In order to understand the effects of different content of copper vapor entering the arc plasma on the arc behavior,the tungstencopper materials with copper contents of 0%,10%,20%and 30%were made into special tungsten...In order to understand the effects of different content of copper vapor entering the arc plasma on the arc behavior,the tungstencopper materials with copper contents of 0%,10%,20%and 30%were made into special tungsten electrodes,which replaced the melting electrode to generate copper vapor.The effects of different content of copper vapor on the arc morphology,arc voltage,arc pressure,current density and arc axial temperature were studied.When copper vapor was transported into the arc plasma,the arc consisted of two parts:a high brightness arc core and the surrounding green luminous area.Through the observation and measurement of the stabilized arc,the results showed that as the content of copper vapor increased,the radius of the greenish region gradually increased,the brightness and size of the core area gradually decreased,the axial temperature of the arc gradually decreased and arc voltage gradually increased with a maximum difference of 1.5 V.This is because the increase of copper vapor concentration changes the net emission coefficient,resulting in a decrease in arc temperature and electrical conductivity.The distribution of arc pressure and current density showed unimodal distribution on the anode surface,and as the content of copper vapor increased,the distribution curves were gradually flattening.A factor contributing to this is that with the increase of copper vapor concentration,the current tends to flow through the edge of the electrode,which expands the conductive path and makes the arc disperse.And the coupling mathematical model of tungsten electrode and arc were established to further explain the experimental results.展开更多
Cold metal transfer with polarity⁃exchanging is a new integrated welding technology based on MIG.Due to the alternation of the positive and negative polarities of the wire,favorable control upon the deposition rate an...Cold metal transfer with polarity⁃exchanging is a new integrated welding technology based on MIG.Due to the alternation of the positive and negative polarities of the wire,favorable control upon the deposition rate and the welding shape coefficient was obtained in order to meet the desired joint design,and the related controlling principles and joint characteristics were reported.Droplet transfer physical behavior exhibited strong dependability on the studied welding parameters,such as welding voltage,welding current,wire feeding speed,and polarity⁃exchanging.This welding technology provides a new way for the welding of body⁃in⁃white(BIW)thin sheet with special demands.Moreover,the typical quality defects of MIG were greatly improved.Our study provides important technical information from the perspective of industrial application of MIG and sheds light on the higher application level of MIG in BIW welding.展开更多
Achieving an effective utilization and exploitation of TIG welding arcs require a thorough understanding of the plasma properties and its physical processes. Through simultaneous solutions of the set of conservation e...Achieving an effective utilization and exploitation of TIG welding arcs require a thorough understanding of the plasma properties and its physical processes. Through simultaneous solutions of the set of conservation equations for mass, momentum, energy and current, a mathematical model has been developed to predict the velocity, temperature, and current density distributions in argon welding arcs. The predicted temperature fields in arc regions, and the distribution of current density and heat flux at the anode agree well with measurements reported in literatures. This work could lay the foundation for developing a comprehensive model of the TIG welding process where a dynamic, two-way coupling between the welding arc and the weld pool surface is properly represented.展开更多
Short-arc pulsed gas metal arc welding(P-GMAW)was used to solve the dificulties of molten pool spreading and droplet transfer of Ni-based welding wire.Suppression of short-circuit current was used to reduce spatter.Ar...Short-arc pulsed gas metal arc welding(P-GMAW)was used to solve the dificulties of molten pool spreading and droplet transfer of Ni-based welding wire.Suppression of short-circuit current was used to reduce spatter.Arc length stabilizer was used to acquire a proper and stable arc length maintained at the critical position where short circuit starts to occur.Short-arc P-GMAW with or without arc length stabilizer was compared.The droplet transfer,arc behaviors and weld bead profiles were investigated and compared based on the high-speed photography and observation of weld cross-section.When the arc length stabilizer was deactivated,the arc length was unstable and too short.The droplet transfer mode was mainly short circuit partial transfer,with only a small part of the droplet transferred into the molten pool,with the characteristics of no obvious necking,a few spatters,small droplet impact,long