Azoxy aromatics are extensively utilized in materials science,pharmaceuticals,and synthetic chemistry,but their controlled and environmentally-friendly synthesis has rarely been reported.Herein,a potential-mediated el...Azoxy aromatics are extensively utilized in materials science,pharmaceuticals,and synthetic chemistry,but their controlled and environmentally-friendly synthesis has rarely been reported.Herein,a potential-mediated electrosynthesis strategy was developed by selective reduction of 4-nitrobenzyl alcohol(4-NBA)on Mn-doped Ni_(2)P nanosheets@nickel foam(Mn-Ni_(2)P/NF),enabling efficient N−N coupling to produce Azoxy with 100%selectivity at potentials of−0.6 to−0.8 V(vs.Hg/HgO).At more cathodic potentials,the product was converted to Azo and then to amino aromatics due to facilitated nitrogen hydrogenation.Additionally,the organic energetic material,5,5′-azotetrazolate,was also synthesized by anodic N−N coupling of 5-amino-1H-tetrazole on Cu(OH)_(2)nanowires@copper foam(Cu(OH)_(2)/CF).It bypassed harsh conditions(strong oxidants,high temperature,by-products separation,etc.)for the traditional synthesis of this class of materials.As a consequence,a two-electrode electrolyzer Cu(OH)_(2)/CF||Mn-Ni_(2)P/NF was assembled,allowing paired electrochemical N−N coupling into Azoxy and 5,5′-azotetrazolate.It achieves a current density of 50 mA cm^(−2)at a voltage of only 1.19 V,880 mV lower than the competitive water splitting.This electrolyzer can be efficiently driven by a 1.2 V solar panel with excellent yield and selectivity,paving the way for green synthesis of valuable chemicals through electrochemical N−N coupling strategies.展开更多
Cold plasma-assisted catalytic upcycling of polyolefin wastes integrated with CO_(2)into value-added chemicals is a promising solution for mitigating the global carbon emissions and fossil energy crisis,but still chal...Cold plasma-assisted catalytic upcycling of polyolefin wastes integrated with CO_(2)into value-added chemicals is a promising solution for mitigating the global carbon emissions and fossil energy crisis,but still challenging due to the complexity of products and low energy efficiency.Given this,a novel one-stage process of cold plasma coupled with Ga-modified hierarchical H-ZSM-5(Ga/Hie-ZSM-5)catalyst for polyolefins upgrading was designed with polyolefins followed by the catalysts within the plasma region,which facilitated the upcycling of polyolefins to light olefins and CO_(2)activation by plasma,and thereby the enhanced synergy between cold plasma and catalysts for aromatics production.At an input power of ca.45 W without external heating,the low-density polyethylene(LDPE)waste was completely converted with the assistance of CO_(2)and the yield of oil products over the Ga/Hie-ZSM-5 catalyst was highly up to 62.2 wt%,with nearly 100% selectivity of aromatics.Meanwhile,the degradation efficiency of LDPE and the energy efficiency could reach 2.5 g_(LDPE)·g_(cat)^(-1)·h^(-1)and 55.56 g_(LDPE)·g_(cat)^(-1)·kW^(-1)h^(-1),respectively.Mechanism investigation revealed that the plasma and CO_(2)synergistically affect the primary cracking of LDPE,forming a primary product enriched in olefins and a small amount of CO.Subsequently,the produced olefins intermediates were further aromatized via cyclizationdehydrogenation route on the Ga/Hie-ZSM-5 catalyst with assistance of CO_(2)under the synergistic effect of plasma-catalysis.This work offers a feasible strategy to improve the yield of aromatic products for the plasma-catalytic upcycling of polyolefins and CO_(2)at ambient pressure without any external heating.展开更多
The influence of nitrogen-containing polycyclic aromatic hydrocarbons(NC-PAH)on the formation of carbonaceous mesophase remains enigmatic,despite extensive research on the production of carbonaceous materials from aro...The influence of nitrogen-containing polycyclic aromatic hydrocarbons(NC-PAH)on the formation of carbonaceous mesophase remains enigmatic,despite extensive research on the production of carbonaceous materials from aromatic-rich oils.Molecular dynamics simulation was used to investigate the variations in pyrolysis behavior between PAH and NC-PAH based on the composition analysis.Through adjusting the content of NC-PAH,the influence of NC-PAH on the thermal stability of slurry oils(SOs)was evaluated by thermogravimetry,viscosity,coke value,and quinoline insoluble(QI).The morphology and structure of mesocarbon microbeads(MCMBs)prepared with SOs were measured by a polarized-light microscope,SEM,XRD,and Raman.Simulation results indicate that NC-PAH possesses much higher reactivity and tends to produce highly condensed solid and coke products.It corresponds to the QI and high viscosity in thermal stability experiments.Therefore,high concentrations of NC-PAH result in nonuniform morphology and disordered structures.In a system with low viscosity and few QIs,SO,which has a low nitrogen content(475 ppm),reacts gently to produce MCMBs with a uniform particle size(10-40μm)and an excellent spherical shape.As NC-PAH content decreases,the crystalline size of graphitization elevates,as evidenced by parallel layers(10.472-11.764)and stack height(3.269-3.701 nm).The graphitization degree becomes worse and nonuniform with the increase of the content of NC-PAH,and the best is 20.58%evaluated by Raman spectra area ratio(AG/Aall).Overall,this work suggests a nitrogen content reference and a controlling technology of nitrogen for the preparation of superior MCMB.展开更多
The textural features and acidic properties of sulfated mesoporous lanthana‐zirconia solid acids (SO42?/meso‐La0.1Zr0.9Oδ) were efficiently tuned by modifying the conditions used to prepare the meso‐La0.1Zr0.9O...The textural features and acidic properties of sulfated mesoporous lanthana‐zirconia solid acids (SO42?/meso‐La0.1Zr0.9Oδ) were efficiently tuned by modifying the conditions used to prepare the meso‐La0.1Zr0.9Oδcomposites, such as the molar ratio of the template to La and Zr metal ions (Nt/m), molar ratio of ammonia to La and Zr metal ions (Na/m), hydrothermal temperature (Thydro), and hy‐drothermal time (thydro). The effect of the textural features and acidic properties on the catalytic performance of solid acid catalysts for alkenylation of p‐xylene with phenylacetylene was investi‐gated. Various characterization techniques such as N2 physisorption, X‐ray diffraction, NH3 temper‐ature‐programmed desorption, and thermogravimetric analysis were employed to reveal the rela‐tionship between the nature of catalyst and its catalytic performance. It was found that the catalytic performance significantly depended on the textural features and acidic properties, which were strongly affected by preparation conditions of the meso‐La0.1Zr0.9Oδcomposite. Appropriate acidic sites and high accessibility were required to obtain satisfactory catalytic reactions for this reaction. It was also found that the average crystallite size of t‐ZrO2 affected by the preparation conditions had significant influence on the ultrastrong acidic sites of the catalysts. The optimized SO42?/meso‐La0.1Zr0.9Oδcatalyst exhibited much superior catalytic activity and coke‐resistant stabil‐ity. Moreover, the developed SO42?/meso‐La0.1Zr0.9Oδcatalyst demonstrated excellent catalytic per‐formance for alkenylation of diverse aromatics with phenylacetylene to their correspondingα‐arylstyrenes. Combining the previously established complete regeneration of used catalysts by a facile calcination process with the improved catalytic properties, the developed SO42?/meso‐La0.1Zr0.9Oδ solid acid could be a potential catalyst for industrial production ofα‐arylstyrenes through clean and atom efficient solid‐acid‐mediated Friedel‐Crafts alkenylation of diverse aromatics with phenylacetylene.展开更多
