To address issues such as poor initial population diversity, low stability and local convergence accuracy, and easy local optima in the traditional Multi-Objective Artificial Hummingbird Algorithm (MOAHA), an Improved...To address issues such as poor initial population diversity, low stability and local convergence accuracy, and easy local optima in the traditional Multi-Objective Artificial Hummingbird Algorithm (MOAHA), an Improved MOAHA (IMOAHA) was proposed. The improvements involve Tent mapping based on random variables to initialize the population, a logarithmic decrease strategy for inertia weight to balance search capability, and the improved search operators in the territory foraging phase to enhance the ability to escape from local optima and increase convergence accuracy. The effectiveness of IMOAHA was verified through Matlab/Simulink. The results demonstrate that IMOAHA exhibits superior convergence, diversity, uniformity, and coverage of solutions across 6 test functions, outperforming 4 comparative algorithms. A Wilcoxon rank-sum test further confirmed its exceptional performance. To assess IMOAHA’s ability to solve engineering problems, an optimization model for a multi-track, multi-train urban rail traction power supply system with Supercapacitor Energy Storage Systems (SCESSs) was established, and IMOAHA was successfully applied to solving the capacity allocation problem of SCESSs, demonstrating that it is an effective tool for solving complex Multi-Objective Optimization Problems (MOOPs) in engineering domains.展开更多
Parkinson’s disease is a neurodegenerative disorder that inflicts irreversible damage on humans.Some experimental data regarding Parkinson’s patients are redundant and irrelevant,posing significant challenges for di...Parkinson’s disease is a neurodegenerative disorder that inflicts irreversible damage on humans.Some experimental data regarding Parkinson’s patients are redundant and irrelevant,posing significant challenges for disease detection.Therefore,there is a need to devise an effective method for the selective extraction of disease-specific information,ensuring both accuracy and the utilization of fewer features.In this paper,a Binary Hybrid Artificial Hummingbird and Flower Pollination Algorithm(FPA),called BFAHA,is proposed to solve the problem of Parkinson’s disease diagnosis based on speech signals.First,combining FPA with Artificial Hummingbird Algorithm(AHA)can take advantage of the strong global exploration ability possessed by FPA to improve the disadvantages of AHA,such as premature convergence and easy falling into local optimum.Second,the Hemming distance is used to determine the difference between the other individuals in the population and the optimal individual after each iteration,if the difference is too significant,the cross-mutation strategy in the genetic algorithm(GA)is used to induce the population individuals to keep approaching the optimal individual in the random search process to speed up finding the optimal solution.Finally,an S-shaped function converts the improved algorithm into a binary version to suit the characteristics of the feature selection(FS)tasks.In this paper,10 high-dimensional datasets from UCI and the ASU are used to test the performance of BFAHA and apply it to Parkinson’s disease diagnosis.Compared with other state-of-the-art algorithms,BFAHA shows excellent competitiveness in both the test datasets and the classification problem,indicating that the algorithm proposed in this study has apparent advantages in the field of feature selection.展开更多
This study introduces and evaluates a novel artificial hummingbird algorithm-optimised boosted tree(AHAboosted)model for predicting the dynamic modulus(E*)of hot mix asphalt concrete.Using a substantial dataset from N...This study introduces and evaluates a novel artificial hummingbird algorithm-optimised boosted tree(AHAboosted)model for predicting the dynamic modulus(E*)of hot mix asphalt concrete.Using a substantial dataset from NCHRP Report-547,the model was trained and rigorously tested.Performance metrics,specifically RMSE,MAE,and R2,were employed to assess the model's predictive accuracy,robustness,and generalisability.When benchmarked against well-established models like support vector machines(SVM)and gaussian process regression(GPR),the AHA-boosted model demonstrated enhanced performance.It achieved R2 values of 0.997 in training and 0.974 in testing,using the traditional Witczak NCHRP 1-40D model inputs.Incorporating features such as test temperature,frequency,and asphalt content led to a 1.23%increase in the test R2,signifying an improvement in the model's accuracy.The study also explored feature importance and sensitivity through SHAP and permutation importance plots,highlighting binder complex modulus|G*|as a key predictor.Although the AHA-boosted model shows promise,a slight decrease in R2 from training to testing indicates a need for further validation.Overall,this study confirms the AHA-boosted model as a highly accurate and robust tool for predicting the dynamic modulus of hot mix asphalt concrete,making it a valuable asset for pavement engineering.展开更多
Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-...Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-derivative(FOPID)controller that utilizes a modified elite opposition-based artificial hummingbird algorithm(m-AHA)for optimal parameter tuning.Our approach outperforms existing optimization techniques on benchmark functions,and we demonstrate its effectiveness in controlling cruise control systems with increased flexibility and precision.Our study contributes to the advancement of autonomous vehicle technology by introducing a novel and efficient method for FOPID controller design that can enhance the driving experience while ensuring safety and reliability.We highlight the significance of our findings by demonstrating how our approach can improve the performance,safety,and reliability of autonomous vehicles.This study’s contributions are particularly relevant in the context of the growing demand for autonomous vehicles and the need for advanced control techniques to ensure their safe operation.Our research provides a promising avenue for further research and development in this area.展开更多
综合能源系统(integrated energy system,IES)是推进能源结构调整的关键平台,合理规划其设备配置能显著提高IES运行经济和系统稳定性。此外,由于可再生能源发电固有的随机性和间歇性以及负荷的峰谷特性,导致IES中多能耦合设备的输出波动...综合能源系统(integrated energy system,IES)是推进能源结构调整的关键平台,合理规划其设备配置能显著提高IES运行经济和系统稳定性。此外,由于可再生能源发电固有的随机性和间歇性以及负荷的峰谷特性,导致IES中多能耦合设备的输出波动,严重威胁IES的运行稳定性。为应对上述挑战,针对IES的经济和稳定运行,以混合储能系统配置成本,系统电压偏差以及净负荷波动最小化为目标,建立一个电-氢混合储能系统多目标优化规划模型。该模型在IEEE-33标准测试系统下,利用多目标人工蜂鸟算法(multi-objective artificial hummingbird algorithm,MOAHA)对电-氢混合储能系统的容量和位置进行优化规划。仿真结果表明,所提的优化规划方法能有效改善IES配电网络的电压分布和净负荷水平,同时凭借电-氢混合储能的互补特性使得IES的运行灵活性得到了提升。展开更多
基金by National Natural Science Foundation of China(62373142,62033014)Natural Science Foundation of Hunan Province(2025JJ70017,2022JJ50074).