short circuit duration and high short-circuit current.There was also a small proportion of short circuit complete transfer with obvious necking,larger droplet impact,shorter short-circuit duration and lower short-circuit current.With arc length stabilizer,droplet transfer modes were short circuit complete transfer and spray transfer.The spray transfer had the largest droplet impact,no short circuit and no spatter.With the arc length stabilizer activated,a deep penetration,a high penetration ratio,a small reinforcement and a large reinforcement factor were acquired.This provides an innovative method to solve the difficulties of droplet transfer and molten pool spreading and eliminate the incomplete fusion in the GMAW of 9%Ni steel with nickel-based alloy welding wire.展开更多
The galvanized steels were joined using a TIG arc brazing process with CuSi3 as the filler metal.The arcing time ranged from 1 s to 5 s with arcing current of 70 A in flowing argon.The possible reaction products at th...The galvanized steels were joined using a TIG arc brazing process with CuSi3 as the filler metal.The arcing time ranged from 1 s to 5 s with arcing current of 70 A in flowing argon.The possible reaction products at the interface were confirmed using thermodynamics,SEM,and EDS methods.The results show that a fragmention behavior in some whisker-like intermetallic compounds happens,and that there are two layers of Fe2Si and Fe5Si3 formed at the interface of the galvanized steel and copper filler.From this,the schematic cycle of the interface growth behavior of Fe/Si compounds and the fragmentation behavior of whisker-like intermetallic compounds are developed.展开更多
La_(2)Sn_(2)O_(7)/SnO_(2)powder was synthesized by chemical co-precipitation method,and Ag-La_(2)Sn_(2)O_(7)/SnO_(2)composites were prepared by hot-pressing sintering.The electrical resistivity,density,Brinell hardnes...La_(2)Sn_(2)O_(7)/SnO_(2)powder was synthesized by chemical co-precipitation method,and Ag-La_(2)Sn_(2)O_(7)/SnO_(2)composites were prepared by hot-pressing sintering.The electrical resistivity,density,Brinell hardness and flexural strength of Ag-La_(2)Sn_(2)O_(7)/SnO_(2)composites were measured.Moreover,the effect of La_(2)Sn_(2)O_(7)content on the arc erosion behavior of Ag-La_(2)Sn_(2)O_(7)/SnO_(2)composites at 7 kV voltage was studied.With the increase of La_(2)Sn_(2)O_(7)content,the arc duration and arc energy decrease,and the breakdown strength increases.The surface morphology of Ag-La_(2)Sn_(2)O_(2)/SnO_(2)composites after arc erosion was investigated using scanning electron microscopy and three-dimensio nal laser confocal scanning microscopy.With the increase of La_(2)Sn_(2)O_(7)content,the smaller the erosion damage,the better the anti-arc erosion performance.However,too much La_(2)Sn_(2)O_(7)results in the decrease of Ag-La_(2)Sn_(2)O_(7)/SnO_(2)properties and severe arc erosion.X-ray photoelectron spectroscopy was used to determine the composition of the erosion region.The effect of La_(2)Sn_(2)O_(7)on wettability between Ag and SnO_(2)was investigated,and the erosion mechanism of Ag-La_(2)Sn_(2)O_(7)/SnO_(2)composites was discussed systematically.This study can provide a reference for the application of Ag matrix electrical contact materials in high-voltage electrical appliances.展开更多
The effect of plasma arc powder surfacing process on the amount of B4C particles in the coating and the thermal behavior of B4C particles in different surfacing stages has been investigated.The results showed that the...The effect of plasma arc powder surfacing process on the amount of B4C particles in the coating and the thermal behavior of B4C particles in different surfacing stages has been investigated.The results showed that the feeding rate of B4C partiles is the most important factor affecting the amount of B4C particles in the surfacing coating among all the surfacing parameters,and the most part of B4C Particles in the coating is nto the remainders of original solid B4C particles,but the consolidation products of the unmelted liquid B4C globules in the pool.The results also showed that the B4C particles would not be melted in the plasma arc column, their melting process mainly takes place in the anode spot region on the surface of the pool when surfacing current is less than 200A.展开更多
Based on the Magneto-Hydro-Dynamic(MHD) theory, a united three-dimensional(3D) transient numerical model is developed to investigate the dynamic behaviors of arc plasma for a magnesium alloy AZ61A gas tungsten arc...Based on the Magneto-Hydro-Dynamic(MHD) theory, a united three-dimensional(3D) transient numerical model is developed to investigate the dynamic behaviors of arc plasma for a magnesium alloy AZ61A gas tungsten arc welding(GTAW) arc. The arc, electrode and workpiece are integrated into one calculation domain to avoid both presumed distribution of the current density at the electrode tip and the assumption of constant conditions of interface between welding arc and workpiece. The distributions of electric potential, current density, magnetic flux density, electromagnetic force, velocity, temperature, and pressure of the arc plasma in the 3D space are analyzed by using the numerical model. Results indicate that the maximum gradient of the electric potential in the whole arc space exists around the electrode tip, where the electric current density, electromagnetic force, and temperature are also the maximum. However, maximum pressure is found at the velocity stagnation, which is above the workpiece.Comparison between predicted temperature and measured one in arc region shows a good agreement.展开更多
