The effect of the volume fraction of 3D-metal matrix composites(MMC)framework on the compressive properties of 3D interpenetrating hierarchical ZrO_(2)-toughened Al_(2)O_(3)particle(ZTAp)/40Cr steel composites was inv...The effect of the volume fraction of 3D-metal matrix composites(MMC)framework on the compressive properties of 3D interpenetrating hierarchical ZrO_(2)-toughened Al_(2)O_(3)particle(ZTAp)/40Cr steel composites was investigated.The results showed that the compressive properties of the material tended to decrease as the volume fraction of 3D-MMC framework increased.The composite with 35 vol.%3D-MMC had a yield strength of 1455.2 MPa and compressive strength of 1612.8 MPa,which occurred at a strain value of 5.6%.Compared to the homogeneously dispersed composite material,the composite with 35 vol.%3D-MMC had a 144.7%higher yield strength,which occurred at a 20%higher strain.An analysis of the cracks inside the material revealed that the crack was hindered and deflected by the matrix during propagation,which lengthened the crack propagation path and consumed more energy,thus leading to toughening.The results indicated that 3D interpenetrating hierarchical structure had a strengthening and toughening effect on ZTAp/40Cr composites.展开更多
Three-dimensional(3D)functional graphenebased architecture with superior electrical conductivity and good mechanical strength has promising applications in energy storage and electrics.Viscoelasticity-adjustable inks ...Three-dimensional(3D)functional graphenebased architecture with superior electrical conductivity and good mechanical strength has promising applications in energy storage and electrics.Viscoelasticity-adjustable inks make it possible to achieve desired 3D architectures with interconnected and continuous interior networks by microextrusion printing.In this work,ultra-low-concentration graphene oxide(GO)inks of~15 mg·ml-1 have been obtained and demonstrated in direct 3D printing with a facile cross-linking(direct ink writing).The rheological behavior of the GO strategy by cations,which is the lowest concentration to achieve direct ink writing inks,could be adjusted from 1×10^(4) to 1×10^(5) Pa·s^(-1) with different concentrations of cations due to strong cross-linking networks between GO sheets and cations.Meanwhile,the specific strength and electrical conductivity of 3D-printed graphene architecture are notably enhanced,reaching up to 51.7×10^(3) N·m·kg^(-1)and 119 S·m^(-1),which are superior to conventional graphene aerogels.Furthermore,3D printing graphene-based architecture assembled in micro-superc apacitor exhibits excellent electrochemical performance,which can be ascribed to the effective ion transportation through the interconnected networks.The strategy demonstrated is useful in the design of complex-shaped,graphene-based architectures for scalable manufacturing of practical energy storage applications.展开更多
With the rapid development of flexible wearable electronics,the demand for stretchable energy storage devices has surged.In this work,a novel gradient-layered architecture was design based on single-pore hollow lignin...With the rapid development of flexible wearable electronics,the demand for stretchable energy storage devices has surged.In this work,a novel gradient-layered architecture was design based on single-pore hollow lignin nanospheres(HLNPs)-intercalated two-dimensional transition metal carbide(Ti_(3)C_(2)T_(x) MXene)for fabricating highly stretchable and durable supercapacitors.By depositing and inserting HLNPs in the MXene layers with a bottom-up decreasing gradient,a multilayered porous MXene structure with smooth ion channels was constructed by reducing the overstacking of MXene lamella.Moreover,the micro-chamber architecture of thin-walled lignin nanospheres effectively extended the contact area between lignin and MXene to improve ion and electron accessibility,thus better utilizing the pseudocapacitive property of lignin.All these strategies effectively enhanced the capacitive performance of the electrodes.In addition,HLNPs,which acted as a protective phase for MXene layer,enhanced mechanical properties of the wrinkled stretchable electrodes by releasing stress through slip and deformation during the stretch-release cycling and greatly improved the structural integrity and capacitive stability of the electrodes.Flexible electrodes and symmetric flexible all-solid-state supercapacitors capable of enduring 600%uniaxial tensile strain were developed with high specific capacitances of 1273 mF cm^(−2)(241 F g^(−1))and 514 mF cm^(−2)(95 F g^(−1)),respectively.Moreover,their capacitances were well preserved after 1000 times of 600%stretch-release cycling.This study showcased new possibilities of incorporating biobased lignin nanospheres in energy storage devices to fabricate stretchable devices leveraging synergies among various two-dimensional nanomaterials.展开更多
Branching is a critical aspect of plant architecture that significantly impacts the yield and adaptability of staple cereal crops like rice and wheat.Cereal crops develop tillers during the vegetative stage and panicl...Branching is a critical aspect of plant architecture that significantly impacts the yield and adaptability of staple cereal crops like rice and wheat.Cereal crops develop tillers during the vegetative stage and panicle or spike branches during the reproductive stage,respectively,both of which are significantly impacted by hormones and genetic factors.Tillering and panicle branching are closely interconnected and exhibit high environmental plasticity.Here,we summarize the recent progress in genetic,hormonal,and environmental factors regulation in the branching of rice and wheat.This review not only provides a comprehensive overview of the current knowledge on branching mechanisms in rice and wheat,but also explores the prospects for future research aimed at optimizing crop architecture for enhanced productivity.展开更多