The comprehensive characterization of heavy aromatic hydrocarbons in gasoline is important to optimize the blending process and understand the correlation between aromatics content and engine particulate emissions.How...The comprehensive characterization of heavy aromatic hydrocarbons in gasoline is important to optimize the blending process and understand the correlation between aromatics content and engine particulate emissions.However,most current analysis methods can only provide the composition of C_(8)/C_(8-) aromatics.In this study,a simple and fast gas chromatography-mass spectrometry(GC-MS)method to identify and quantify C_(9+)aromatics in gasoline was developed.A selected ion monitoring model was employed to eliminate interference from non-aromatic compounds in the detection of target compounds,as well as that between target compounds with different molecular formulas.The identification of C_(9+)aromatics was based on the retention time of model compounds,combined with characteristic mass fragment ions,boiling points,and retention indexes.Seventy-nine C_(9)–C_(12)aromatic compounds were quantified based on the calibration of representative model compounds,and the method demonstrated good linearity,and high accuracy and precision.Furthermore,the developed methodology was successfully applied to the analysis of gasoline fractions from the reforming,pyrolysis,straight-run,delayed coking,and catalytic cracking processes,as well as commercial gasolines.The results showed that C_(9)aromatics were the predominant aromatics in all gasoline samples,followed by C10 aromatics.Alkylbenzenes such as C_(9)H_(12)and C_(10)H_(14)were the main components in the reforming,straight-run,delayed coking,and catalytic cracking gasoline fractions,as well as in the commercial gasolines,in which 1,2,4-trimethylbenzene and 3-ethyltoluene were dominant;in contrast,aromatics with higher degrees of unsaturation such as indene were the most abundant aromatics in the pyrolysis gasoline fraction.展开更多
inducing resuscitation with herbal aromatics is important to modulate the brain intake of drugs in traditional Chinese medicine,but limited information has been available on the mechanism of action.The MDCK-MDRl monol...inducing resuscitation with herbal aromatics is important to modulate the brain intake of drugs in traditional Chinese medicine,but limited information has been available on the mechanism of action.The MDCK-MDRl monolayer is an excellent in vitro cell model to use as a tool to study blood brain barrier(BBB) screening.In this study,we established MDCK-MDR1 cell line by stable transfection and investigated the effects of several important herbal aromatics on BBB permeability.The characterization experiment demonstrated the MDCK-MDRl used in this study was valid.In a transport study,we found several herbal aromatics increased the permeability of fluorescein isothiocyanate-labeled dextran 4kDa(FD4) and inhibited efflux of Rhodaminel23(Rhol23).These results demonstrated that herbal aromatics enhanced the BBB permeation of drugs by both inhibition of P-gp and opening of the BBB tight junction,thus providing new insights for understanding the mechanisms of aromatic compounds' BBB permeability.展开更多
The porosity of H‐ZSM‐5zeolite is known to facilitate the diffusion of molecules in the methanol‐to‐aromatics(MTA)reaction.The activity and selectivity of the H‐ZSM‐5catalyst in the MTAreaction has been studied ...The porosity of H‐ZSM‐5zeolite is known to facilitate the diffusion of molecules in the methanol‐to‐aromatics(MTA)reaction.The activity and selectivity of the H‐ZSM‐5catalyst in the MTAreaction has been studied as a function of crystal size.ZSM‐5zeolites with different crystal sizeswere successfully synthesized by conventional hydrothermal methods.Tailoring ZSM‐5particle sizewas easily controlled by changes to the sol‐gel composition,and in particular,the deionized waterto tetrapropylammonium hydroxide ratio,and crystallization time.The structure of the H‐ZSM‐5zeolites were characterized by X‐ray diffraction and the morphology of the zeolite particles wasdetermined by scanning electron microscopy.N2adsorption‐desorption measurements establishedchanges to the textural properties,and compositional properties were characterized by X‐ray fluorescencespectroscopy.Acidity measurements of the catalysts were measured by pyridine‐adsorbedFourier transform infrared spectroscopy and the temperature‐programmed desorption of ammonia.After subjecting the catalysts to the MTA reaction,the total amount of coke formed on the spentdeactivated catalysts was determined by thermal gravimetric analysis.The results show that theSiO2/Al2O3molar ratios and acidic properties of the H‐ZSM‐5samples are similar,however,thenano‐sized hierarchical ZSM‐5zeolite with an additional level of auxiliary pores possesses a higher展开更多
The direct catalytic conversion of syngas to aromatics offers a promising route to manufacture fine chemicals by employing non-petroleum carbon resources,because aromatic constituents are the key platform for producin...The direct catalytic conversion of syngas to aromatics offers a promising route to manufacture fine chemicals by employing non-petroleum carbon resources,because aromatic constituents are the key platform for producing polymers.However,this remains a great challenge due to the low yield of aromatics and poor catalyst stability,which restrict further development.In recent years,extensive research has been reported on the design of effective catalysts and the optimization of operating conditions to obtain better catalytic performance.In this review,we focus on these related achievements and present a comprehensive overview of different kinds of catalysts,mainly including modified Fischer-Tropsch(FT)catalysts and composite catalysts,as well as their performance and reaction mechanisms.The thermodynamic analysis of the reactions involved in this innovative conversion process and the comparison of different methods are also described in detail in this updated review.Finally,the challenges and prospects for direct syngas conversion are discussed to provide general guidelines for the construction of a well-designed reaction route.展开更多