The microstructure of the tin-based babbit obtained by the method of tungsten inert gas welding(TIG)arc brazing was studied by optical microscopy(OM)and X-ray diffraction(XRD).Tribological behavior was investigated by...The microstructure of the tin-based babbit obtained by the method of tungsten inert gas welding(TIG)arc brazing was studied by optical microscopy(OM)and X-ray diffraction(XRD).Tribological behavior was investigated by high-temperature friction and wear testing machine(HTFWT),laser scanning confocal microscopy(LSCM),scanning electron microscopy(SEM)and energydispersive spectrometer(EDS).It can be found that the higher welding current of the melting tin-based babbit makes it possible to form isomer structure with fine crystals of the cubic SnSb compounds and large star Cu6Sn5 compounds so that a higher hardness can be achieved,and a lower wear rate can be obtained over the entire distance of sliding friction.When the applied load is 2 N,the contact surface is oxidized due to the accumulation of friction heat and oxide,which plays a role of lubricated film.Also,the softer Sn-based solid solution forms obvious furrow under abrasive wear,and the harder SbSn and Cu6Sn5 intermetallic compounds shatter and leave a hole under friction.展开更多
Three kinds of single layer coatings of Zn,Zn15Al,316L stainless steel and two kinds of double layer coatings with inner layer of Zn or Zn15Al and outer layer of 316L stainless steel by arc spraying were developed to ...Three kinds of single layer coatings of Zn,Zn15Al,316L stainless steel and two kinds of double layer coatings with inner layer of Zn or Zn15Al and outer layer of 316L stainless steel by arc spraying were developed to protect the metal ends of prestressed high-strength concrete(PHC)pipe piles against soil corrosion.The corrosion behaviors of the coated Q235 steel samples in the simulated Dagang soil solution were investigated by potentiodynamic polarization,electrochemical impedance spectroscopy(EIS) and natural immersion tests.The results show that the corrosion of the matrix Q235 steel is effectively inhibited by Zn,Zn15Al, Zn+316L and Zn15Al+316L coatings.The corrosion rate value of Zn15Al coated samples is negative.The corrosion products on Zn and Zn15Al coated samples are compact and firm.The corrosion resistance indexes of both Zn and Zn15Al coated samples are improved significantly with corrosion time,and the latter are more outstanding than the former.But the corrosion resistance of 316L coated samples is decreased quickly with the increase in immersion time.When the coatings are sealed with epoxy resin,the corrosion resistance of the coatings will be enhanced significantly.展开更多
The friction and wear behavior of Fe Al intermetallics based coating produced by high velocity arc spraying technique under dry sliding at room temperature were investigated using a ball on disc tribotester. The ef...The friction and wear behavior of Fe Al intermetallics based coating produced by high velocity arc spraying technique under dry sliding at room temperature were investigated using a ball on disc tribotester. The effect of sliding speed on friction coefficient and wear of the coating was studied. The worn surface of the coating was analyzed by scanning electron microscope (SEM) to explore sliding friction and wear mechanism. The results show that the variations of friction coefficient can be divided into three distinct steps during the trail. Both the friction coefficient and the wear of the coating increase with increased sliding speed due to accelerated crack propagation rate and lamellar structure with poor ductility of the coating. The coating surface is subjected to alternately tensile stress and compression stress during sliding wear process, and the predominant wear mechanism of the coatings appears to be brittle fracture and delamination.展开更多
Plasma-MIG hybrid arc welding is a hybrid heating source welding method which is composed of plasma arc and MIG arc. During Plasma-MIG hybrid arc welding process, the interface behavior of copper and steel dissimilar ...Plasma-MIG hybrid arc welding is a hybrid heating source welding method which is composed of plasma arc and MIG arc. During Plasma-MIG hybrid arc welding process, the interface behavior of copper and steel dissimilar alloy is investigated. The results show that electromagnetic stirring effect decreases and the heat input increases with the increase of outer plasma current in the hybrid arc welding process. The interface diffusion and interface thickness is controlled by the tradeoff of electromagnetic stirring effect degradation and heat input increase. The interface diffusion and interface thickness are controlled by decreasing the electromagnetic stirring force and increasing the heat input with the increase of plasma current in Cu/Fe plasma-MIG hybrid arc welding process.展开更多
