advanced models,the Large Language Model(LLM)LLaMA model and NLP BERT model,in the context of airline review sentiment analysis.Through fine-tuning,domain adaptation,and the application of few-shot learning,the study addresses the subtleties of sentiment expressions in airline-related text data.Employing predictive modeling and comparative analysis,the research evaluates the effectiveness of Large Language Model Meta AI(LLaMA)and Bidirectional Encoder Representations from Transformers(BERT)in capturing sentiment intricacies.Fine-tuning,including domain adaptation,enhances the models'performance in sentiment classification tasks.Additionally,the study explores the potential of few-shot learning to improve model generalization using minimal annotated data for targeted sentiment analysis.By conducting experiments on a diverse airline review dataset,the research quantifies the impact of fine-tuning,domain adaptation,and few-shot learning on model performance,providing valuable insights for industries aiming to predict recommendations and enhance customer satisfaction through a deeper understanding of sentiment in user-generated content(UGC).This research contributes to refining sentiment analysis models,ultimately fostering improved customer satisfaction in the airline industry.
基金supported by the Deanship of Graduate Studies and Scientific Research at Jouf University under Grant No.DGSSR-2024-02-01011.
文摘Wireless technologies and the Internet of Things(IoT)are being extensively utilized for advanced development in traditional communication systems.This evolution lowers the cost of the extensive use of sensors,changing the way devices interact and communicate in dynamic and uncertain situations.Such a constantly evolving environment presents enormous challenges to preserving a secure and lightweight IoT system.Therefore,it leads to the design of effective and trusted routing to support sustainable smart cities.This research study proposed a Genetic Algorithm sentiment-enhanced secured optimization model,which combines big data analytics and analysis rules to evaluate user feedback.The sentiment analysis is utilized to assess the perception of network performance,allowing the classification of device behavior as positive,neutral,or negative.By integrating sentiment-driven insights,the IoT network adjusts the system configurations to enhance the performance using network behaviour in terms of latency,reliability,fault tolerance,and sentiment score.Accordingly to the analysis,the proposed model categorizes the behavior of devices as positive,neutral,or negative,facilitating real-time monitoring for crucial applications.Experimental results revealed a significant improvement in the proposed model for threat prevention and network efficiency,demonstrating its resilience for real-time IoT applications.
基金funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(grant number IMSIU-DDRSP2504).
文摘Dialectal Arabic text classifcation(DA-TC)provides a mechanism for performing sentiment analysis on recent Arabic social media leading to many challenges owing to the natural morphology of the Arabic language and its wide range of dialect variations.Te availability of annotated datasets is limited,and preprocessing of the noisy content is even more challenging,sometimes resulting in the removal of important cues of sentiment from the input.To overcome such problems,this study investigates the applicability of using transfer learning based on pre-trained transformer models to classify sentiment in Arabic texts with high accuracy.Specifcally,it uses the CAMeLBERT model fnetuned for the Multi-Domain Arabic Resources for Sentiment Analysis(MARSA)dataset containing more than 56,000 manually annotated tweets annotated across political,social,sports,and technology domains.Te proposed method avoids extensive use of preprocessing and shows that raw data provides better results because they tend to retain more linguistic features.Te fne-tuned CAMeLBERT model produces state-of-the-art accuracy of 92%,precision of 91.7%,recall of 92.3%,and F1-score of 91.5%,outperforming standard machine learning models and ensemble-based/deep learning techniques.Our performance comparisons against other pre-trained models,namely AraBERTv02-twitter and MARBERT,show that transformer-based architectures are consistently the best suited when dealing with noisy Arabic texts.Tis work leads to a strong remedy for the problems in Arabic sentiment analysis and provides recommendations on easy tuning of the pre-trained models to adapt to challenging linguistic features and domain-specifc tasks.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is among the most aggressive primary liver cancers,leading to significant global mortality.While early diagnosis improves prognosis,treatment decisions,particularly between surgical resection and radiofrequency ablation(RFA),remain controversial.AIM To clarify this issue using sentiment analysis of medical literature alongside a meta-analysis of overall survival(OS).METHODS We included studies comparing liver resection and RFA,excluding case reports,editorials,and studies without relevant outcomes.A systematic search in PubMed and Web of Science identified 197 studies.Abstracts underwent sentiment analysis using Python’s Natural Language Toolkit library,categorizing them as favoring resection,ablation,or neutral.We also performed a meta-analysis using a random-effects model on 11 studies reporting hazard ratios(HRs)for OS.RESULTS Sentiment analysis revealed that 75.1%of abstracts were neutral,14.2%favored resection,and 10.7%favored RFA.The meta-analysis showed a significant survival advantage for liver resection,with a pooled HR of 0.5924(95%confidence interval:0.540-0.649).Heterogeneity was moderate(I²=39.98%).Despite the meta-analysis demonstrating clear survival benefits of liver resection,most abstracts maintained a neutral stance.This discrepancy highlights potential biases or hesitancy in drawing definitive conclusions.CONCLUSION The study emphasizes the need for clinicians to prioritize robust statistical evidence over narrative impressions.Liver resection remains the preferred treatment for HCC in eligible patients.
