To analyze oral microbial diversity in the saliva of 8 healthy individuals before and after chewing areca nuts. Saliva samples were collected before chewing areca nuts, after chewing areca nuts for 5 min and after che...To analyze oral microbial diversity in the saliva of 8 healthy individuals before and after chewing areca nuts. Saliva samples were collected before chewing areca nuts, after chewing areca nuts for 5 min and after chewing areca nuts for 30 min. DNA was extracted, and microbial diversity was examined using PCR-denaturing gradient gel electrophoresis(PCR-DGGE). When examining DGGE profiles collectively,the bands associated with Streptococcus and Veillonella were the most intense, making them the most prevalent bacteria. Furthermore, the band intensities did not decrease after chewing areca nuts for 5 or30 min; thus, these bacteria were unaffected. However, when examining some individuals, the band intensities for Streptococcus and Veillonella became more intense after 5 min of chewing and then returned to the pre-chewing level. This difference may be attributed to the mechanical movements of the oral cavity or individual differences. Other bacteria, such as Neisseria, Actinomycetes, and Rothia dentocariosa, were also found to have an increased or decreased prevalence following areca nut-chewing.Since the predominant species that are present following areca nut-chewing include Streptococcus and Veillonella, it would seem likely that these bacteria play an important role in the periodontal diseases associated with areca chewing.展开更多
Various azo compounds(Modified dyes)have been synthesised by chemical modification of areca nut extract(epicate-chin),a plant-based Polyphenolic compound to get semi-synthetic dyes.Three different primary amines namel...Various azo compounds(Modified dyes)have been synthesised by chemical modification of areca nut extract(epicate-chin),a plant-based Polyphenolic compound to get semi-synthetic dyes.Three different primary amines namely p-nitro aniline,p-anisidine and aniline,were diazotized to form their corresponding diazonium salts which were further coupled with an areca nut extract.Preliminary characterization of the areca nut extract and the resultant azo compounds(Modified dyes)was carried out in terms of melting point,solubility tests,thin layer chromatography,UV-Visible and FTIR spectroscopy.These modified dyes were further applied on polyester and nylon fabrics and%dye exhaustion was evaluated.Dyed fabrics were further tested for their fastness properties such as wash fastness,rubbing fastness,light fastness and sublimation fastness.The results of the fastness tests indicate that,all the three modified dyes have good dyeability for polyester and nylon fabrics.The dyed fabrics were also tested for ultraviolet protection factor which showed very good ultraviolet protection.展开更多
Areca nut is used worldwide as a hallucinogenic addicting drug along the tropical belt.Arecoline,a toxic compound,is the most important alkaloid in areca nuts.The adverse effects of oral uptake and chewing of areca nu...Areca nut is used worldwide as a hallucinogenic addicting drug along the tropical belt.Arecoline,a toxic compound,is the most important alkaloid in areca nuts.The adverse effects of oral uptake and chewing of areca nut are well known.For example,the possibility of cancer caused by chewing areca nuts is widely discussed.Chewing areca nut has other adverse effects on other organs,including abnormal cell differentiation,oral cancer,and several other diseases.The use of areca nut is also associated with low birthweight.Skeletal musculature is the largest organ in the body and is attached to the bones.During embryo development,the differentiation of bone and muscle cells is critical.In this article,we reviewed the effects of areca nut and arecoline on embryonic cell differentiation,particularly osteoblasts,myoblasts,and fibroblasts.展开更多
The demand for natural fibers has always been high due to their unique characteristics like strength, lightweight, availability, bio-degradability, etc. In every phase of life, from clothing to technical textiles, nat...The demand for natural fibers has always been high due to their unique characteristics like strength, lightweight, availability, bio-degradability, etc. In every phase of life, from clothing to technical textiles, natural fibers are used. Water absorption of fibers is considered really important in many aspects, e.g., Sportech, Medtech, Geotech, etc. This work analyses water absorption of raw and alkali-treated cotton, arecas, pineapple leaves, and banana fibers. Fibers were scoured with different concentrations of alkali (2, 4, 6 gm/L NaOH), washed and neutralized with the dilute acetic acid solution, then dried. Later on, the fiber samples were immersed into distilled water, and water absorption percentages of the fibers were determined every 10 minutes within 1 hour in total. It appeared that at untreated conditions, the areca fiber has the highest water absorption capacity compared to the other fibers. Alkali-treated cotton shows the highest water absorption, and areca fibers show approximately 60% water absorption of cotton.展开更多