Modern aircraft tend to use fuel thermal management systems to cool onboard heat sources.However,the design of heat transfer architectures for fuel thermal management systems relies on the experience of the engineers ...Modern aircraft tend to use fuel thermal management systems to cool onboard heat sources.However,the design of heat transfer architectures for fuel thermal management systems relies on the experience of the engineers and lacks theoretical guidance.This paper proposes a concise graph representation method based on graph theory for fuel thermal management systems,which can represent all possible connections between subsystems.A generalized optimization algorithm is proposed for fuel thermal management system architecture to minimize the heat sink.This algorithm can autonomously arrange subsystems with heat production differences and efficiently utilize the architecture of the fuel heat sink.At the same time,two evaluation indices are proposed from the perspective of subsystems.These indices intuitively and clearly show that the reason for the high efficiency of heat sink utilization is the balanced and moderate cooling of each subsystem and verify the rationality of the architecture optimization method.A set of simulations are also conducted,which demonstrate that the fuel tank temperature has no effect on the performance of the architecture.This paper provides a reference for the architectural design of aircraft fuel thermal management systems.The metrics used in this paper can also be utilized to evaluate the existing architecture.展开更多
This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA f...This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA framework integrates security by design principles, micro-segmentation, and Island Mode Operation (IMO) to enhance cyber resilience and ensure continuous, secure operations. The methodology deploys a Forward-Thinking Architecture Strategy (FTAS) algorithm, which utilises an industrial Intrusion Detection System (IDS) implemented with Python’s Network Intrusion Detection System (NIDS) library. The FTAS algorithm successfully identified and responded to cyber-attacks, ensuring minimal system disruption. ISERA has been validated through comprehensive testing scenarios simulating Denial of Service (DoS) attacks and malware intrusions, at both the IT and OT layers where it successfully mitigates the impact of malicious activity. Results demonstrate ISERA’s efficacy in real-time threat detection, containment, and incident response, thus ensuring the integrity and reliability of critical infrastructure systems. ISERA’s decentralised approach contributes to global net zero goals by optimising resource use and minimising environmental impact. By adopting a decentralised control architecture and leveraging virtualisation, ISERA significantly enhances the cyber resilience and sustainability of critical infrastructure systems. This approach not only strengthens defences against evolving cyber threats but also optimises resource allocation, reducing the system’s carbon footprint. As a result, ISERA ensures the uninterrupted operation of essential services while contributing to broader net zero goals.展开更多
A clean environment with low carbon emissions is the goal of research on the development of green and sustainable buildings that use bio-sourced materials in conjunction with solar energy to create more sustainable ci...A clean environment with low carbon emissions is the goal of research on the development of green and sustainable buildings that use bio-sourced materials in conjunction with solar energy to create more sustainable cities.This is particularly true in Africa,where there aren’t many studies on the topic.The current study suggests a 90 m^(2) model of a sustainable building in a dry climate that is movable to address the issue of housing in remote areas,ensures comfort in harsh weather conditions,uses solar renewable resources—which are plentiful in Africa—uses biosourced materials,and examines how these materials relate to temperature and humidity control while emitting minimal carbon emissions.In order to solve the topic under consideration,the work is split into two sections:numerical and experimental approaches.Using TRNSYS and Revit,the suggested prototype building is examined numerically to examine the impact of orientation,envelope composition made of bio-sourced materials,and carbon emissions.Through a hygrothermal investigation,experiments are conducted to evaluate this prototype’s effectiveness.Furthermore,an examination of the photovoltaic system’s production,consumption,and several scenarios used tomaximize battery life is included in the paper.Because the biosourcedmaterial achieves a thermal transmittance of 0.15(W.m^(-2).K^(-1)),the results demonstrate an intriguing finding in terms of comfort.This value satisfies the requirements of passive building,energy autonomy of the dwelling,and injection in-network with an annual value of 15,757 kWh.Additionally,compared to the literature,the heating needs ratio is 6.38(kWh/m^(2).an)and the cooling needs ratio is 49(kWh/m^(2).an),both of which are good values.According to international norms,the inside temperature doesn’t go above 26℃,and the humidity level is within a comfortable range.展开更多
Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a...Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.展开更多
Image super-resolution reconstruction technology is currently widely used in medical imaging,video surveillance,and industrial quality inspection.It not only enhances image quality but also improves details and visual...Image super-resolution reconstruction technology is currently widely used in medical imaging,video surveillance,and industrial quality inspection.It not only enhances image quality but also improves details and visual perception,significantly increasing the utility of low-resolution images.In this study,an improved image superresolution reconstruction model based on Generative Adversarial Networks(SRGAN)was proposed.This model introduced a channel and spatial attention mechanism(CSAB)in the generator,allowing it to effectively leverage the information from the input image to enhance feature representations and capture important details.The discriminator was designed with an improved PatchGAN architecture,which more accurately captured local details and texture information of the image.With these enhanced generator and discriminator architectures and an optimized loss function design,this method demonstrated superior performance in image quality assessment metrics.Experimental results showed that this model outperforms traditional methods,presenting more detailed and realistic image details in the visual effects.展开更多