Micro-arc oxidation (MAO) coatings with different concentrations of K2TiO(C2O4)2 in the sodium silicate base electrolyte were prepared on 6061 aluminum alloy with the aim of promoting a better understanding of the...Micro-arc oxidation (MAO) coatings with different concentrations of K2TiO(C2O4)2 in the sodium silicate base electrolyte were prepared on 6061 aluminum alloy with the aim of promoting a better understanding of the formation mechanisms and tribological behaviors of the coatings. Scanning electron microscopy (SEM) assisted with energy-dis- persive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and friction test were employed to charac- terize the MAO processes and microstructure of the resultant coatings. Results showed that the composition and microstructure of the coatings were significantly affected by the addition of KETiO(CaO4)2. A sealing microstructure of MAO coating was obtained with the addition of K2TiO(C2O4)2. Ti element from K2TiO(C2O4)2 was only absorbed into the defects of micropores under surface energy in the early stage, while in the later stage, Ti element was predominant in the micropores and distributed on the coatings under plasma discharge to form TiO2. It was demonstrated that Ti and Si elements from the electrolyte could interact with each other during the MAO process and the interaction mechanism was systematically analyzed. Wear resistance of the MAO coatings with K2TiO(C2O4)2 addition was significantly improved compared with that of the MAO coatings without K2TiO(C2O4)2 addition.展开更多
This paper introduces a new titanium alloys surface strengthening treatment by using the arc-added glow discharge plasmas non-hydrogen Carburization technique. High purity and high strength graphite is selected as coo...This paper introduces a new titanium alloys surface strengthening treatment by using the arc-added glow discharge plasmas non-hydrogen Carburization technique. High purity and high strength graphite is selected as cooling cathode arc source for supplying carbon atoms and particle, which migrate to the titanium alloy(Ti6A14V) surface and form modified layer. Thus, the hydrogen embrittlement is avoided while the tribological behavior of the titanium alloy surface is improved in the respects of anti-friction and anti-wear ability.The tribological behavior of the modified layer under dry sliding against SAE52100 steel was evaluated on a ball-on-disc test rig. The results showed that the modified layer obtained a thickness of 30u,m at 980°C, 30minutes. The microhardness of the Ti6A14V alloy surface attained 936 HV, which was much larger than that of the T16A14V alloy. The TJ6A14V alloy was characterized by adhesion wear and scuffing under dry sliding against the steel, while the surface modified layer experienced much abated adhesion wear and scuffing under the same testing condition. This could be attributed to the carbon element with different modalities exists in the modified layer. The modified layer showed good friction-reducing and fair anti-wear ability in dry sliding against the steel. Using the SEM, XRD and XPS, the phase structure and morphology of the Carburization modified layer was analyzed.展开更多
为研究窄间隙P-GMAW(pulsed gas metal arc welding,脉冲熔化极气体保护焊)过程中电弧行为对侧壁热输入的影响,分析了焊枪在距离侧壁不同位置的电弧行为变化规律。在双椭球模型基础上,采用坐标变换的方式建立了考虑电弧运动和偏转的热...为研究窄间隙P-GMAW(pulsed gas metal arc welding,脉冲熔化极气体保护焊)过程中电弧行为对侧壁热输入的影响,分析了焊枪在距离侧壁不同位置的电弧行为变化规律。在双椭球模型基础上,采用坐标变换的方式建立了考虑电弧运动和偏转的热源模型,获得了焊接温度场的变化规律。发现增大焊枪与侧壁的距离,电弧的燃烧位置由侧壁向坡口底部逐渐过渡。电弧在侧壁上按脉冲频率变化:电流基值阶段电弧作用在侧壁位置,峰值阶段电弧作用在坡口底部。温度场结果表明,焊枪距离侧壁1.5 mm左右时,焊缝成形良好,改进的热源模型能准确的描述焊枪在距侧壁不同位置时电弧对侧壁的热输入。采用考虑电弧行为的热源模型能够获得更加准确的温度场分布。展开更多
In this report,two new contact structures of a vacuum interrupter with a sinusoidal curved surface are proposed to improve the capability by increasing the surface area.The experimental investigation of vacuum arc at ...In this report,two new contact structures of a vacuum interrupter with a sinusoidal curved surface are proposed to improve the capability by increasing the surface area.The experimental investigation of vacuum arc at intermediate frequency(360-800 Hz)was conducted and the results were compared with a butt contact with the same contact diameter(41 mm)and the same material.By analyzing the arc behavior,arc voltage characteristics,arc energy,current interrupting capacity,ablation of the anode contact and condensation of the arc products at a 3 mm gap,the differences in their vacuum arc characteristics were determined.The correlations of their arc energy with the amplitude and the frequency of the current were also achieved.Analysis suggests that the ruled curved contact has strong application potentiality because of its low arc energy,low arc voltage noise and arc voltage peak,light ablation on the surface of the anode contact and high interrupting capacity.展开更多
基金Project was supported by the National Natural Science Foundation of China(Grant No.51775256).
