The wave propagation behavior in an elastic wedge-shaped medium with an arbitrary shaped cylindrical canyon at its vertex has been studied.Numerical computation of the wave displacement field is carried out on and nea...The wave propagation behavior in an elastic wedge-shaped medium with an arbitrary shaped cylindrical canyon at its vertex has been studied.Numerical computation of the wave displacement field is carried out on and near the canyon surfaces using weighted-residuals(moment method).The wave displacement fields are computed by the residual method for the cases of elliptic,circular,rounded-rectangular and flat-elliptic canyons,The analysis demonstrates that the resulting surface displacement depends,as in similar previous analyses,on several factors including,but not limited,to the angle of the wedge,the geometry of the vertex,the frequencies of the incident waves,the angles of incidence,and the material properties of the media.The analysis provides intriguing results that help to explain geophysical observations regarding the amplification of seismic energy as a function of site conditions.展开更多
The electromagnetic wave enhanced transmission(ET)through the sub-wavelength aperture was an unconventional physical phenomenon with great application potential.It was important to find a general design method which c...The electromagnetic wave enhanced transmission(ET)through the sub-wavelength aperture was an unconventional physical phenomenon with great application potential.It was important to find a general design method which can realize efficient ET for arbitrary-shaped apertures.For achieving ET with maximum efficiency at specific frequency through arbitrary-shaped subwavelength aperture,a topology optimization method for designing metamaterials(MTM)microstructure was proposed in this study.The MTM was employed and inserted vertically in the aperture.The description function for the arbitrary shape of the aperture was established.The optimization model was founded to search the optimal MTM microstructure for maximum enhanced power transmission through the aperture at the demanded frequency.Several MTM microstructures for ET through the apertures with different shapes at the demanded frequency were designed as examples.The simulation and experimental results validate the feasibility of the method.The regularity of the optimal ET microstructures and their advantages over the existing configurations were discussed.展开更多
A thin metallic wire loop of arbitrary curvature is rotated with respect to an arbitrary axis of its plane. The device is excited by an electric dipole of infinite length and constant current. The resistance of the lo...A thin metallic wire loop of arbitrary curvature is rotated with respect to an arbitrary axis of its plane. The device is excited by an electric dipole of infinite length and constant current. The resistance of the loop is computed rigorously as function of the position of the source. In this way, the induced voltage along the wire, under any kind of axial excitation, is given in the form of a superposition integral. The measured response is represented for various shapes of the coil, with respect to the time, the rotation angle and the position of the source. These diagrams lead to several technically applicable conclusions which are presented, discussed and justified.展开更多
The concept of covering-domain means that an arbitrary-shaped closed shell can be approached by a series of closed spherical shells. Based on it, the interior scattering sound field of the arbitrary-shaped closed shel...The concept of covering-domain means that an arbitrary-shaped closed shell can be approached by a series of closed spherical shells. Based on it, the interior scattering sound field of the arbitrary-shaped closed shell is given. According to the reciprocity theory, the radiating sound field of the elastic surface due to the action of external force is presented. The method presented can also be used to calculate the interior sound fields of arbitraryshaped closed thin shells of which the thickness are either equal or unequal. It is verilied to be correct by corresponding test.展开更多
Affinity propagation(AP)is a classic clustering algorithm.To improve the classical AP algorithms,we propose a clustering algorithm namely,adaptive spectral affinity propagation(AdaSAP).In particular,we discuss why AP ...Affinity propagation(AP)is a classic clustering algorithm.To improve the classical AP algorithms,we propose a clustering algorithm namely,adaptive spectral affinity propagation(AdaSAP).In particular,we discuss why AP is not suitable for non-spherical clusters and present a unifying view of nine famous arbitrary-shaped clustering algorithms.We propose a strategy of extending AP in non-spherical clustering by constructing category similarity of objects.Leveraging the monotonicity that the clusters’number increases with the self-similarity in AP,we propose a model selection procedure that can determine the number of clusters adaptively.For the parameters introduced by extending AP in non-spherical clustering,we provide a grid-evolving strategy to optimize them automatically.The effectiveness of AdaSAP is evaluated by experiments on both synthetic datasets and real-world clustering tasks.Experimental results validate that the superiority of AdaSAP over benchmark algorithms like the classical AP and spectral clustering algorithms.展开更多
Scattering and Diffraction of elastic in-plane P-and SV-waves by a surface topography such as an elastic canyon at the surface of a half-space is a classical problem which has been studied by earthquake engineers and ...Scattering and Diffraction of elastic in-plane P-and SV-waves by a surface topography such as an elastic canyon at the surface of a half-space is a classical problem which has been studied by earthquake engineers and strong-motion seismologists for over forty years. The case of out-of-plane SH waves on the same elastic canyon that is semi-circular in shape on the half-space surface is the first such problem that was solved by analytic closed form solutions over forty years ago by Trifunac. The corresponding case of in-plane P-and SV-waves on the same circular canyon is a much more complicated problem because, the in-plane P-and SV-scattered waves have different wave speeds and together they must have zero normal and shear stresses at the half-space surface. It is not until recently in 2014 that analytic solution for such problem is found by the author in the work of Lee and Liu. This paper uses the technique of Lee and Liu of defining these stress-free scattered waves to solve the problem of the scattered and diffraction of these in-plane waves on an almost-circular surface canyon that is arbitrary in shape.展开更多
K-means uses the sum-of-squared error as the objective function to minimize within-cluster distances.We show that,as a consequence,it also maximizes between-cluster variances.This means that the two measures do not pr...K-means uses the sum-of-squared error as the objective function to minimize within-cluster distances.We show that,as a consequence,it also maximizes between-cluster variances.This means that the two measures do not provide complementary information and that using only one is enough.Based on this property,we propose a new objective function called cluster overlap,which is measured intuitively as the proportion of points shared between the clusters.We adopt the new function within k-means and present an algorithm called overlap k-means.It is an alternative way to design a k-means algorithm.A localized variant is also provided by limiting the overlap calculation to the neighboring points.展开更多
文摘The wave propagation behavior in an elastic wedge-shaped medium with an arbitrary shaped cylindrical canyon at its vertex has been studied.Numerical computation of the wave displacement field is carried out on and near the canyon surfaces using weighted-residuals(moment method).The wave displacement fields are computed by the residual method for the cases of elliptic,circular,rounded-rectangular and flat-elliptic canyons,The analysis demonstrates that the resulting surface displacement depends,as in similar previous analyses,on several factors including,but not limited,to the angle of the wedge,the geometry of the vertex,the frequencies of the incident waves,the angles of incidence,and the material properties of the media.The analysis provides intriguing results that help to explain geophysical observations regarding the amplification of seismic energy as a function of site conditions.