Macro-architectured cellular (MAC) material is defined as a class of engineered materials having configurable cells of relatively large (i.e., visible) size that can be architecturally designed to achieve various ...Macro-architectured cellular (MAC) material is defined as a class of engineered materials having configurable cells of relatively large (i.e., visible) size that can be architecturally designed to achieve various desired material properties. Two types of novel MAC materials, negative Poisson's ratio material and biomimetic tendon reinforced material, were introduced in this study. To estimate the effective material properties for structural analyses and to optimally design such materials, a set of suitable homogenization methods was developed that provided an effective means for the multiscale modeling of MAC materials. First, a strain-based homogenization method was developed using an approach that separated the strain field into a homogenized strain field and a strain variation field in the local cellular domain superposed on the homogenized strain field. The principle of virtual displacements for the relationship between the strain variation field and the homogenized strain field was then used to condense the strain variation field onto the homogenized strain field. The new method was then extended to a stress-based homogenization process based on the principle of virtual forces and further applied to address the discrete systems represented by the beam or frame structures of the aforementioned MAC materials. The characteristic modes and the stress recovery process used to predict the stress distribution inside the cellular domain and thus determine the material strengths and failures at the local level are also discussed.展开更多
Based on the fractal theory,this paper takes the form of performing architecture as the research object,and systematically discusses the application value of fractal dimension in architectural design.By expounding the...Based on the fractal theory,this paper takes the form of performing architecture as the research object,and systematically discusses the application value of fractal dimension in architectural design.By expounding the self-affine,self-similarity,and iterative generation characteristics of fractal geometry,the Box-Counting Dimension method is introduced as a quantitative tool to measure the dimensions of the roof plane,facade,and spatial shape of Wuzhen Grand Theatre and Harbin Grand Theatre.The research shows that the geometric complexity of Wuzhen Grand Theater in the“fifth façade”and multi-faceted façade is significantly higher than that of Harbin Grand Theater,and its morphological design is more inclined to echo the texture of the surrounding water towns.The Harbin Grand Theater realizes the dialogue with the natural environment with simple nonlinear lines.The research proves that fractal dimension can effectively quantify the complexity of architectural form,provide a scientific basis for the form design,environmental integration,and form interpretation of performance architecture,and expand the mathematical analysis dimension of architectural form design.展开更多
While climate change impacts on ancient societies are well-documented,their adaptation mechanisms remain poorly understood.This study examines ancient Chinese architecture,specifically focusing on the abrupt decline i...While climate change impacts on ancient societies are well-documented,their adaptation mechanisms remain poorly understood.This study examines ancient Chinese architecture,specifically focusing on the abrupt decline in the use of projecting arms in bracket sets during the cold period from the 3rd to 6th centuries—a phenomenon known as the“Six Dynasties Bracket Mystery”—to explore how architectural forms responded to climatic shifts.Based on an analysis of approximately 250 cases of quasi-architectural evidence,we identify a five-stage variation in the presence ratio of projecting arms over approximately 700 years,beginning in the early 1st century.By integrating this quantitative variation with high-resolution paleoclimate reconstructions and experimental analysis,this study demonstrates that climate change,particularly the abrupt cooling events during the 3rd–6th centuries,altered the functional requirements of building eaves,leading to the decline of projecting arms.Our study provides a reasonable explanation for the longstanding puzzle concerning bracket sets in ancient Chinese architectural research,emphasizing environmental adaptation rather than aesthetic or technological considerations.It also highlights architectural adaptation as a material expression of human responses to climate change,offering insights into the interplay between climate,socio-historical context,and architecture in ancient China.展开更多