文摘Sentiment analysis plays an important role in distilling and clarifying content from movie reviews,aiding the audience in understanding universal views towards the movie.However,the abundance of reviews and the risk of encountering spoilers pose challenges for efcient sentiment analysis,particularly in Arabic content.Tis study proposed a Stochastic Gradient Descent(SGD)machine learning(ML)model tailored for sentiment analysis in Arabic and English movie reviews.SGD allows for fexible model complexity adjustments,which can adapt well to the Involvement of Arabic language data.Tis adaptability ensures that the model can capture the nuances and specifc local patterns of Arabic text,leading to better performance.Two distinct language datasets were utilized,and extensive pre-processing steps were employed to optimize the datasets for analysis.Te proposed SGD model,designed to accommodate the nuances of each language,aims to surpass existing models in terms of accuracy and efciency.Te SGD model achieves an accuracy of 84.89 on the Arabic dataset and 87.44 on the English dataset,making it the top-performing model in terms of accuracy on both datasets.Tis indicates that the SGD model consistently demonstrates high accuracy levels across Arabic and English datasets.Tis study helps deepen the understanding of sentiments across various linguistic datasets.Unlike many studies that focus solely on movie reviews,the Arabic dataset utilized here includes hotel reviews,ofering a broader perspective.
基金supported by the Global Research and Innovation Platform Fund for Scientific Big Data Transmission(Grant No.241711KYSB20180002)National Key Research and Development Project of China(Grant No.2019YFB1405801).
文摘In the age of information explosion and artificial intelligence, sentiment analysis tailored for the tobacco industry has emerged as a pivotal avenue for cigarette manufacturers to enhance their tobacco products. Existing solutions have primarily focused on intrinsic features within consumer reviews and achieved significant progress through deep feature extraction models. However, they still face these two key limitations: (1) neglecting the influence of fundamental tobacco information on analyzing the sentiment inclination of consumer reviews, resulting in a lack of consistent sentiment assessment criteria across thousands of tobacco brands;(2) overlooking the syntactic dependencies between Chinese word phrases and the underlying impact of sentiment scores between word phrases on sentiment inclination determination. To tackle these challenges, we propose the External Knowledge-enhanced Cross-Attention Fusion model, CITSA. Specifically, in the Cross Infusion Layer, we fuse consumer comment information and tobacco fundamental information through interactive attention mechanisms. In the Textual Attention Enhancement Layer, we introduce an emotion-oriented syntactic dependency graph and incorporate sentiment-syntactic relationships into consumer comments through a graph convolution network module. Subsequently, the Textual Attention Layer is introduced to combine these two feature representations. Additionally, we compile a Chinese-oriented tobacco sentiment analysis dataset, comprising 55,096 consumer reviews and 2074 tobacco fundamental information entries. Experimental results on our self-constructed datasets consistently demonstrate that our proposed model outperforms state-of-the-art methods in terms of accuracy, precision, recall, and F1-score.