文摘To address issues such as poor initial population diversity, low stability and local convergence accuracy, and easy local optima in the traditional Multi-Objective Artificial Hummingbird Algorithm (MOAHA), an Improved MOAHA (IMOAHA) was proposed. The improvements involve Tent mapping based on random variables to initialize the population, a logarithmic decrease strategy for inertia weight to balance search capability, and the improved search operators in the territory foraging phase to enhance the ability to escape from local optima and increase convergence accuracy. The effectiveness of IMOAHA was verified through Matlab/Simulink. The results demonstrate that IMOAHA exhibits superior convergence, diversity, uniformity, and coverage of solutions across 6 test functions, outperforming 4 comparative algorithms. A Wilcoxon rank-sum test further confirmed its exceptional performance. To assess IMOAHA’s ability to solve engineering problems, an optimization model for a multi-track, multi-train urban rail traction power supply system with Supercapacitor Energy Storage Systems (SCESSs) was established, and IMOAHA was successfully applied to solving the capacity allocation problem of SCESSs, demonstrating that it is an effective tool for solving complex Multi-Objective Optimization Problems (MOOPs) in engineering domains.
基金supported by the National Natural Science Foundation of China under Grant Nos.U21A20464,62066005the Innovation Project of Guangxi Graduate Education under Grant No.YCSW2023259.
文摘Parkinson’s disease is a neurodegenerative disorder that inflicts irreversible damage on humans.Some experimental data regarding Parkinson’s patients are redundant and irrelevant,posing significant challenges for disease detection.Therefore,there is a need to devise an effective method for the selective extraction of disease-specific information,ensuring both accuracy and the utilization of fewer features.In this paper,a Binary Hybrid Artificial Hummingbird and Flower Pollination Algorithm(FPA),called BFAHA,is proposed to solve the problem of Parkinson’s disease diagnosis based on speech signals.First,combining FPA with Artificial Hummingbird Algorithm(AHA)can take advantage of the strong global exploration ability possessed by FPA to improve the disadvantages of AHA,such as premature convergence and easy falling into local optimum.Second,the Hemming distance is used to determine the difference between the other individuals in the population and the optimal individual after each iteration,if the difference is too significant,the cross-mutation strategy in the genetic algorithm(GA)is used to induce the population individuals to keep approaching the optimal individual in the random search process to speed up finding the optimal solution.Finally,an S-shaped function converts the improved algorithm into a binary version to suit the characteristics of the feature selection(FS)tasks.In this paper,10 high-dimensional datasets from UCI and the ASU are used to test the performance of BFAHA and apply it to Parkinson’s disease diagnosis.Compared with other state-of-the-art algorithms,BFAHA shows excellent competitiveness in both the test datasets and the classification problem,indicating that the algorithm proposed in this study has apparent advantages in the field of feature selection.
文摘This study introduces and evaluates a novel artificial hummingbird algorithm-optimised boosted tree(AHAboosted)model for predicting the dynamic modulus(E*)of hot mix asphalt concrete.Using a substantial dataset from NCHRP Report-547,the model was trained and rigorously tested.Performance metrics,specifically RMSE,MAE,and R2,were employed to assess the model's predictive accuracy,robustness,and generalisability.When benchmarked against well-established models like support vector machines(SVM)and gaussian process regression(GPR),the AHA-boosted model demonstrated enhanced performance.It achieved R2 values of 0.997 in training and 0.974 in testing,using the traditional Witczak NCHRP 1-40D model inputs.Incorporating features such as test temperature,frequency,and asphalt content led to a 1.23%increase in the test R2,signifying an improvement in the model's accuracy.The study also explored feature importance and sensitivity through SHAP and permutation importance plots,highlighting binder complex modulus|G*|as a key predictor.Although the AHA-boosted model shows promise,a slight decrease in R2 from training to testing indicates a need for further validation.Overall,this study confirms the AHA-boosted model as a highly accurate and robust tool for predicting the dynamic modulus of hot mix asphalt concrete,making it a valuable asset for pavement engineering.
文摘Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-derivative(FOPID)controller that utilizes a modified elite opposition-based artificial hummingbird algorithm(m-AHA)for optimal parameter tuning.Our approach outperforms existing optimization techniques on benchmark functions,and we demonstrate its effectiveness in controlling cruise control systems with increased flexibility and precision.Our study contributes to the advancement of autonomous vehicle technology by introducing a novel and efficient method for FOPID controller design that can enhance the driving experience while ensuring safety and reliability.We highlight the significance of our findings by demonstrating how our approach can improve the performance,safety,and reliability of autonomous vehicles.This study’s contributions are particularly relevant in the context of the growing demand for autonomous vehicles and the need for advanced control techniques to ensure their safe operation.Our research provides a promising avenue for further research and development in this area.