Not always climate and cultural contexts are discussed at the forefront of architectural discussions on traditional or vernacular architecture,nevertheless,the construction material also plays a significant part in de...Not always climate and cultural contexts are discussed at the forefront of architectural discussions on traditional or vernacular architecture,nevertheless,the construction material also plays a significant part in defining places’architectural languages.Building from the local materials is an essential ingredient of the local distinctiveness,whilst forming the architectural grand gesture in its context.In Siwa oasis,salt architecture has formed that architectural grand gesture.The vernacular vocabularies adopted by old Bedouins using salt bricks generated Siwa’s unique spirit.In this paper,some examples are illustrated based on a series of site visits to three main sites in Siwa,namely:Old Shali,Abu Shuruf,and Aghourmy.This shows the evolution of Siwa’s vernacular architecture and the role of the architectural language or detrimental effect on the overall quality of architecture.From the site visits,it was observed that building with the traditional technique is now becoming abandoned in Siwa,explained by the local builders to be due to the huge costs required;forcing them to shifting to modern architecture.The influx to building using modern techniques has led to a significant transformation in the urban morphology and spirit of Siwa.Herein lies the scope of this paper:to discuss the impact of the evolution of vernacular architecture on the overall quality of architecture in Siwa and thus identifying the problems which will lead to policy formulation and guidelines for the redevelopment of Siwa in order to“revitalize/resuscitate”its vernacular style accordingly.展开更多
Overview of root system architecture.The plant root system is a highly dynamic and multifunctional organ system composed of primary roots,lateral roots,adventitious roots,and root hairs.Based on topological morphology...Overview of root system architecture.The plant root system is a highly dynamic and multifunctional organ system composed of primary roots,lateral roots,adventitious roots,and root hairs.Based on topological morphology,root systems can be classified as taproot systems or fibrous root systems.Root system architecture(RSA)refers to the spatial distribution and extension patterns of roots within soil,encompassing characteristics such as root length,branching angle,density,and spatial arrangement.RSA not only determines the plant’s capacity to acquire water and nutrients but also influences other root functions,playing a decisive role in overall plant health.展开更多
On the northern bank of the Lhasa River in Chushur County of Lhasa,lies a tranquil village of Sanyou.Stepping into the village,one's gaze is specially drawn to a building that blends Tibetan architecture style wit...On the northern bank of the Lhasa River in Chushur County of Lhasa,lies a tranquil village of Sanyou.Stepping into the village,one's gaze is specially drawn to a building that blends Tibetan architecture style with modern functionality.Built with an in vestme nt of 3.5 milli on yuan.展开更多
The proposed paper deals with a numerical approach that could better assist the archaeologist in the archaeological reconstruction projects.The goal of our research is to explore and study the use of computerized tool...The proposed paper deals with a numerical approach that could better assist the archaeologist in the archaeological reconstruction projects.The goal of our research is to explore and study the use of computerized tools in archaeological reconstruction projects of monumental architecture in order to propose new ways in which such technology can be used.展开更多
As a unique symbol of regional culture,the arcade building carries rich historical memories and cultural connotations.In the process of urban renewal,how to reasonably renovate it so that it can meet modern living nee...As a unique symbol of regional culture,the arcade building carries rich historical memories and cultural connotations.In the process of urban renewal,how to reasonably renovate it so that it can meet modern living needs while preserving cultural continuity has become an important issue.Chan aesthetics,with its unique philosophical ideas and aesthetic concepts,offers new perspectives and approaches for the renovation of arcade buildings.This paper delves into the core principles of Chan aesthetics,combining the characteristics and current status of arcade buildings,to explore design strategies for the renovation of arcade buildings based on Chan aesthetics from dimensions such as spatial creation,material application,decorative design,and cultural inheritance.The aim is to provide theoretical support and practical guidance for the sustainable development of arcade buildings.展开更多
Located at 217 Queen sthreet in the heart of Singapore,the China Cultural Centre features gray-white walls with subtle cream accents,evoking the timeless charm of taditional Chinese architecture with its classic white...Located at 217 Queen sthreet in the heart of Singapore,the China Cultural Centre features gray-white walls with subtle cream accents,evoking the timeless charm of taditional Chinese architecture with its classic white walls and gray-tiled roof.Designed by famous singaporean architect Liu Thai Ker,the building blends traditional Chinese cultural elements with moder architectual concepts."From an aesthetic perspective,I believe it is essential to give the structure a moderm edge,Liu said in an interview with Xinhua."Therefore,the design should reflect a contempoary spirit while retaining the essence of Chinese culture."展开更多
This paper adopts the Global Workspace Theory as a neuro-scientifically plausible theory for developing conscious cognitive architecture.The Global Workspace Theory’s compatibility with the working mechanisms underne...This paper adopts the Global Workspace Theory as a neuro-scientifically plausible theory for developing conscious cognitive architecture.The Global Workspace Theory’s compatibility with the working mechanisms underneath human brains is enhanced by the implementation of different cognitive features based on this framework.Amongst the topics in the literature for intelligent systems,we start with attention,memory and learning mechanisms,and corresponding experiments are summarized here.We also discuss how other topics of cognitive robotics could be developed based on these three basic components,and their correlations.This provides a foundation for future long-term development of cognitive architectures of cognitive robots.The research in this paper follows the incremental research pathway for the architecture implementation,which is consistent with the Biologically Inspired Cognitive Architecture roadmap.展开更多
基金supported by the National Natural Science Foundation of China(No.51461025).