In this study, two polysaccharides of sodium alginate (SA) and xanthan gum (XG) were compounded in proportions of 100:0, 75:25, 50:50, 25:75, 0:100 with 1% total mass concentration and then coated on areca nuts. The e...In this study, two polysaccharides of sodium alginate (SA) and xanthan gum (XG) were compounded in proportions of 100:0, 75:25, 50:50, 25:75, 0:100 with 1% total mass concentration and then coated on areca nuts. The effects of their synergistic interactions on the optical appearance of the edible coating were investigated for the first time. Areca nuts coated by 50:50 SA-XG presented the highest gloss (2.69 GU) and maximum spreading coefficient (−33.95 mN/m), indicating the improved wettability of the coating solution on the fruit's surface. The polarized light microscopy exhibited the unique birefringence phenomenon caused by the liquid crystal state, resulting in the better optical properties of the coating. UV–vis transmittance, Fourier transform infrared, and scanning electron microscopy indicated the good compatibility of SA and XG. The SA-XG film was more compactly arranged and had a denser microstructure due to hydrogen bonding. Additionally, the SA-XG combination improved the mechanical properties and water resistance compared to a single polysaccharide films and enhanced the water retention properties for the areca nut coating. Therefore, the SA-XG combination is promising to prepare edible films with improved optical properties for areca nuts.展开更多
Background:Betel nut/areca nut/Areca catechu is one of the most commonly used psychoactive substance,and is also a major preventable cause of cancer.Unlike other psychoactive substances,such as nicotine,the mechanisms...Background:Betel nut/areca nut/Areca catechu is one of the most commonly used psychoactive substance,and is also a major preventable cause of cancer.Unlike other psychoactive substances,such as nicotine,the mechanisms underlying addiction to areca nuts and related oncogenesis remain elusive.Recent reports suggest a possible overlap in the mechanisms of action of nicotine and areca nuts in the human body.Thus,this study aimed to investigate the interactome of human proteins associated with areca nut exposure and the intricate similarities and differences in the effects of the two psychoactive substances on humans.Methods:A list of proteins associated with areca nut use was obtained from the available literature using terms from Medical Subject Headings(MeSH).Protein-protein interaction(PPI)networks and functional enrichment were analyzed.The results obtained for both psychoactive substances were compared.Results:Given the limited number of common proteins(36/226,16%)in the two sets,a substantial overlap(612/1176 nodes,52%)was observed in the PPI networks,as well as in Gene Ontology.Areca nuts mainly affect signaling pathways through three hub proteins(alpha serine/threonine-protein kinase,tumor protein 53,and interleukin-6),which are common to both psychoactive substances,as well as two unique hub proteins(epidermal growth factor receptor and master regulator of cell cycle entry and proliferative metabolism).Areca nut-related proteins are associated with unique pathways,such as extracellular matrix organization,lipid storage,and metabolism,which are not found in nicotine-associated proteins.Conclusions:Areca nuts affect regulatory mechanisms,leading to systemic toxicity and oncogenesis.Areca nuts also affect unique pathways that can be studied as potential markers of exposure,as well as targets for anticancer therapeutic agents.展开更多
基金funded by the Hainan Province Science and Technology Major Project (No. ZDKJ2016003)the Hainan Province Applied Technology R&D and Demonstration Project (No. ZDXM2015013)+1 种基金the Hunan Province Xiangtan City Key Project (No. NY-ZD20161002)the Xiangtan Science and Technology Commissioner Project (No. CXY-TPZJ20171020)
文摘To analyze oral microbial diversity in the saliva of 8 healthy individuals before and after chewing areca nuts. Saliva samples were collected before chewing areca nuts, after chewing areca nuts for 5 min and after chewing areca nuts for 30 min. DNA was extracted, and microbial diversity was examined using PCR-denaturing gradient gel electrophoresis(PCR-DGGE). When examining DGGE profiles collectively,the bands associated with Streptococcus and Veillonella were the most intense, making them the most prevalent bacteria. Furthermore, the band intensities did not decrease after chewing areca nuts for 5 or30 min; thus, these bacteria were unaffected. However, when examining some individuals, the band intensities for Streptococcus and Veillonella became more intense after 5 min of chewing and then returned to the pre-chewing level. This difference may be attributed to the mechanical movements of the oral cavity or individual differences. Other bacteria, such as Neisseria, Actinomycetes, and Rothia dentocariosa, were also found to have an increased or decreased prevalence following areca nut-chewing.Since the predominant species that are present following areca nut-chewing include Streptococcus and Veillonella, it would seem likely that these bacteria play an important role in the periodontal diseases associated with areca chewing.
基金We highly acknowledge the University Grants Commission-Special Assistance Programme(UGC-SAP)-BSR SECTION for fellowship.
文摘Various azo compounds(Modified dyes)have been synthesised by chemical modification of areca nut extract(epicate-chin),a plant-based Polyphenolic compound to get semi-synthetic dyes.Three different primary amines namely p-nitro aniline,p-anisidine and aniline,were diazotized to form their corresponding diazonium salts which were further coupled with an areca nut extract.Preliminary characterization of the areca nut extract and the resultant azo compounds(Modified dyes)was carried out in terms of melting point,solubility tests,thin layer chromatography,UV-Visible and FTIR spectroscopy.These modified dyes were further applied on polyester and nylon fabrics and%dye exhaustion was evaluated.Dyed fabrics were further tested for their fastness properties such as wash fastness,rubbing fastness,light fastness and sublimation fastness.The results of the fastness tests indicate that,all the three modified dyes have good dyeability for polyester and nylon fabrics.The dyed fabrics were also tested for ultraviolet protection factor which showed very good ultraviolet protection.