基金supported by the Natural Science Foundation of Henan under Grant 242300421220the Henan Provincial Science and Technology Research Project under Grants 252102211047 and 252102211062+3 种基金the Jiangsu Provincial Scheme Double Initiative Plan JSS-CBS20230474the XJTLU RDF-21-02-008the Science and Technology Innovation Project of Zhengzhou University of Light Industry under Grant 23XNKJTD0205the Higher Education Teaching Reform Research and Practice Project of Henan Province under Grant 2024SJGLX0126.
文摘With the increasing importance of multimodal data in emotional expression on social media,mainstream methods for sentiment analysis have shifted from unimodal to multimodal approaches.However,the challenges of extracting high-quality emotional features and achieving effective interaction between different modalities remain two major obstacles in multimodal sentiment analysis.To address these challenges,this paper proposes a Text-Gated Interaction Network with Inter-Sample Commonality Perception(TGICP).Specifically,we utilize a Inter-sample Commonality Perception(ICP)module to extract common features from similar samples within the same modality,and use these common features to enhance the original features of each modality,thereby obtaining a richer and more complete multimodal sentiment representation.Subsequently,in the cross-modal interaction stage,we design a Text-Gated Interaction(TGI)module,which is text-driven.By calculating the mutual information difference between the text modality and nonverbal modalities,the TGI module dynamically adjusts the influence of emotional information from the text modality on nonverbal modalities.This helps to reduce modality information asymmetry while enabling full cross-modal interaction.Experimental results show that the proposed model achieves outstanding performance on both the CMU-MOSI and CMU-MOSEI baseline multimodal sentiment analysis datasets,validating its effectiveness in emotion recognition tasks.
基金supported by the“Technology Commercialization Collaboration Platform Construction”project of the Innopolis Foundation(Project Number:2710033536)the Competitive Research Fund of The University of Aizu,Japan.
文摘Sentiment Analysis,a significant domain within Natural Language Processing(NLP),focuses on extracting and interpreting subjective information-such as emotions,opinions,and attitudes-from textual data.With the increasing volume of user-generated content on social media and digital platforms,sentiment analysis has become essential for deriving actionable insights across various sectors.This study presents a systematic literature review of sentiment analysis methodologies,encompassing traditional machine learning algorithms,lexicon-based approaches,and recent advancements in deep learning techniques.The review follows a structured protocol comprising three phases:planning,execution,and analysis/reporting.During the execution phase,67 peer-reviewed articles were initially retrieved,with 25 meeting predefined inclusion and exclusion criteria.The analysis phase involved a detailed examination of each study’s methodology,experimental setup,and key contributions.Among the deep learning models evaluated,Long Short-Term Memory(LSTM)networks were identified as the most frequently adopted architecture for sentiment classification tasks.This review highlights current trends,technical challenges,and emerging opportunities in the field,providing valuable guidance for future research and development in applications such as market analysis,public health monitoring,financial forecasting,and crisis management.
文摘Sentiment analysis,a cornerstone of natural language processing,has witnessed remarkable advancements driven by deep learning models which demonstrated impressive accuracy in discerning sentiment from text across various domains.However,the deployment of such models in resource-constrained environments presents a unique set of challenges that require innovative solutions.Resource-constrained environments encompass scenarios where computing resources,memory,and energy availability are restricted.To empower sentiment analysis in resource-constrained environments,we address the crucial need by leveraging lightweight pre-trained models.These models,derived from popular architectures such as DistilBERT,MobileBERT,ALBERT,TinyBERT,ELECTRA,and SqueezeBERT,offer a promising solution to the resource limitations imposed by these environments.By distilling the knowledge from larger models into smaller ones and employing various optimization techniques,these lightweight models aim to strike a balance between performance and resource efficiency.This paper endeavors to explore the performance of multiple lightweight pre-trained models in sentiment analysis tasks specific to such environments and provide insights into their viability for practical deployment.
基金This work was supported by the National Natural Science Foundation of China(No.61976247).