文摘The effect of the volume fraction of 3D-metal matrix composites(MMC)framework on the compressive properties of 3D interpenetrating hierarchical ZrO_(2)-toughened Al_(2)O_(3)particle(ZTAp)/40Cr steel composites was investigated.The results showed that the compressive properties of the material tended to decrease as the volume fraction of 3D-MMC framework increased.The composite with 35 vol.%3D-MMC had a yield strength of 1455.2 MPa and compressive strength of 1612.8 MPa,which occurred at a strain value of 5.6%.Compared to the homogeneously dispersed composite material,the composite with 35 vol.%3D-MMC had a 144.7%higher yield strength,which occurred at a 20%higher strain.An analysis of the cracks inside the material revealed that the crack was hindered and deflected by the matrix during propagation,which lengthened the crack propagation path and consumed more energy,thus leading to toughening.The results indicated that 3D interpenetrating hierarchical structure had a strengthening and toughening effect on ZTAp/40Cr composites.
基金financially supported by the National Natural Science Foundation of China(No.51802195)Chen Guang Scholar Project of Shanghai Education Commission(No.19CG53)。
文摘Three-dimensional(3D)functional graphenebased architecture with superior electrical conductivity and good mechanical strength has promising applications in energy storage and electrics.Viscoelasticity-adjustable inks make it possible to achieve desired 3D architectures with interconnected and continuous interior networks by microextrusion printing.In this work,ultra-low-concentration graphene oxide(GO)inks of~15 mg·ml-1 have been obtained and demonstrated in direct 3D printing with a facile cross-linking(direct ink writing).The rheological behavior of the GO strategy by cations,which is the lowest concentration to achieve direct ink writing inks,could be adjusted from 1×10^(4) to 1×10^(5) Pa·s^(-1) with different concentrations of cations due to strong cross-linking networks between GO sheets and cations.Meanwhile,the specific strength and electrical conductivity of 3D-printed graphene architecture are notably enhanced,reaching up to 51.7×10^(3) N·m·kg^(-1)and 119 S·m^(-1),which are superior to conventional graphene aerogels.Furthermore,3D printing graphene-based architecture assembled in micro-superc apacitor exhibits excellent electrochemical performance,which can be ascribed to the effective ion transportation through the interconnected networks.The strategy demonstrated is useful in the design of complex-shaped,graphene-based architectures for scalable manufacturing of practical energy storage applications.
基金supported by Natural Science and Engineering Research Council of Canada(RGPIN-2017-06737)Canada Research Chairs program,the National Key Research and Development Program of China(2017YFD0601005,2022YFD0904201)+1 种基金the National Natural Science Foundation of China(51203075)the China Scholarship Council(Grant No.CSC202208320361).
文摘With the rapid development of flexible wearable electronics,the demand for stretchable energy storage devices has surged.In this work,a novel gradient-layered architecture was design based on single-pore hollow lignin nanospheres(HLNPs)-intercalated two-dimensional transition metal carbide(Ti_(3)C_(2)T_(x) MXene)for fabricating highly stretchable and durable supercapacitors.By depositing and inserting HLNPs in the MXene layers with a bottom-up decreasing gradient,a multilayered porous MXene structure with smooth ion channels was constructed by reducing the overstacking of MXene lamella.Moreover,the micro-chamber architecture of thin-walled lignin nanospheres effectively extended the contact area between lignin and MXene to improve ion and electron accessibility,thus better utilizing the pseudocapacitive property of lignin.All these strategies effectively enhanced the capacitive performance of the electrodes.In addition,HLNPs,which acted as a protective phase for MXene layer,enhanced mechanical properties of the wrinkled stretchable electrodes by releasing stress through slip and deformation during the stretch-release cycling and greatly improved the structural integrity and capacitive stability of the electrodes.Flexible electrodes and symmetric flexible all-solid-state supercapacitors capable of enduring 600%uniaxial tensile strain were developed with high specific capacitances of 1273 mF cm^(−2)(241 F g^(−1))and 514 mF cm^(−2)(95 F g^(−1)),respectively.Moreover,their capacitances were well preserved after 1000 times of 600%stretch-release cycling.This study showcased new possibilities of incorporating biobased lignin nanospheres in energy storage devices to fabricate stretchable devices leveraging synergies among various two-dimensional nanomaterials.