Metal-modified H-ZSM-5 has a high selectivity of aromatics in methanol to aromatics(MTA)reaction,which is often attributed to the metal promoting the aromatization of intermediate olefins.However,the effect of methano...Metal-modified H-ZSM-5 has a high selectivity of aromatics in methanol to aromatics(MTA)reaction,which is often attributed to the metal promoting the aromatization of intermediate olefins.However,the effect of methanol dehydrogenation on aromatics formation over these catalysts is rarely studied.Here,we report that HCHO,which is formed by methanol dehydrogenation over Zn/H-ZSM-5 prepared by Zn impregnation,can participate in the synthesis of aromatics.Methanol conversion can produce more aromatics than olefins(propylene or ethylene)conversion over Zn/H-ZSM-5,indicating the conventional MTA pathway including methanol-to-olefins and olefins-to-aromatics is not complete.Moreover,an MTA mechanism including the conventional pathway and the methanol and HCHO coupling pathway is systematically proposed.展开更多
Soluble portions(SPs) 1-4(SP1-SP4) were afforded from sequentially dissolution and alkanolyses of Baiyinhua lignite(BL) in cyclohexane,CH3OH,CH3CH2OH,and(CH3)2CHOH at 300℃.They were analyzed with a gas chromatograph/...Soluble portions(SPs) 1-4(SP1-SP4) were afforded from sequentially dissolution and alkanolyses of Baiyinhua lignite(BL) in cyclohexane,CH3OH,CH3CH2OH,and(CH3)2CHOH at 300℃.They were analyzed with a gas chromatograph/mass spectrometer and quadrupole exactive orbitrap mass spectrometer(QEOTMS) with an atmosphere pressure chemical ionization source in positive-ion mode,while BL was characterized with an X-ray photoelectron spectrometer(XRPES).The results show that the yields of SP2 and SP3 are much higher than those of SP1 and SP4,and the total SP yield is ca.39.0%.According to the analysis with XRPES,pyrrolic nitrogen atoms are the most abundant nitrogen existing forms in BL.Thousands of nitrogen-containing aromatics(NCAs) were resolved with QEOTMS and their molecular masses are mainly in the range of 200-450 u.The main NCAs are N1O1 and N1O2 class species with double bond equivalent values of 4-18 and carbon numbers of 7-30.The nitrogen atoms appear in pyridine s,quinolines,benzoquinolines or acridine,and dibenzoquinolines or naphthoquinolines,while the oxygen atoms exist in methoxy and furan rings.展开更多
Realizing high CO conversion and high aromatics selectivity simultaneously in syngas-to-aromatics(STA)reaction is still challenging.Herein,we report a 57.5%CO conversion along with 74%aromatics selectivity over a comp...Realizing high CO conversion and high aromatics selectivity simultaneously in syngas-to-aromatics(STA)reaction is still challenging.Herein,we report a 57.5%CO conversion along with 74%aromatics selectivity over a composite catalyst consisting of Fe/ZnCr_(2)O_(4)(Fe modified ZnCr_(2)O_(4)spinel)oxide and H-ZSM-5 zeolite.Impregnation of only 3 wt%of Fe onto ZnCr_(2)O_(4)can remarkably increase CO conversion without sacrificing the aromatics selectivity.Oxygen vacancy concentration is improved after impregnating Fe.The highly dispersed iron carbide species is formed during the reaction over Fe/ZnCr_(2)O_(4)spinel oxide.The synergistic effect of oxygen vacancy and iron carbide results in a rapid formation of abundant oxygenated intermediate species,which can be continuously transformed to aromatics in H-ZSM-5.This study provides a new insight into the design of highly efficient catalyst for syngas conversion.展开更多
The need for cleaner fuels has resulted in a continuing worldwide trend to reduce diesel sulfur and aromatics. There are many approaches to reducing sulfur and aromatics in diesel. Most of them have a common drawback ...The need for cleaner fuels has resulted in a continuing worldwide trend to reduce diesel sulfur and aromatics. There are many approaches to reducing sulfur and aromatics in diesel. Most of them have a common drawback of high cost because of adopting two stages of hydrotreating and using noble-metal catalyst, especially for reducing aromatics. The attempt to resolve this issue has led to the recent development of the Single Stage Hydrotreating (SSHT) process by Research Institute of Petroleum Processing (RIPP), SINOPEC.The SSHT process is a single-stage hydrotreating technology for producing low sulfur and low aromatics diesel. The process uses one or two non-noble-metal catalysts system and operates at moderate pressure. When revamping an existing unit to meet low aromatics diesel specification, the only thing to do is to add a reactor or replace the existing reactor, In pilot plant tests, the SSHT technology has successfully treated SRGO (Straight Run Gas Oil), LCO (Light Cycle Oil) or the blend of them. It is shown that by using the SSHT process diesel with sulfur of 30 ppm and aromatics of 15 m% can be produced from Middle-East SRGO and diesel with aromatics content of 25 m% can be produced from cracked feed, such as FCC-LCO. High diesel yield and cetane number gain (from cracked feed stocks) give the SSHT technology a performance advantage compared to conventional hydrocracking and hydrotreating processes.The lower investment and operating cost is another advantage. The first commercial application of the SSHT technology has been in operation since September 2001.展开更多
Microcosmic experiments were performed under a simulated marine environment to investigate the natural attenuation of C9 aromatics using nine components(propylbenzene,isopropylbenzene,2-ethyltoluene,3-ethyltoluene,4-e...Microcosmic experiments were performed under a simulated marine environment to investigate the natural attenuation of C9 aromatics using nine components(propylbenzene,isopropylbenzene,2-ethyltoluene,3-ethyltoluene,4-ethyltoluene,1,2,3-trimethylbenzene,1,2,4-trimethylbenzene,1,3,5-trimethylbenzene,and indene).This research aims to assess the contribution of biodegradation and abiotic activity to total attenuation of C9 aromatics and ascertain the changes in the comprehensive toxicity of seawater in the natural environment.The process of natural attenuation indicates the agreement with pseudo-first-order kinetics for all nine components in microcosmic experiments.The half-lives of the nine main compounds in C9 aromatics ranged between 0.34 day and 0.44 day under optimal conditions.The experiments showed that the natural attenuation of nine aromatic hydrocarbonsmainly occurred via abiotic processes.Seawater samples significantly inhibited the luminescence of P.phosphoreum(the luminescence inhibition ratio reached 100%)at the beginning of the experiment.In addition,the toxicity declined slowly and continued for 25 days.The attenuation kinetics and changes in toxicity could be applied to explore the natural attenuation of C9 aromatics in the marine environment.展开更多