文摘The aspect-based sentiment analysis(ABSA)consists of two subtasksaspect term extraction and aspect sentiment prediction.Most methods conduct the ABSA task by handling the subtasks in a pipeline manner,whereby problems in performance and real application emerge.In this study,we propose an end-to-end ABSA model,namely,SSi-LSi,which fuses the syntactic structure information and the lexical semantic information,to address the limitation that existing end-to-end methods do not fully exploit the text information.Through two network branches,the model extracts syntactic structure information and lexical semantic information,which integrates the part of speech,sememes,and context,respectively.Then,on the basis of an attention mechanism,the model further realizes the fusion of the syntactic structure information and the lexical semantic information to obtain higher quality ABSA results,in which way the text information is fully used.Subsequent experiments demonstrate that the SSi-LSi model has certain advantages in using different text information.
基金supported by the National Natural Science Foundation of China(No.61976247)
文摘The aspect-based sentiment analysis(ABSA) consists of two subtasks—aspect term extraction and aspect sentiment prediction. Existing methods deal with both subtasks one by one in a pipeline manner, in which there lies some problems in performance and real application. This study investigates the end-to-end ABSA and proposes a novel multitask multiview network(MTMVN) architecture. Specifically, the architecture takes the unified ABSA as the main task with the two subtasks as auxiliary tasks. Meanwhile, the representation obtained from the branch network of the main task is regarded as the global view, whereas the representations of the two subtasks are considered two local views with different emphases. Through multitask learning, the main task can be facilitated by additional accurate aspect boundary information and sentiment polarity information. By enhancing the correlations between the views under the idea of multiview learning, the representation of the global view can be optimized to improve the overall performance of the model. The experimental results on three benchmark datasets show that the proposed method exceeds the existing pipeline methods and end-to-end methods, proving the superiority of our MTMVN architecture.
基金This work is supported by Opening fund of Key Laboratory of Rich-media Knowledge Organization and Service of Digital Publishing Content(No.zd2022-10/02).
文摘Peer reviews of academic articles contain reviewers’ overall impressions and specific comments on the contributed articles,which have a lot of sentimental information.By exploring the fine-grained sentiments in peer reviews,we can discover critical aspects of interest to the reviewers.The results can also assist editors and chairmen in making final decisions.However,current research on the aspects of peer reviews is coarse-grained,and mostly focuses on the overall evaluation of the review objects.Therefore,this paper constructs a multi-level fine-grained aspect set of peer reviews for further study.First,this paper uses the multi-level aspect extraction method to extract the aspects from peer reviews of ICLR conference papers.Comparative experiments confirm the validity of the method.Secondly,various Deep Learning models are used to classify aspects’ sentiments automatically,with LCFS-BERT performing best.By calculating the correlation between sentimental scores of the review aspects and the acceptance result of papers,we can find the important aspects affecting acceptance.Finally,this paper predicts acceptance results of papers(accepted/rejected) according to the peer reviews.The optimal acceptance prediction model is XGboost,achieving a Macro_F1 score of 87.43%.
基金supported by STI 2030-Major Projects 2021ZD0200400National Natural Science Foundation of China(62276233 and 62072405)Key Research Project of Zhejiang Province(2023C01048).
文摘Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and share such multimodal data.However,due to professional discrepancies among annotators and lax quality control,noisy labels might be introduced.Recent research suggests that deep neural networks(DNNs)will overfit noisy labels,leading to the poor performance of the DNNs.To address this challenging problem,we present a Multimodal Robust Meta Learning framework(MRML)for multimodal sentiment analysis to resist noisy labels and correlate distinct modalities simultaneously.Specifically,we propose a two-layer fusion net to deeply fuse different modalities and improve the quality of the multimodal data features for label correction and network training.Besides,a multiple meta-learner(label corrector)strategy is proposed to enhance the label correction approach and prevent models from overfitting to noisy labels.We conducted experiments on three popular multimodal datasets to verify the superiority of ourmethod by comparing it with four baselines.