基金funded by grants from the National Natural Science Foundation of China (31930006 to Y.W.)the National Key Research and Development Program of China (2022YFF1002903 to Y.W.)+1 种基金the Top Talents Program “One Case One Discussion”(Yishiyiyi to Y.W.)from Shandong provinceShandong Agricultural University Talent Introduction Start-up Fund (to N.Z.)
文摘Branching is a critical aspect of plant architecture that significantly impacts the yield and adaptability of staple cereal crops like rice and wheat.Cereal crops develop tillers during the vegetative stage and panicle or spike branches during the reproductive stage,respectively,both of which are significantly impacted by hormones and genetic factors.Tillering and panicle branching are closely interconnected and exhibit high environmental plasticity.Here,we summarize the recent progress in genetic,hormonal,and environmental factors regulation in the branching of rice and wheat.This review not only provides a comprehensive overview of the current knowledge on branching mechanisms in rice and wheat,but also explores the prospects for future research aimed at optimizing crop architecture for enhanced productivity.
文摘Modern aircraft tend to use fuel thermal management systems to cool onboard heat sources.However,the design of heat transfer architectures for fuel thermal management systems relies on the experience of the engineers and lacks theoretical guidance.This paper proposes a concise graph representation method based on graph theory for fuel thermal management systems,which can represent all possible connections between subsystems.A generalized optimization algorithm is proposed for fuel thermal management system architecture to minimize the heat sink.This algorithm can autonomously arrange subsystems with heat production differences and efficiently utilize the architecture of the fuel heat sink.At the same time,two evaluation indices are proposed from the perspective of subsystems.These indices intuitively and clearly show that the reason for the high efficiency of heat sink utilization is the balanced and moderate cooling of each subsystem and verify the rationality of the architecture optimization method.A set of simulations are also conducted,which demonstrate that the fuel tank temperature has no effect on the performance of the architecture.This paper provides a reference for the architectural design of aircraft fuel thermal management systems.The metrics used in this paper can also be utilized to evaluate the existing architecture.
基金funded by the Office of Gas and Electricity Markets(Ofgem)and supported by De Montfort University(DMU)and Nottingham Trent University(NTU),UK.
文摘This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA framework integrates security by design principles, micro-segmentation, and Island Mode Operation (IMO) to enhance cyber resilience and ensure continuous, secure operations. The methodology deploys a Forward-Thinking Architecture Strategy (FTAS) algorithm, which utilises an industrial Intrusion Detection System (IDS) implemented with Python’s Network Intrusion Detection System (NIDS) library. The FTAS algorithm successfully identified and responded to cyber-attacks, ensuring minimal system disruption. ISERA has been validated through comprehensive testing scenarios simulating Denial of Service (DoS) attacks and malware intrusions, at both the IT and OT layers where it successfully mitigates the impact of malicious activity. Results demonstrate ISERA’s efficacy in real-time threat detection, containment, and incident response, thus ensuring the integrity and reliability of critical infrastructure systems. ISERA’s decentralised approach contributes to global net zero goals by optimising resource use and minimising environmental impact. By adopting a decentralised control architecture and leveraging virtualisation, ISERA significantly enhances the cyber resilience and sustainability of critical infrastructure systems. This approach not only strengthens defences against evolving cyber threats but also optimises resource allocation, reducing the system’s carbon footprint. As a result, ISERA ensures the uninterrupted operation of essential services while contributing to broader net zero goals.
文摘A clean environment with low carbon emissions is the goal of research on the development of green and sustainable buildings that use bio-sourced materials in conjunction with solar energy to create more sustainable cities.This is particularly true in Africa,where there aren’t many studies on the topic.The current study suggests a 90 m^(2) model of a sustainable building in a dry climate that is movable to address the issue of housing in remote areas,ensures comfort in harsh weather conditions,uses solar renewable resources—which are plentiful in Africa—uses biosourced materials,and examines how these materials relate to temperature and humidity control while emitting minimal carbon emissions.In order to solve the topic under consideration,the work is split into two sections:numerical and experimental approaches.Using TRNSYS and Revit,the suggested prototype building is examined numerically to examine the impact of orientation,envelope composition made of bio-sourced materials,and carbon emissions.Through a hygrothermal investigation,experiments are conducted to evaluate this prototype’s effectiveness.Furthermore,an examination of the photovoltaic system’s production,consumption,and several scenarios used tomaximize battery life is included in the paper.Because the biosourcedmaterial achieves a thermal transmittance of 0.15(W.m^(-2).K^(-1)),the results demonstrate an intriguing finding in terms of comfort.This value satisfies the requirements of passive building,energy autonomy of the dwelling,and injection in-network with an annual value of 15,757 kWh.Additionally,compared to the literature,the heating needs ratio is 6.38(kWh/m^(2).an)and the cooling needs ratio is 49(kWh/m^(2).an),both of which are good values.According to international norms,the inside temperature doesn’t go above 26℃,and the humidity level is within a comfortable range.