文摘In order to understand the effects of different content of copper vapor entering the arc plasma on the arc behavior,the tungstencopper materials with copper contents of 0%,10%,20%and 30%were made into special tungsten electrodes,which replaced the melting electrode to generate copper vapor.The effects of different content of copper vapor on the arc morphology,arc voltage,arc pressure,current density and arc axial temperature were studied.When copper vapor was transported into the arc plasma,the arc consisted of two parts:a high brightness arc core and the surrounding green luminous area.Through the observation and measurement of the stabilized arc,the results showed that as the content of copper vapor increased,the radius of the greenish region gradually increased,the brightness and size of the core area gradually decreased,the axial temperature of the arc gradually decreased and arc voltage gradually increased with a maximum difference of 1.5 V.This is because the increase of copper vapor concentration changes the net emission coefficient,resulting in a decrease in arc temperature and electrical conductivity.The distribution of arc pressure and current density showed unimodal distribution on the anode surface,and as the content of copper vapor increased,the distribution curves were gradually flattening.A factor contributing to this is that with the increase of copper vapor concentration,the current tends to flow through the edge of the electrode,which expands the conductive path and makes the arc disperse.And the coupling mathematical model of tungsten electrode and arc were established to further explain the experimental results.
文摘Cold metal transfer with polarity⁃exchanging is a new integrated welding technology based on MIG.Due to the alternation of the positive and negative polarities of the wire,favorable control upon the deposition rate and the welding shape coefficient was obtained in order to meet the desired joint design,and the related controlling principles and joint characteristics were reported.Droplet transfer physical behavior exhibited strong dependability on the studied welding parameters,such as welding voltage,welding current,wire feeding speed,and polarity⁃exchanging.This welding technology provides a new way for the welding of body⁃in⁃white(BIW)thin sheet with special demands.Moreover,the typical quality defects of MIG were greatly improved.Our study provides important technical information from the perspective of industrial application of MIG and sheds light on the higher application level of MIG in BIW welding.
文摘Achieving an effective utilization and exploitation of TIG welding arcs require a thorough understanding of the plasma properties and its physical processes. Through simultaneous solutions of the set of conservation equations for mass, momentum, energy and current, a mathematical model has been developed to predict the velocity, temperature, and current density distributions in argon welding arcs. The predicted temperature fields in arc regions, and the distribution of current density and heat flux at the anode agree well with measurements reported in literatures. This work could lay the foundation for developing a comprehensive model of the TIG welding process where a dynamic, two-way coupling between the welding arc and the weld pool surface is properly represented.
基金the MARK III Materials Research Project of Ministry of Industry and Information Technology of China。
文摘Short-arc pulsed gas metal arc welding(P-GMAW)was used to solve the dificulties of molten pool spreading and droplet transfer of Ni-based welding wire.Suppression of short-circuit current was used to reduce spatter.Arc length stabilizer was used to acquire a proper and stable arc length maintained at the critical position where short circuit starts to occur.Short-arc P-GMAW with or without arc length stabilizer was compared.The droplet transfer,arc behaviors and weld bead profiles were investigated and compared based on the high-speed photography and observation of weld cross-section.When the arc length stabilizer was deactivated,the arc length was unstable and too short.The droplet transfer mode was mainly short circuit partial transfer,with only a small part of the droplet transferred into the molten pool,with the characteristics of no obvious necking,a few spatters,small droplet impact,long short circuit duration and high short-circuit current.There was also a small proportion of short circuit complete transfer with obvious necking,larger droplet impact,shorter short-circuit duration and lower short-circuit current.With arc length stabilizer,droplet transfer modes were short circuit complete transfer and spray transfer.The spray transfer had the largest droplet impact,no short circuit and no spatter.With the arc length stabilizer activated,a deep penetration,a high penetration ratio,a small reinforcement and a large reinforcement factor were acquired.This provides an innovative method to solve the difficulties of droplet transfer and molten pool spreading and eliminate the incomplete fusion in the GMAW of 9%Ni steel with nickel-based alloy welding wire.