基金Project supported by the National Natural Science Foundation of China(Grant No.U1808215)the Natural Science Foundation of Liaoning Province,China(Grant No.20180540082)the Science and Technology Program of Shenzhen(Grant No.JSGG 20200102155001779).
文摘The electromagnetic wave enhanced transmission(ET)through the sub-wavelength aperture was an unconventional physical phenomenon with great application potential.It was important to find a general design method which can realize efficient ET for arbitrary-shaped apertures.For achieving ET with maximum efficiency at specific frequency through arbitrary-shaped subwavelength aperture,a topology optimization method for designing metamaterials(MTM)microstructure was proposed in this study.The MTM was employed and inserted vertically in the aperture.The description function for the arbitrary shape of the aperture was established.The optimization model was founded to search the optimal MTM microstructure for maximum enhanced power transmission through the aperture at the demanded frequency.Several MTM microstructures for ET through the apertures with different shapes at the demanded frequency were designed as examples.The simulation and experimental results validate the feasibility of the method.The regularity of the optimal ET microstructures and their advantages over the existing configurations were discussed.
文摘A thin metallic wire loop of arbitrary curvature is rotated with respect to an arbitrary axis of its plane. The device is excited by an electric dipole of infinite length and constant current. The resistance of the loop is computed rigorously as function of the position of the source. In this way, the induced voltage along the wire, under any kind of axial excitation, is given in the form of a superposition integral. The measured response is represented for various shapes of the coil, with respect to the time, the rotation angle and the position of the source. These diagrams lead to several technically applicable conclusions which are presented, discussed and justified.
基金This subject is supported by the National Natural Science Foundation of China and by Doctorate FOundation of Xi'an Jiaotong Uni
文摘The concept of covering-domain means that an arbitrary-shaped closed shell can be approached by a series of closed spherical shells. Based on it, the interior scattering sound field of the arbitrary-shaped closed shell is given. According to the reciprocity theory, the radiating sound field of the elastic surface due to the action of external force is presented. The method presented can also be used to calculate the interior sound fields of arbitraryshaped closed thin shells of which the thickness are either equal or unequal. It is verilied to be correct by corresponding test.
基金This work was supported by the National Natural Science Foundation of China(71771034,71901011,71971039)the Scientific and Technological Innovation Foundation of Dalian(2018J11CY009).
文摘Affinity propagation(AP)is a classic clustering algorithm.To improve the classical AP algorithms,we propose a clustering algorithm namely,adaptive spectral affinity propagation(AdaSAP).In particular,we discuss why AP is not suitable for non-spherical clusters and present a unifying view of nine famous arbitrary-shaped clustering algorithms.We propose a strategy of extending AP in non-spherical clustering by constructing category similarity of objects.Leveraging the monotonicity that the clusters’number increases with the self-similarity in AP,we propose a model selection procedure that can determine the number of clusters adaptively.For the parameters introduced by extending AP in non-spherical clustering,we provide a grid-evolving strategy to optimize them automatically.The effectiveness of AdaSAP is evaluated by experiments on both synthetic datasets and real-world clustering tasks.Experimental results validate that the superiority of AdaSAP over benchmark algorithms like the classical AP and spectral clustering algorithms.
文摘Scattering and Diffraction of elastic in-plane P-and SV-waves by a surface topography such as an elastic canyon at the surface of a half-space is a classical problem which has been studied by earthquake engineers and strong-motion seismologists for over forty years. The case of out-of-plane SH waves on the same elastic canyon that is semi-circular in shape on the half-space surface is the first such problem that was solved by analytic closed form solutions over forty years ago by Trifunac. The corresponding case of in-plane P-and SV-waves on the same circular canyon is a much more complicated problem because, the in-plane P-and SV-scattered waves have different wave speeds and together they must have zero normal and shear stresses at the half-space surface. It is not until recently in 2014 that analytic solution for such problem is found by the author in the work of Lee and Liu. This paper uses the technique of Lee and Liu of defining these stress-free scattered waves to solve the problem of the scattered and diffraction of these in-plane waves on an almost-circular surface canyon that is arbitrary in shape.
文摘K-means uses the sum-of-squared error as the objective function to minimize within-cluster distances.We show that,as a consequence,it also maximizes between-cluster variances.This means that the two measures do not provide complementary information and that using only one is enough.Based on this property,we propose a new objective function called cluster overlap,which is measured intuitively as the proportion of points shared between the clusters.We adopt the new function within k-means and present an algorithm called overlap k-means.It is an alternative way to design a k-means algorithm.A localized variant is also provided by limiting the overlap calculation to the neighboring points.