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2024-9/1).
文摘Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.
文摘Image super-resolution reconstruction technology is currently widely used in medical imaging,video surveillance,and industrial quality inspection.It not only enhances image quality but also improves details and visual perception,significantly increasing the utility of low-resolution images.In this study,an improved image superresolution reconstruction model based on Generative Adversarial Networks(SRGAN)was proposed.This model introduced a channel and spatial attention mechanism(CSAB)in the generator,allowing it to effectively leverage the information from the input image to enhance feature representations and capture important details.The discriminator was designed with an improved PatchGAN architecture,which more accurately captured local details and texture information of the image.With these enhanced generator and discriminator architectures and an optimized loss function design,this method demonstrated superior performance in image quality assessment metrics.Experimental results showed that this model outperforms traditional methods,presenting more detailed and realistic image details in the visual effects.
文摘Macro-architectured cellular (MAC) material is defined as a class of engineered materials having configurable cells of relatively large (i.e., visible) size that can be architecturally designed to achieve various desired material properties. Two types of novel MAC materials, negative Poisson's ratio material and biomimetic tendon reinforced material, were introduced in this study. To estimate the effective material properties for structural analyses and to optimally design such materials, a set of suitable homogenization methods was developed that provided an effective means for the multiscale modeling of MAC materials. First, a strain-based homogenization method was developed using an approach that separated the strain field into a homogenized strain field and a strain variation field in the local cellular domain superposed on the homogenized strain field. The principle of virtual displacements for the relationship between the strain variation field and the homogenized strain field was then used to condense the strain variation field onto the homogenized strain field. The new method was then extended to a stress-based homogenization process based on the principle of virtual forces and further applied to address the discrete systems represented by the beam or frame structures of the aforementioned MAC materials. The characteristic modes and the stress recovery process used to predict the stress distribution inside the cellular domain and thus determine the material strengths and failures at the local level are also discussed.
基金Jiangxi Province Intelligent Building Engineering Research Center Open Fund Project,Fractal Theory of Performing Architectural Form Design Research(Project No.:EZ202111440).
文摘Based on the fractal theory,this paper takes the form of performing architecture as the research object,and systematically discusses the application value of fractal dimension in architectural design.By expounding the self-affine,self-similarity,and iterative generation characteristics of fractal geometry,the Box-Counting Dimension method is introduced as a quantitative tool to measure the dimensions of the roof plane,facade,and spatial shape of Wuzhen Grand Theatre and Harbin Grand Theatre.The research shows that the geometric complexity of Wuzhen Grand Theater in the“fifth façade”and multi-faceted façade is significantly higher than that of Harbin Grand Theater,and its morphological design is more inclined to echo the texture of the surrounding water towns.The Harbin Grand Theater realizes the dialogue with the natural environment with simple nonlinear lines.The research proves that fractal dimension can effectively quantify the complexity of architectural form,provide a scientific basis for the form design,environmental integration,and form interpretation of performance architecture,and expand the mathematical analysis dimension of architectural form design.
基金The Postdoctoral Program of the Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences。
文摘While climate change impacts on ancient societies are well-documented,their adaptation mechanisms remain poorly understood.This study examines ancient Chinese architecture,specifically focusing on the abrupt decline in the use of projecting arms in bracket sets during the cold period from the 3rd to 6th centuries—a phenomenon known as the“Six Dynasties Bracket Mystery”—to explore how architectural forms responded to climatic shifts.Based on an analysis of approximately 250 cases of quasi-architectural evidence,we identify a five-stage variation in the presence ratio of projecting arms over approximately 700 years,beginning in the early 1st century.By integrating this quantitative variation with high-resolution paleoclimate reconstructions and experimental analysis,this study demonstrates that climate change,particularly the abrupt cooling events during the 3rd–6th centuries,altered the functional requirements of building eaves,leading to the decline of projecting arms.Our study provides a reasonable explanation for the longstanding puzzle concerning bracket sets in ancient Chinese architectural research,emphasizing environmental adaptation rather than aesthetic or technological considerations.It also highlights architectural adaptation as a material expression of human responses to climate change,offering insights into the interplay between climate,socio-historical context,and architecture in ancient China.