A facile approach was developed for the preparation of nano-sized HZSM-5 with a hierarchical mesoporous structure by adding imidazole into conventional zeolite synthesis precursor solution. The physicochemical propert...A facile approach was developed for the preparation of nano-sized HZSM-5 with a hierarchical mesoporous structure by adding imidazole into conventional zeolite synthesis precursor solution. The physicochemical properties of modified HZSM-5 were characterized by X-ray diffraction(XRD), N;adsorption–desorption isotherms, scanning electron microscopy(SEM), NH;-temperature-programmed desorption(NH;-TPD) and pyridine adsorption infrared spectroscopy(Py-IR). The coke in spent catalysts was characterized by thermogravimetry(TG). The results showed that hierarchical HZSM-5 zeolites with excellent textural properties, such as abundant porous structure, uniform particle size and suitable acidity, could be synthesized by the recipe of one-pot synthesis routes. Moreover, the obtained HZSM-5 exhibited higher selectivity of total aromatics as well as longer lifetime in the catalytic conversion of methanol to aromatics, comparing with conventional HZSM-5. It is expected that the synthesis approach demonstrated here will be applicable to other zeolites with particular textural properties and controllable particle sizes, facilitating the emergence of new-type porous materials and their related applications in catalysis and separation.展开更多
The knowledge of azaborine chemistry is growing as an important branch in organic semiconductor materials.Specifically,BN-embedded aromatic compounds have attracted great attention due to their fascinating properties ...The knowledge of azaborine chemistry is growing as an important branch in organic semiconductor materials.Specifically,BN-embedded aromatic compounds have attracted great attention due to their fascinating properties resulted from the replacement of CC unit with isoelectronic BN unit in aromatics.Though great insights have been provided into the synthetic chemistry and photophysical properties of BN-embedded aromatics,their applications in optoelectronic areas are still at a young stage.This short review summarizes the recent progress of BN-embedded aromatics with optoelectronic applications in organic field-effect transistors,organic light-emitting diodes,organic photovoltaics,stimuli-responsive luminescent devices,and chemical sensors.展开更多
For zeolite-catalyzed Friedel-Crafts acylation of aromatic rings,the Lewis acid sites were found to be active;while the Bronsted acid sites with moderate strength were found to be inactive.
Conversion of LCO(light cycle oil)to BTX(benzene,toluene,and xylene)is an economically valuable method for refineries.However,this approach still faces difficulties as the main reactions are not clearly understood.Her...Conversion of LCO(light cycle oil)to BTX(benzene,toluene,and xylene)is an economically valuable method for refineries.However,this approach still faces difficulties as the main reactions are not clearly understood.Here we study the detailed hydrocracking pathway of typical reactants,1-methylnaphthalene and tetralin,through molecular simulations and experiments to improve our understanding of the conversion process of LCO to BTX.Molecular simulations demonstrate that the rate-determining step is the isomerization pathway of six-membered ring to five-membered ring in tetralin as its activation energy(ΔEa)is the highest among all the reactions and the order ofΔEa of reactions is isomerization>ring-opening≈side-chain cleavage.The results of experiments show that with the increase in reaction depth,i.e.,through a high temperature(350-370℃)and low LHSV(4.5-6.0 h^(−1)),isomerization,ring-opening,and side-chain cleavage reactions occurred,thus improving the selectivity and yield of alkyl aromatics.展开更多
Direct conversion of syngas to aromatics(STA)over oxide-zeolite composite catalysts is promising as an alternative method for aromatics production.However,the structural effect of the oxide component in composite cata...Direct conversion of syngas to aromatics(STA)over oxide-zeolite composite catalysts is promising as an alternative method for aromatics production.However,the structural effect of the oxide component in composite catalysts is still ambiguous.Herein,we investigate the size effect by selecting ZnCr_(2)O_(4)spinel,as a probe oxide,mixing with H-ZSM-5 zeolite as a composite catalyst for STA reaction.The CO conversion,aromatics selectivity and space-time yield(STY)of aromatics are all significantly improved with the crystal size of ZnCr_(2)O_(4)oxide decreases,which can mainly attribute to the higher oxygen vacancy concentration and thus the rapid generation of more C1oxygenated intermediate species.Based on the understanding of the size-performance relationship,ZnCr_(2)O_(4)-400 with a smaller size mixing with H-ZSM-5 can achieve32.6%CO conversion with 76%aromatics selectivity.The STY of aromatics reaches as high as 4.79 mmol g_(cat)^(-1)h^(-1),which outperforms the previously reported some typical catalysts.This study elucidates the importance of regulating the size of oxide to design more efficient oxidezeolite composite catalysts for conversion of syngas to value-added chemicals.展开更多
Reaction of activated aromatics containing phenobs, naphthol, methoxynaphthalenes,anisole etc. with 1-butyl-3-methylimidazolium tribromide ([Bmim]Br3) under solvent-free conditions, selectively gave the correspondin...Reaction of activated aromatics containing phenobs, naphthol, methoxynaphthalenes,anisole etc. with 1-butyl-3-methylimidazolium tribromide ([Bmim]Br3) under solvent-free conditions, selectively gave the corresponding monobromination products with excellent yields.展开更多