基金the funding provided by the Ministry of Science and Technology,Taiwan(108-2314-B-037-075)the Kaohsiung Medical University Research Foundation(KMU-M103001,KMU-M104003,KMU-TP104PR16).
文摘Areca nut is used worldwide as a hallucinogenic addicting drug along the tropical belt.Arecoline,a toxic compound,is the most important alkaloid in areca nuts.The adverse effects of oral uptake and chewing of areca nut are well known.For example,the possibility of cancer caused by chewing areca nuts is widely discussed.Chewing areca nut has other adverse effects on other organs,including abnormal cell differentiation,oral cancer,and several other diseases.The use of areca nut is also associated with low birthweight.Skeletal musculature is the largest organ in the body and is attached to the bones.During embryo development,the differentiation of bone and muscle cells is critical.In this article,we reviewed the effects of areca nut and arecoline on embryonic cell differentiation,particularly osteoblasts,myoblasts,and fibroblasts.
文摘The demand for natural fibers has always been high due to their unique characteristics like strength, lightweight, availability, bio-degradability, etc. In every phase of life, from clothing to technical textiles, natural fibers are used. Water absorption of fibers is considered really important in many aspects, e.g., Sportech, Medtech, Geotech, etc. This work analyses water absorption of raw and alkali-treated cotton, arecas, pineapple leaves, and banana fibers. Fibers were scoured with different concentrations of alkali (2, 4, 6 gm/L NaOH), washed and neutralized with the dilute acetic acid solution, then dried. Later on, the fiber samples were immersed into distilled water, and water absorption percentages of the fibers were determined every 10 minutes within 1 hour in total. It appeared that at untreated conditions, the areca fiber has the highest water absorption capacity compared to the other fibers. Alkali-treated cotton shows the highest water absorption, and areca fibers show approximately 60% water absorption of cotton.
基金support of National Nature Science Foundation of China(32272244)program of“Collaborative innovation center of food safety and quality control in Jiangsu Province”.
文摘In this study, two polysaccharides of sodium alginate (SA) and xanthan gum (XG) were compounded in proportions of 100:0, 75:25, 50:50, 25:75, 0:100 with 1% total mass concentration and then coated on areca nuts. The effects of their synergistic interactions on the optical appearance of the edible coating were investigated for the first time. Areca nuts coated by 50:50 SA-XG presented the highest gloss (2.69 GU) and maximum spreading coefficient (−33.95 mN/m), indicating the improved wettability of the coating solution on the fruit's surface. The polarized light microscopy exhibited the unique birefringence phenomenon caused by the liquid crystal state, resulting in the better optical properties of the coating. UV–vis transmittance, Fourier transform infrared, and scanning electron microscopy indicated the good compatibility of SA and XG. The SA-XG film was more compactly arranged and had a denser microstructure due to hydrogen bonding. Additionally, the SA-XG combination improved the mechanical properties and water resistance compared to a single polysaccharide films and enhanced the water retention properties for the areca nut coating. Therefore, the SA-XG combination is promising to prepare edible films with improved optical properties for areca nuts.
基金supported by intramural funding from the National Institute of Cancer Prevention and Research,Indian Council of Medical Research(No.NICPR/Anuj/intramural/2021/1).
文摘Background:Betel nut/areca nut/Areca catechu is one of the most commonly used psychoactive substance,and is also a major preventable cause of cancer.Unlike other psychoactive substances,such as nicotine,the mechanisms underlying addiction to areca nuts and related oncogenesis remain elusive.Recent reports suggest a possible overlap in the mechanisms of action of nicotine and areca nuts in the human body.Thus,this study aimed to investigate the interactome of human proteins associated with areca nut exposure and the intricate similarities and differences in the effects of the two psychoactive substances on humans.Methods:A list of proteins associated with areca nut use was obtained from the available literature using terms from Medical Subject Headings(MeSH).Protein-protein interaction(PPI)networks and functional enrichment were analyzed.The results obtained for both psychoactive substances were compared.Results:Given the limited number of common proteins(36/226,16%)in the two sets,a substantial overlap(612/1176 nodes,52%)was observed in the PPI networks,as well as in Gene Ontology.Areca nuts mainly affect signaling pathways through three hub proteins(alpha serine/threonine-protein kinase,tumor protein 53,and interleukin-6),which are common to both psychoactive substances,as well as two unique hub proteins(epidermal growth factor receptor and master regulator of cell cycle entry and proliferative metabolism).Areca nut-related proteins are associated with unique pathways,such as extracellular matrix organization,lipid storage,and metabolism,which are not found in nicotine-associated proteins.Conclusions:Areca nuts affect regulatory mechanisms,leading to systemic toxicity and oncogenesis.Areca nuts also affect unique pathways that can be studied as potential markers of exposure,as well as targets for anticancer therapeutic agents.