文摘Not always climate and cultural contexts are discussed at the forefront of architectural discussions on traditional or vernacular architecture,nevertheless,the construction material also plays a significant part in defining places’architectural languages.Building from the local materials is an essential ingredient of the local distinctiveness,whilst forming the architectural grand gesture in its context.In Siwa oasis,salt architecture has formed that architectural grand gesture.The vernacular vocabularies adopted by old Bedouins using salt bricks generated Siwa’s unique spirit.In this paper,some examples are illustrated based on a series of site visits to three main sites in Siwa,namely:Old Shali,Abu Shuruf,and Aghourmy.This shows the evolution of Siwa’s vernacular architecture and the role of the architectural language or detrimental effect on the overall quality of architecture.From the site visits,it was observed that building with the traditional technique is now becoming abandoned in Siwa,explained by the local builders to be due to the huge costs required;forcing them to shifting to modern architecture.The influx to building using modern techniques has led to a significant transformation in the urban morphology and spirit of Siwa.Herein lies the scope of this paper:to discuss the impact of the evolution of vernacular architecture on the overall quality of architecture in Siwa and thus identifying the problems which will lead to policy formulation and guidelines for the redevelopment of Siwa in order to“revitalize/resuscitate”its vernacular style accordingly.
文摘Overview of root system architecture.The plant root system is a highly dynamic and multifunctional organ system composed of primary roots,lateral roots,adventitious roots,and root hairs.Based on topological morphology,root systems can be classified as taproot systems or fibrous root systems.Root system architecture(RSA)refers to the spatial distribution and extension patterns of roots within soil,encompassing characteristics such as root length,branching angle,density,and spatial arrangement.RSA not only determines the plant’s capacity to acquire water and nutrients but also influences other root functions,playing a decisive role in overall plant health.
文摘On the northern bank of the Lhasa River in Chushur County of Lhasa,lies a tranquil village of Sanyou.Stepping into the village,one's gaze is specially drawn to a building that blends Tibetan architecture style with modern functionality.Built with an in vestme nt of 3.5 milli on yuan.
文摘The proposed paper deals with a numerical approach that could better assist the archaeologist in the archaeological reconstruction projects.The goal of our research is to explore and study the use of computerized tools in archaeological reconstruction projects of monumental architecture in order to propose new ways in which such technology can be used.
基金Philosophy and Social Science Planning Project of Haikou City in 2025(Project No.:2025-ZCKT-106)。
文摘As a unique symbol of regional culture,the arcade building carries rich historical memories and cultural connotations.In the process of urban renewal,how to reasonably renovate it so that it can meet modern living needs while preserving cultural continuity has become an important issue.Chan aesthetics,with its unique philosophical ideas and aesthetic concepts,offers new perspectives and approaches for the renovation of arcade buildings.This paper delves into the core principles of Chan aesthetics,combining the characteristics and current status of arcade buildings,to explore design strategies for the renovation of arcade buildings based on Chan aesthetics from dimensions such as spatial creation,material application,decorative design,and cultural inheritance.The aim is to provide theoretical support and practical guidance for the sustainable development of arcade buildings.
文摘Located at 217 Queen sthreet in the heart of Singapore,the China Cultural Centre features gray-white walls with subtle cream accents,evoking the timeless charm of taditional Chinese architecture with its classic white walls and gray-tiled roof.Designed by famous singaporean architect Liu Thai Ker,the building blends traditional Chinese cultural elements with moder architectual concepts."From an aesthetic perspective,I believe it is essential to give the structure a moderm edge,Liu said in an interview with Xinhua."Therefore,the design should reflect a contempoary spirit while retaining the essence of Chinese culture."
基金Supported by the European Union’s Horizon Europe research and innovation program(101120727-PRIMI).
文摘This paper adopts the Global Workspace Theory as a neuro-scientifically plausible theory for developing conscious cognitive architecture.The Global Workspace Theory’s compatibility with the working mechanisms underneath human brains is enhanced by the implementation of different cognitive features based on this framework.Amongst the topics in the literature for intelligent systems,we start with attention,memory and learning mechanisms,and corresponding experiments are summarized here.We also discuss how other topics of cognitive robotics could be developed based on these three basic components,and their correlations.This provides a foundation for future long-term development of cognitive architectures of cognitive robots.The research in this paper follows the incremental research pathway for the architecture implementation,which is consistent with the Biologically Inspired Cognitive Architecture roadmap.