The characteristic ratios of volatile organic compounds(VOCs) to i-pentane, the indicator of vehicular emissions, were employed to apportion the vehicular and non-vehicular contributions to reactive species in urban...The characteristic ratios of volatile organic compounds(VOCs) to i-pentane, the indicator of vehicular emissions, were employed to apportion the vehicular and non-vehicular contributions to reactive species in urban Shanghai. Two kinds of tunnel experiments, one tunnel with more than 90% light duty gasoline vehicles and the other with more than 60% light duty diesel vehicles, were carried out to study the characteristic ratios of vehicle-related emissions from December 2009 to January 2010. Based on the experiments, the characteristic ratios of C6–C8aromatics to i-pentane of vehicular emissions were 0.53 ± 0.08(benzene), 0.70 ± 0.12(toluene),0.41 ± 0.09(m,p-xylenes), 0.16 ± 0.04(o-xylene), 0.023 ± 0.011(styrene), and 0.15 ± 0.02(ethylbenzene), respectively. The source apportionment results showed that around 23.3% of C6–C8 aromatics in urban Shanghai were from vehicular emissions, which meant that the non-vehicular emissions had more importance. These findings suggested that emission control of non-vehicular sources, i.e. industrial emissions, should also receive attention in addition to the control of vehicle-related emissions in Shanghai. The chemical removal of VOCs during the transport from emissions to the receptor site had a large impact on the apportionment results. Generally, the overestimation of vehicular contributions would occur when the VOC reaction rate constant with OH radicals(k OH) was larger than that of the vehicular indicator, while for species with smaller k OH than the vehicular indicator, the vehicular contribution would be underestimated by the method of characteristic ratios.展开更多
基金supported by the National Key R&D Program of China(2024YFA1211004)the National Natural Science Foundation of China(22402150,22072107)+1 种基金the Natural Science Foundation of Shanghai(23ZR1464800,24ZR1470200)the Foundation of State Key Laboratory of Pollution Control and Resource Reuse(Tongji University)。
文摘Azoxy aromatics are extensively utilized in materials science,pharmaceuticals,and synthetic chemistry,but their controlled and environmentally-friendly synthesis has rarely been reported.Herein,a potential-mediated electrosynthesis strategy was developed by selective reduction of 4-nitrobenzyl alcohol(4-NBA)on Mn-doped Ni_(2)P nanosheets@nickel foam(Mn-Ni_(2)P/NF),enabling efficient N−N coupling to produce Azoxy with 100%selectivity at potentials of−0.6 to−0.8 V(vs.Hg/HgO).At more cathodic potentials,the product was converted to Azo and then to amino aromatics due to facilitated nitrogen hydrogenation.Additionally,the organic energetic material,5,5′-azotetrazolate,was also synthesized by anodic N−N coupling of 5-amino-1H-tetrazole on Cu(OH)_(2)nanowires@copper foam(Cu(OH)_(2)/CF).It bypassed harsh conditions(strong oxidants,high temperature,by-products separation,etc.)for the traditional synthesis of this class of materials.As a consequence,a two-electrode electrolyzer Cu(OH)_(2)/CF||Mn-Ni_(2)P/NF was assembled,allowing paired electrochemical N−N coupling into Azoxy and 5,5′-azotetrazolate.It achieves a current density of 50 mA cm^(−2)at a voltage of only 1.19 V,880 mV lower than the competitive water splitting.This electrolyzer can be efficiently driven by a 1.2 V solar panel with excellent yield and selectivity,paving the way for green synthesis of valuable chemicals through electrochemical N−N coupling strategies.
基金financially supported by the National Key R&D Program of China(2023YFA1506602 and 2021YFA1501102)the National Natural Science Foundation of China(21932002,22276023,22402019)+1 种基金the Fundamental Research Funds for the Central Universities(DUT22LAB602)Liaoning Binhai Laboratory Project(LBLF-202306)。
文摘Cold plasma-assisted catalytic upcycling of polyolefin wastes integrated with CO_(2)into value-added chemicals is a promising solution for mitigating the global carbon emissions and fossil energy crisis,but still challenging due to the complexity of products and low energy efficiency.Given this,a novel one-stage process of cold plasma coupled with Ga-modified hierarchical H-ZSM-5(Ga/Hie-ZSM-5)catalyst for polyolefins upgrading was designed with polyolefins followed by the catalysts within the plasma region,which facilitated the upcycling of polyolefins to light olefins and CO_(2)activation by plasma,and thereby the enhanced synergy between cold plasma and catalysts for aromatics production.At an input power of ca.45 W without external heating,the low-density polyethylene(LDPE)waste was completely converted with the assistance of CO_(2)and the yield of oil products over the Ga/Hie-ZSM-5 catalyst was highly up to 62.2 wt%,with nearly 100% selectivity of aromatics.Meanwhile,the degradation efficiency of LDPE and the energy efficiency could reach 2.5 g_(LDPE)·g_(cat)^(-1)·h^(-1)and 55.56 g_(LDPE)·g_(cat)^(-1)·kW^(-1)h^(-1),respectively.Mechanism investigation revealed that the plasma and CO_(2)synergistically affect the primary cracking of LDPE,forming a primary product enriched in olefins and a small amount of CO.Subsequently,the produced olefins intermediates were further aromatized via cyclizationdehydrogenation route on the Ga/Hie-ZSM-5 catalyst with assistance of CO_(2)under the synergistic effect of plasma-catalysis.This work offers a feasible strategy to improve the yield of aromatic products for the plasma-catalytic upcycling of polyolefins and CO_(2)at ambient pressure without any external heating.
基金support of National Natural Science Foundation of P.R.China(22308104).
文摘The influence of nitrogen-containing polycyclic aromatic hydrocarbons(NC-PAH)on the formation of carbonaceous mesophase remains enigmatic,despite extensive research on the production of carbonaceous materials from aromatic-rich oils.Molecular dynamics simulation was used to investigate the variations in pyrolysis behavior between PAH and NC-PAH based on the composition analysis.Through adjusting the content of NC-PAH,the influence of NC-PAH on the thermal stability of slurry oils(SOs)was evaluated by thermogravimetry,viscosity,coke value,and quinoline insoluble(QI).The morphology and structure of mesocarbon microbeads(MCMBs)prepared with SOs were measured by a polarized-light microscope,SEM,XRD,and Raman.Simulation results indicate that NC-PAH possesses much higher reactivity and tends to produce highly condensed solid and coke products.It corresponds to the QI and high viscosity in thermal stability experiments.Therefore,high concentrations of NC-PAH result in nonuniform morphology and disordered structures.In a system with low viscosity and few QIs,SO,which has a low nitrogen content(475 ppm),reacts gently to produce MCMBs with a uniform particle size(10-40μm)and an excellent spherical shape.As NC-PAH content decreases,the crystalline size of graphitization elevates,as evidenced by parallel layers(10.472-11.764)and stack height(3.269-3.701 nm).The graphitization degree becomes worse and nonuniform with the increase of the content of NC-PAH,and the best is 20.58%evaluated by Raman spectra area ratio(AG/Aall).Overall,this work suggests a nitrogen content reference and a controlling technology of nitrogen for the preparation of superior MCMB.