基金Project(50475051) supported by the National Natural Science Foundation of China
文摘The galvanized steels were joined using a TIG arc brazing process with CuSi3 as the filler metal.The arcing time ranged from 1 s to 5 s with arcing current of 70 A in flowing argon.The possible reaction products at the interface were confirmed using thermodynamics,SEM,and EDS methods.The results show that a fragmention behavior in some whisker-like intermetallic compounds happens,and that there are two layers of Fe2Si and Fe5Si3 formed at the interface of the galvanized steel and copper filler.From this,the schematic cycle of the interface growth behavior of Fe/Si compounds and the fragmentation behavior of whisker-like intermetallic compounds are developed.
基金Project supported by the National Natural Science Foundation of China(51871085)。
文摘La_(2)Sn_(2)O_(7)/SnO_(2)powder was synthesized by chemical co-precipitation method,and Ag-La_(2)Sn_(2)O_(7)/SnO_(2)composites were prepared by hot-pressing sintering.The electrical resistivity,density,Brinell hardness and flexural strength of Ag-La_(2)Sn_(2)O_(7)/SnO_(2)composites were measured.Moreover,the effect of La_(2)Sn_(2)O_(7)content on the arc erosion behavior of Ag-La_(2)Sn_(2)O_(7)/SnO_(2)composites at 7 kV voltage was studied.With the increase of La_(2)Sn_(2)O_(7)content,the arc duration and arc energy decrease,and the breakdown strength increases.The surface morphology of Ag-La_(2)Sn_(2)O_(2)/SnO_(2)composites after arc erosion was investigated using scanning electron microscopy and three-dimensio nal laser confocal scanning microscopy.With the increase of La_(2)Sn_(2)O_(7)content,the smaller the erosion damage,the better the anti-arc erosion performance.However,too much La_(2)Sn_(2)O_(7)results in the decrease of Ag-La_(2)Sn_(2)O_(7)/SnO_(2)properties and severe arc erosion.X-ray photoelectron spectroscopy was used to determine the composition of the erosion region.The effect of La_(2)Sn_(2)O_(7)on wettability between Ag and SnO_(2)was investigated,and the erosion mechanism of Ag-La_(2)Sn_(2)O_(7)/SnO_(2)composites was discussed systematically.This study can provide a reference for the application of Ag matrix electrical contact materials in high-voltage electrical appliances.
文摘The effect of plasma arc powder surfacing process on the amount of B4C particles in the coating and the thermal behavior of B4C particles in different surfacing stages has been investigated.The results showed that the feeding rate of B4C partiles is the most important factor affecting the amount of B4C particles in the surfacing coating among all the surfacing parameters,and the most part of B4C Particles in the coating is nto the remainders of original solid B4C particles,but the consolidation products of the unmelted liquid B4C globules in the pool.The results also showed that the B4C particles would not be melted in the plasma arc column, their melting process mainly takes place in the anode spot region on the surface of the pool when surfacing current is less than 200A.
基金supported by the Fundamental Research Funds for the Central Universities (No. 2012ZZ0059)the National Natural Science Foundation of China (No. E51375173)+1 种基金the Open Fund of State Key Laboratory of Materials Processing and Die & Mould Technology (No. 2011-P02)a project of Shandong Province Higher Educational Science and Technology Program (No. J12LA16)
文摘Based on the Magneto-Hydro-Dynamic(MHD) theory, a united three-dimensional(3D) transient numerical model is developed to investigate the dynamic behaviors of arc plasma for a magnesium alloy AZ61A gas tungsten arc welding(GTAW) arc. The arc, electrode and workpiece are integrated into one calculation domain to avoid both presumed distribution of the current density at the electrode tip and the assumption of constant conditions of interface between welding arc and workpiece. The distributions of electric potential, current density, magnetic flux density, electromagnetic force, velocity, temperature, and pressure of the arc plasma in the 3D space are analyzed by using the numerical model. Results indicate that the maximum gradient of the electric potential in the whole arc space exists around the electrode tip, where the electric current density, electromagnetic force, and temperature are also the maximum. However, maximum pressure is found at the velocity stagnation, which is above the workpiece.Comparison between predicted temperature and measured one in arc region shows a good agreement.