基金financially supported by the National Natural Science Foundation of China (21276041)the Program for New Century Excellent Talents in University of Ministry of Education (NCET-12-0079)+1 种基金the Natural Science Foundation of Liaoning Province (2015020200)the Fundamental Research Funds for the Central Universities (DUT15LK41)~~
文摘The textural features and acidic properties of sulfated mesoporous lanthana‐zirconia solid acids (SO42?/meso‐La0.1Zr0.9Oδ) were efficiently tuned by modifying the conditions used to prepare the meso‐La0.1Zr0.9Oδcomposites, such as the molar ratio of the template to La and Zr metal ions (Nt/m), molar ratio of ammonia to La and Zr metal ions (Na/m), hydrothermal temperature (Thydro), and hy‐drothermal time (thydro). The effect of the textural features and acidic properties on the catalytic performance of solid acid catalysts for alkenylation of p‐xylene with phenylacetylene was investi‐gated. Various characterization techniques such as N2 physisorption, X‐ray diffraction, NH3 temper‐ature‐programmed desorption, and thermogravimetric analysis were employed to reveal the rela‐tionship between the nature of catalyst and its catalytic performance. It was found that the catalytic performance significantly depended on the textural features and acidic properties, which were strongly affected by preparation conditions of the meso‐La0.1Zr0.9Oδcomposite. Appropriate acidic sites and high accessibility were required to obtain satisfactory catalytic reactions for this reaction. It was also found that the average crystallite size of t‐ZrO2 affected by the preparation conditions had significant influence on the ultrastrong acidic sites of the catalysts. The optimized SO42?/meso‐La0.1Zr0.9Oδcatalyst exhibited much superior catalytic activity and coke‐resistant stabil‐ity. Moreover, the developed SO42?/meso‐La0.1Zr0.9Oδcatalyst demonstrated excellent catalytic per‐formance for alkenylation of diverse aromatics with phenylacetylene to their correspondingα‐arylstyrenes. Combining the previously established complete regeneration of used catalysts by a facile calcination process with the improved catalytic properties, the developed SO42?/meso‐La0.1Zr0.9Oδ solid acid could be a potential catalyst for industrial production ofα‐arylstyrenes through clean and atom efficient solid‐acid‐mediated Friedel‐Crafts alkenylation of diverse aromatics with phenylacetylene.
基金This work was supported by the research project of Sinopec Research Institute of Petroleum Processing Co.,Ltd.(G720007).
文摘The comprehensive characterization of heavy aromatic hydrocarbons in gasoline is important to optimize the blending process and understand the correlation between aromatics content and engine particulate emissions.However,most current analysis methods can only provide the composition of C_(8)/C_(8-) aromatics.In this study,a simple and fast gas chromatography-mass spectrometry(GC-MS)method to identify and quantify C_(9+)aromatics in gasoline was developed.A selected ion monitoring model was employed to eliminate interference from non-aromatic compounds in the detection of target compounds,as well as that between target compounds with different molecular formulas.The identification of C_(9+)aromatics was based on the retention time of model compounds,combined with characteristic mass fragment ions,boiling points,and retention indexes.Seventy-nine C_(9)–C_(12)aromatic compounds were quantified based on the calibration of representative model compounds,and the method demonstrated good linearity,and high accuracy and precision.Furthermore,the developed methodology was successfully applied to the analysis of gasoline fractions from the reforming,pyrolysis,straight-run,delayed coking,and catalytic cracking processes,as well as commercial gasolines.The results showed that C_(9)aromatics were the predominant aromatics in all gasoline samples,followed by C10 aromatics.Alkylbenzenes such as C_(9)H_(12)and C_(10)H_(14)were the main components in the reforming,straight-run,delayed coking,and catalytic cracking gasoline fractions,as well as in the commercial gasolines,in which 1,2,4-trimethylbenzene and 3-ethyltoluene were dominant;in contrast,aromatics with higher degrees of unsaturation such as indene were the most abundant aromatics in the pyrolysis gasoline fraction.
基金Major New Medicine Project in Mega-projects of Science Research of China(Grant No.2009ZX09502-006)National Natural Science Foundation of China(Grant No.20971008)
文摘inducing resuscitation with herbal aromatics is important to modulate the brain intake of drugs in traditional Chinese medicine,but limited information has been available on the mechanism of action.The MDCK-MDRl monolayer is an excellent in vitro cell model to use as a tool to study blood brain barrier(BBB) screening.In this study,we established MDCK-MDR1 cell line by stable transfection and investigated the effects of several important herbal aromatics on BBB permeability.The characterization experiment demonstrated the MDCK-MDRl used in this study was valid.In a transport study,we found several herbal aromatics increased the permeability of fluorescein isothiocyanate-labeled dextran 4kDa(FD4) and inhibited efflux of Rhodaminel23(Rhol23).These results demonstrated that herbal aromatics enhanced the BBB permeation of drugs by both inhibition of P-gp and opening of the BBB tight junction,thus providing new insights for understanding the mechanisms of aromatic compounds' BBB permeability.
基金supported by the National Natural Science Foundation of China (21676300)~~
文摘The porosity of H‐ZSM‐5zeolite is known to facilitate the diffusion of molecules in the methanol‐to‐aromatics(MTA)reaction.The activity and selectivity of the H‐ZSM‐5catalyst in the MTAreaction has been studied as a function of crystal size.ZSM‐5zeolites with different crystal sizeswere successfully synthesized by conventional hydrothermal methods.Tailoring ZSM‐5particle sizewas easily controlled by changes to the sol‐gel composition,and in particular,the deionized waterto tetrapropylammonium hydroxide ratio,and crystallization time.The structure of the H‐ZSM‐5zeolites were characterized by X‐ray diffraction and the morphology of the zeolite particles wasdetermined by scanning electron microscopy.N2adsorption‐desorption measurements establishedchanges to the textural properties,and compositional properties were characterized by X‐ray fluorescencespectroscopy.Acidity measurements of the catalysts were measured by pyridine‐adsorbedFourier transform infrared spectroscopy and the temperature‐programmed desorption of ammonia.After subjecting the catalysts to the MTA reaction,the total amount of coke formed on the spentdeactivated catalysts was determined by thermal gravimetric analysis.The results show that theSiO2/Al2O3molar ratios and acidic properties of the H‐ZSM‐5samples are similar,however,thenano‐sized hierarchical ZSM‐5zeolite with an additional level of auxiliary pores possesses a higher
基金the National Key R&D Program of China(2016YFA0202804)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB17020400)+2 种基金the Youth Innovation Promotion Association CAS for financial supportthe National Natural Science Foundation of China(21506204,21476226)Dalian Science Foundation for Distinguished Young Scholars(2016RJ04)~~
文摘The direct catalytic conversion of syngas to aromatics offers a promising route to manufacture fine chemicals by employing non-petroleum carbon resources,because aromatic constituents are the key platform for producing polymers.However,this remains a great challenge due to the low yield of aromatics and poor catalyst stability,which restrict further development.In recent years,extensive research has been reported on the design of effective catalysts and the optimization of operating conditions to obtain better catalytic performance.In this review,we focus on these related achievements and present a comprehensive overview of different kinds of catalysts,mainly including modified Fischer-Tropsch(FT)catalysts and composite catalysts,as well as their performance and reaction mechanisms.The thermodynamic analysis of the reactions involved in this innovative conversion process and the comparison of different methods are also described in detail in this updated review.Finally,the challenges and prospects for direct syngas conversion are discussed to provide general guidelines for the construction of a well-designed reaction route.