基金financially supported by the University Natural Science Research Project of Jiangsu Province(No.15KJA460006).
文摘The microstructure of the tin-based babbit obtained by the method of tungsten inert gas welding(TIG)arc brazing was studied by optical microscopy(OM)and X-ray diffraction(XRD).Tribological behavior was investigated by high-temperature friction and wear testing machine(HTFWT),laser scanning confocal microscopy(LSCM),scanning electron microscopy(SEM)and energydispersive spectrometer(EDS).It can be found that the higher welding current of the melting tin-based babbit makes it possible to form isomer structure with fine crystals of the cubic SnSb compounds and large star Cu6Sn5 compounds so that a higher hardness can be achieved,and a lower wear rate can be obtained over the entire distance of sliding friction.When the applied load is 2 N,the contact surface is oxidized due to the accumulation of friction heat and oxide,which plays a role of lubricated film.Also,the softer Sn-based solid solution forms obvious furrow under abrasive wear,and the harder SbSn and Cu6Sn5 intermetallic compounds shatter and leave a hole under friction.
基金Projects(20080440043)supported by China Postdoctoral Science FoundationProject supported by Guangdong Sanhe Pipe-pile Co.Ltd.,China
文摘Three kinds of single layer coatings of Zn,Zn15Al,316L stainless steel and two kinds of double layer coatings with inner layer of Zn or Zn15Al and outer layer of 316L stainless steel by arc spraying were developed to protect the metal ends of prestressed high-strength concrete(PHC)pipe piles against soil corrosion.The corrosion behaviors of the coated Q235 steel samples in the simulated Dagang soil solution were investigated by potentiodynamic polarization,electrochemical impedance spectroscopy(EIS) and natural immersion tests.The results show that the corrosion of the matrix Q235 steel is effectively inhibited by Zn,Zn15Al, Zn+316L and Zn15Al+316L coatings.The corrosion rate value of Zn15Al coated samples is negative.The corrosion products on Zn and Zn15Al coated samples are compact and firm.The corrosion resistance indexes of both Zn and Zn15Al coated samples are improved significantly with corrosion time,and the latter are more outstanding than the former.But the corrosion resistance of 316L coated samples is decreased quickly with the increase in immersion time.When the coatings are sealed with epoxy resin,the corrosion resistance of the coatings will be enhanced significantly.
基金NationalNatureScienceFoundationofChina (No .5 0 0 0 5 0 2 4)
文摘The friction and wear behavior of Fe Al intermetallics based coating produced by high velocity arc spraying technique under dry sliding at room temperature were investigated using a ball on disc tribotester. The effect of sliding speed on friction coefficient and wear of the coating was studied. The worn surface of the coating was analyzed by scanning electron microscope (SEM) to explore sliding friction and wear mechanism. The results show that the variations of friction coefficient can be divided into three distinct steps during the trail. Both the friction coefficient and the wear of the coating increase with increased sliding speed due to accelerated crack propagation rate and lamellar structure with poor ductility of the coating. The coating surface is subjected to alternately tensile stress and compression stress during sliding wear process, and the predominant wear mechanism of the coatings appears to be brittle fracture and delamination.
基金financially supported by the National Natural Science Foundation of China (Nos. 50974046 and 50904020)Twelfth Five-year Aerospace Project of China
文摘Plasma-MIG hybrid arc welding is a hybrid heating source welding method which is composed of plasma arc and MIG arc. During Plasma-MIG hybrid arc welding process, the interface behavior of copper and steel dissimilar alloy is investigated. The results show that electromagnetic stirring effect decreases and the heat input increases with the increase of outer plasma current in the hybrid arc welding process. The interface diffusion and interface thickness is controlled by the tradeoff of electromagnetic stirring effect degradation and heat input increase. The interface diffusion and interface thickness are controlled by decreasing the electromagnetic stirring force and increasing the heat input with the increase of plasma current in Cu/Fe plasma-MIG hybrid arc welding process.