基金the financial support from the National Natural Science Foundation of China(Grant No.21978285,21991093,21991090)the“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA21030100)。
文摘Metal-modified H-ZSM-5 has a high selectivity of aromatics in methanol to aromatics(MTA)reaction,which is often attributed to the metal promoting the aromatization of intermediate olefins.However,the effect of methanol dehydrogenation on aromatics formation over these catalysts is rarely studied.Here,we report that HCHO,which is formed by methanol dehydrogenation over Zn/H-ZSM-5 prepared by Zn impregnation,can participate in the synthesis of aromatics.Methanol conversion can produce more aromatics than olefins(propylene or ethylene)conversion over Zn/H-ZSM-5,indicating the conventional MTA pathway including methanol-to-olefins and olefins-to-aromatics is not complete.Moreover,an MTA mechanism including the conventional pathway and the methanol and HCHO coupling pathway is systematically proposed.
基金Supported by the Key Project of Joint Fund from National Natural Science Foundation of China and the Government of Xinjiang Uygur Autonomous Region(U1503293)the National Key Research and Development Program of China(2018YFB0604602)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Soluble portions(SPs) 1-4(SP1-SP4) were afforded from sequentially dissolution and alkanolyses of Baiyinhua lignite(BL) in cyclohexane,CH3OH,CH3CH2OH,and(CH3)2CHOH at 300℃.They were analyzed with a gas chromatograph/mass spectrometer and quadrupole exactive orbitrap mass spectrometer(QEOTMS) with an atmosphere pressure chemical ionization source in positive-ion mode,while BL was characterized with an X-ray photoelectron spectrometer(XRPES).The results show that the yields of SP2 and SP3 are much higher than those of SP1 and SP4,and the total SP yield is ca.39.0%.According to the analysis with XRPES,pyrrolic nitrogen atoms are the most abundant nitrogen existing forms in BL.Thousands of nitrogen-containing aromatics(NCAs) were resolved with QEOTMS and their molecular masses are mainly in the range of 200-450 u.The main NCAs are N1O1 and N1O2 class species with double bond equivalent values of 4-18 and carbon numbers of 7-30.The nitrogen atoms appear in pyridine s,quinolines,benzoquinolines or acridine,and dibenzoquinolines or naphthoquinolines,while the oxygen atoms exist in methoxy and furan rings.
基金the financial support from the National Natural Science Foundation of China(Grant No.21978285,21991093,21991090),the‘‘Transformational Technologies for Clean Energy and Demonstration”the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA21030100)。
文摘Realizing high CO conversion and high aromatics selectivity simultaneously in syngas-to-aromatics(STA)reaction is still challenging.Herein,we report a 57.5%CO conversion along with 74%aromatics selectivity over a composite catalyst consisting of Fe/ZnCr_(2)O_(4)(Fe modified ZnCr_(2)O_(4)spinel)oxide and H-ZSM-5 zeolite.Impregnation of only 3 wt%of Fe onto ZnCr_(2)O_(4)can remarkably increase CO conversion without sacrificing the aromatics selectivity.Oxygen vacancy concentration is improved after impregnating Fe.The highly dispersed iron carbide species is formed during the reaction over Fe/ZnCr_(2)O_(4)spinel oxide.The synergistic effect of oxygen vacancy and iron carbide results in a rapid formation of abundant oxygenated intermediate species,which can be continuously transformed to aromatics in H-ZSM-5.This study provides a new insight into the design of highly efficient catalyst for syngas conversion.
文摘The need for cleaner fuels has resulted in a continuing worldwide trend to reduce diesel sulfur and aromatics. There are many approaches to reducing sulfur and aromatics in diesel. Most of them have a common drawback of high cost because of adopting two stages of hydrotreating and using noble-metal catalyst, especially for reducing aromatics. The attempt to resolve this issue has led to the recent development of the Single Stage Hydrotreating (SSHT) process by Research Institute of Petroleum Processing (RIPP), SINOPEC.The SSHT process is a single-stage hydrotreating technology for producing low sulfur and low aromatics diesel. The process uses one or two non-noble-metal catalysts system and operates at moderate pressure. When revamping an existing unit to meet low aromatics diesel specification, the only thing to do is to add a reactor or replace the existing reactor, In pilot plant tests, the SSHT technology has successfully treated SRGO (Straight Run Gas Oil), LCO (Light Cycle Oil) or the blend of them. It is shown that by using the SSHT process diesel with sulfur of 30 ppm and aromatics of 15 m% can be produced from Middle-East SRGO and diesel with aromatics content of 25 m% can be produced from cracked feed, such as FCC-LCO. High diesel yield and cetane number gain (from cracked feed stocks) give the SSHT technology a performance advantage compared to conventional hydrocracking and hydrotreating processes.The lower investment and operating cost is another advantage. The first commercial application of the SSHT technology has been in operation since September 2001.
基金supported by the National Natural Science Foundation of China(No.42077335).
文摘Microcosmic experiments were performed under a simulated marine environment to investigate the natural attenuation of C9 aromatics using nine components(propylbenzene,isopropylbenzene,2-ethyltoluene,3-ethyltoluene,4-ethyltoluene,1,2,3-trimethylbenzene,1,2,4-trimethylbenzene,1,3,5-trimethylbenzene,and indene).This research aims to assess the contribution of biodegradation and abiotic activity to total attenuation of C9 aromatics and ascertain the changes in the comprehensive toxicity of seawater in the natural environment.The process of natural attenuation indicates the agreement with pseudo-first-order kinetics for all nine components in microcosmic experiments.The half-lives of the nine main compounds in C9 aromatics ranged between 0.34 day and 0.44 day under optimal conditions.The experiments showed that the natural attenuation of nine aromatic hydrocarbonsmainly occurred via abiotic processes.Seawater samples significantly inhibited the luminescence of P.phosphoreum(the luminescence inhibition ratio reached 100%)at the beginning of the experiment.In addition,the toxicity declined slowly and continued for 25 days.The attenuation kinetics and changes in toxicity could be applied to explore the natural attenuation of C9 aromatics in the marine environment.
基金the financial support of National Natural Science Foundation of China(NO.21536009)the National High Technology Research and Development Program of China(Grant No.2011AA05A2021)Science and Technology Innovation Planning Project of Shaanxi Province,China(NO.2012KTDZ0101-04)
文摘A facile approach was developed for the preparation of nano-sized HZSM-5 with a hierarchical mesoporous structure by adding imidazole into conventional zeolite synthesis precursor solution. The physicochemical properties of modified HZSM-5 were characterized by X-ray diffraction(XRD), N;adsorption–desorption isotherms, scanning electron microscopy(SEM), NH;-temperature-programmed desorption(NH;-TPD) and pyridine adsorption infrared spectroscopy(Py-IR). The coke in spent catalysts was characterized by thermogravimetry(TG). The results showed that hierarchical HZSM-5 zeolites with excellent textural properties, such as abundant porous structure, uniform particle size and suitable acidity, could be synthesized by the recipe of one-pot synthesis routes. Moreover, the obtained HZSM-5 exhibited higher selectivity of total aromatics as well as longer lifetime in the catalytic conversion of methanol to aromatics, comparing with conventional HZSM-5. It is expected that the synthesis approach demonstrated here will be applicable to other zeolites with particular textural properties and controllable particle sizes, facilitating the emergence of new-type porous materials and their related applications in catalysis and separation.
基金supported by the Major State Basic Research Development Program(Nos.2013CB933501 and 2015CB856505) from the Ministry of Science and TechnologyNational Natural Science Foundation of China
文摘The knowledge of azaborine chemistry is growing as an important branch in organic semiconductor materials.Specifically,BN-embedded aromatic compounds have attracted great attention due to their fascinating properties resulted from the replacement of CC unit with isoelectronic BN unit in aromatics.Though great insights have been provided into the synthetic chemistry and photophysical properties of BN-embedded aromatics,their applications in optoelectronic areas are still at a young stage.This short review summarizes the recent progress of BN-embedded aromatics with optoelectronic applications in organic field-effect transistors,organic light-emitting diodes,organic photovoltaics,stimuli-responsive luminescent devices,and chemical sensors.
文摘For zeolite-catalyzed Friedel-Crafts acylation of aromatic rings,the Lewis acid sites were found to be active;while the Bronsted acid sites with moderate strength were found to be inactive.
基金This work was financially supported by the SINOPEC Science and technology Development Funds(No.12005-1)the Hydrogenation Process and Hydrogenation Catalyst Laboratory(RIPP,SINOPEC).
文摘Conversion of LCO(light cycle oil)to BTX(benzene,toluene,and xylene)is an economically valuable method for refineries.However,this approach still faces difficulties as the main reactions are not clearly understood.Here we study the detailed hydrocracking pathway of typical reactants,1-methylnaphthalene and tetralin,through molecular simulations and experiments to improve our understanding of the conversion process of LCO to BTX.Molecular simulations demonstrate that the rate-determining step is the isomerization pathway of six-membered ring to five-membered ring in tetralin as its activation energy(ΔEa)is the highest among all the reactions and the order ofΔEa of reactions is isomerization>ring-opening≈side-chain cleavage.The results of experiments show that with the increase in reaction depth,i.e.,through a high temperature(350-370℃)and low LHSV(4.5-6.0 h^(−1)),isomerization,ring-opening,and side-chain cleavage reactions occurred,thus improving the selectivity and yield of alkyl aromatics.
基金financial support from the National Natural Science Foundation of China(Grant No.21978285,21991093,21991090)the“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA21030100)。
文摘Direct conversion of syngas to aromatics(STA)over oxide-zeolite composite catalysts is promising as an alternative method for aromatics production.However,the structural effect of the oxide component in composite catalysts is still ambiguous.Herein,we investigate the size effect by selecting ZnCr_(2)O_(4)spinel,as a probe oxide,mixing with H-ZSM-5 zeolite as a composite catalyst for STA reaction.The CO conversion,aromatics selectivity and space-time yield(STY)of aromatics are all significantly improved with the crystal size of ZnCr_(2)O_(4)oxide decreases,which can mainly attribute to the higher oxygen vacancy concentration and thus the rapid generation of more C1oxygenated intermediate species.Based on the understanding of the size-performance relationship,ZnCr_(2)O_(4)-400 with a smaller size mixing with H-ZSM-5 can achieve32.6%CO conversion with 76%aromatics selectivity.The STY of aromatics reaches as high as 4.79 mmol g_(cat)^(-1)h^(-1),which outperforms the previously reported some typical catalysts.This study elucidates the importance of regulating the size of oxide to design more efficient oxidezeolite composite catalysts for conversion of syngas to value-added chemicals.
文摘Reaction of activated aromatics containing phenobs, naphthol, methoxynaphthalenes,anisole etc. with 1-butyl-3-methylimidazolium tribromide ([Bmim]Br3) under solvent-free conditions, selectively gave the corresponding monobromination products with excellent yields.
基金supported by the special fund of the Ministry of Environmental Protection of China (No. 201409008)the Shanghai Environmental Protection Bureau (No. 2013-03)+2 种基金the National Natural Science Foundation of China (No. 21190053)the Shanghai Science and Technology Commission of Shanghai Municipality (Nos. 12DJ1400100, 13XD1400700, 14YF1413200)the Priority fields for Ph.D. Programs Foundation of Ministry of Education of China(No. 20110071130003)
文摘The characteristic ratios of volatile organic compounds(VOCs) to i-pentane, the indicator of vehicular emissions, were employed to apportion the vehicular and non-vehicular contributions to reactive species in urban Shanghai. Two kinds of tunnel experiments, one tunnel with more than 90% light duty gasoline vehicles and the other with more than 60% light duty diesel vehicles, were carried out to study the characteristic ratios of vehicle-related emissions from December 2009 to January 2010. Based on the experiments, the characteristic ratios of C6–C8aromatics to i-pentane of vehicular emissions were 0.53 ± 0.08(benzene), 0.70 ± 0.12(toluene),0.41 ± 0.09(m,p-xylenes), 0.16 ± 0.04(o-xylene), 0.023 ± 0.011(styrene), and 0.15 ± 0.02(ethylbenzene), respectively. The source apportionment results showed that around 23.3% of C6–C8 aromatics in urban Shanghai were from vehicular emissions, which meant that the non-vehicular emissions had more importance. These findings suggested that emission control of non-vehicular sources, i.e. industrial emissions, should also receive attention in addition to the control of vehicle-related emissions in Shanghai. The chemical removal of VOCs during the transport from emissions to the receptor site had a large impact on the apportionment results. Generally, the overestimation of vehicular contributions would occur when the VOC reaction rate constant with OH radicals(k OH) was larger than that of the vehicular indicator, while for species with smaller k OH than the vehicular indicator, the vehicular contribution would be underestimated by the method of characteristic ratios.