基金supported by the National Science Foundation of China(Grant Nos.51571114 and 51201120)the Science and Technology Coordination and Innovation Project of Shaanxi Province(No.2016KTZDGY-04-01)the Shaanxi Provincial Education Department(Grant No.16JK1377)
文摘Micro-arc oxidation (MAO) coatings with different concentrations of K2TiO(C2O4)2 in the sodium silicate base electrolyte were prepared on 6061 aluminum alloy with the aim of promoting a better understanding of the formation mechanisms and tribological behaviors of the coatings. Scanning electron microscopy (SEM) assisted with energy-dis- persive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and friction test were employed to charac- terize the MAO processes and microstructure of the resultant coatings. Results showed that the composition and microstructure of the coatings were significantly affected by the addition of KETiO(CaO4)2. A sealing microstructure of MAO coating was obtained with the addition of K2TiO(C2O4)2. Ti element from K2TiO(C2O4)2 was only absorbed into the defects of micropores under surface energy in the early stage, while in the later stage, Ti element was predominant in the micropores and distributed on the coatings under plasma discharge to form TiO2. It was demonstrated that Ti and Si elements from the electrolyte could interact with each other during the MAO process and the interaction mechanism was systematically analyzed. Wear resistance of the MAO coatings with K2TiO(C2O4)2 addition was significantly improved compared with that of the MAO coatings without K2TiO(C2O4)2 addition.
文摘This paper introduces a new titanium alloys surface strengthening treatment by using the arc-added glow discharge plasmas non-hydrogen Carburization technique. High purity and high strength graphite is selected as cooling cathode arc source for supplying carbon atoms and particle, which migrate to the titanium alloy(Ti6A14V) surface and form modified layer. Thus, the hydrogen embrittlement is avoided while the tribological behavior of the titanium alloy surface is improved in the respects of anti-friction and anti-wear ability.The tribological behavior of the modified layer under dry sliding against SAE52100 steel was evaluated on a ball-on-disc test rig. The results showed that the modified layer obtained a thickness of 30u,m at 980°C, 30minutes. The microhardness of the Ti6A14V alloy surface attained 936 HV, which was much larger than that of the T16A14V alloy. The TJ6A14V alloy was characterized by adhesion wear and scuffing under dry sliding against the steel, while the surface modified layer experienced much abated adhesion wear and scuffing under the same testing condition. This could be attributed to the carbon element with different modalities exists in the modified layer. The modified layer showed good friction-reducing and fair anti-wear ability in dry sliding against the steel. Using the SEM, XRD and XPS, the phase structure and morphology of the Carburization modified layer was analyzed.
文摘为研究窄间隙P-GMAW(pulsed gas metal arc welding,脉冲熔化极气体保护焊)过程中电弧行为对侧壁热输入的影响,分析了焊枪在距离侧壁不同位置的电弧行为变化规律。在双椭球模型基础上,采用坐标变换的方式建立了考虑电弧运动和偏转的热源模型,获得了焊接温度场的变化规律。发现增大焊枪与侧壁的距离,电弧的燃烧位置由侧壁向坡口底部逐渐过渡。电弧在侧壁上按脉冲频率变化:电流基值阶段电弧作用在侧壁位置,峰值阶段电弧作用在坡口底部。温度场结果表明,焊枪距离侧壁1.5 mm左右时,焊缝成形良好,改进的热源模型能准确的描述焊枪在距侧壁不同位置时电弧对侧壁的热输入。采用考虑电弧行为的热源模型能够获得更加准确的温度场分布。
基金National Natural Science Foundation of China(Nos.51677002,51937004)Civil Aircraft Special Research and Technology Research Project(MJ-2017-S-46)+1 种基金State Key Laboratory of Reliability and Intelligence of Electrical Equipment(No.EERIKF004)Hebei University of Technology and selected from the 1st International Symposium on Insulation and Discharge Computation for Power Equipment.
文摘In this report,two new contact structures of a vacuum interrupter with a sinusoidal curved surface are proposed to improve the capability by increasing the surface area.The experimental investigation of vacuum arc at intermediate frequency(360-800 Hz)was conducted and the results were compared with a butt contact with the same contact diameter(41 mm)and the same material.By analyzing the arc behavior,arc voltage characteristics,arc energy,current interrupting capacity,ablation of the anode contact and condensation of the arc products at a 3 mm gap,the differences in their vacuum arc characteristics were determined.The correlations of their arc energy with the amplitude and the frequency of the current were also achieved.Analysis suggests that the ruled curved contact has strong application potentiality because of its low arc energy,low arc voltage noise and arc voltage peak,light ablation on the surface of the anode contact and high interrupting capacity.