Supercapacitors(SCs) with high power density and long cycling span life are demanding energy storage devices that will be an attractive power solution to modern electronic and electrical applications. Numerous theoret...Supercapacitors(SCs) with high power density and long cycling span life are demanding energy storage devices that will be an attractive power solution to modern electronic and electrical applications. Numerous theoretical and experimental works have been devoted to exploring various possibilities to increase the functionality and the specific capacitance of electrodes for SCs. Non-carbon two-dimensional(2D)materials have been considered as encouraging electrode candidates for their chemical and physical advantages such as tunable surface chemistry, high electronic conductivity, large mechanical strength, more active sites, and dual non-faradaic and faradaic electrochemical performances. Besides, these 2D materials also play particular roles in constructing highway channels for fast ion diffusion. This concise review summarizes cutting-edge progress of some representative 2D non-carbon materials for the aqueous electrolyte-based SCs, including transition metal oxides(TMOs), transition metal hydroxides(TMHs), transition metal chalcogenides(TMCs), MXenes, metal-organic frameworks(MOFs) and some emerging materials. Different synthetic methods, effective structural designs and corresponding electrochemical performances are reviewed in detail. And we finally present a detailed discussion of the current intractable challenges and technical bottlenecks, and highlight future directions and opportunities for the development of next-generation high-performance energy storage devices.展开更多
We report a carbon/carbon capacitor based on micro/mesoporous carbon electrodes with cost-effective and eco-friendly aqueous choline bis(trifluoromethylsulfonyl)imide(Ch TFSI)electrolyte with a cosolvent enabling low-...We report a carbon/carbon capacitor based on micro/mesoporous carbon electrodes with cost-effective and eco-friendly aqueous choline bis(trifluoromethylsulfonyl)imide(Ch TFSI)electrolyte with a cosolvent enabling low-temperature operation down to-30℃.For this purpose,a Mg O-templated hierarchical carbon(MP98B)with an average mesopore diameter of 3.5 nm was prepared by pyrolysis of magnesium citrate hydrate at 900℃.To reach lower temperatures,the melting point and viscosity of the aqueous electrolyte were reduced by mixing water(W)with an organic solvent(methanol,M,or isopropanol,I)of high dielectric constant and low viscosity.5 mol kg^(-1)(5 m)Ch TFSI in an optimized volume fraction of cosolvent,M_(0.75)W_(0.25),and I_(0.75)W_(0.25),showed the highest conductivity;the higher conductivity in M_(0.75)W_(0.25)(22.8 and 3.1 m S cm^(-1) at 20 and-30℃,respectively)than in I_(0.75)W_(0.25)(8.5 and0.5 m S cm^(-1)at 20 and-30℃,respectively)is attributed to the lower viscosity of the M_(0.75)W_(0.25)solution.The electrochemical stability window(ESW)of 5 m Ch TFSI in M_(0.75)W_(0.25)and I_(0.75)W_(0.25)(1.6 V)on an MP98B electrode was determined by applying the S-method.Meanwhile,by adjusting the mass ratio of the two electrodes,a MP98B/MP98B capacitor using the 5 m electrolyte in M_(0.75)W_(0.25)could operate with a good life span up to 1.6 V while exhibiting a better charge propagation,greater specific capacitance,and higher specific energy than in I_(0.75)W_(0.25).展开更多
LiAlxMn2-xO4 (0≤x≤0.5) was synthesized by high temperature solid-state reaction. The structure and morphology of LiAlxMn2-xO4 were investigated by X-ray diffraction and scanning electron microscopy (SEM). The re...LiAlxMn2-xO4 (0≤x≤0.5) was synthesized by high temperature solid-state reaction. The structure and morphology of LiAlxMn2-xO4 were investigated by X-ray diffraction and scanning electron microscopy (SEM). The results indicate that all samples show spinel phase. The polyhedral particles turn to club-shaped, then change to small spherical, and finally become agglomerates with increasing Al content. The supercapacitive performances of LiAlxMn2-xO4 were studied by means of galvanostatic charge-discharge, cyclic voltammetry, and alternating current (AC) impedance in 2 mol·L^-1 (NH4)2SO4 aqueous solution. The results show that LiAlxMn2-xO4 represents rectangular shape performance in the potential range of 0-1 V. The capacity and cycle performance can be improved by doping Al. The composition of x=0.1 has the maximum special capacitance of 160 F·g^-1, which is 1.37 times that of LiMn2O4 electrode. The capacitance loss of LiAlxMn2-xO4 with x=0.1 is only about 14% after 100 cycles.展开更多
Using ab initio molecular dynamics(AIMD)simulations,classical molecular dynamics(CMD)simulations,small-angle X-ray scattering(SAXS),and pulsed-field gradient nuclear magnetic resonance(PFG-NMR),the solvation structure...Using ab initio molecular dynamics(AIMD)simulations,classical molecular dynamics(CMD)simulations,small-angle X-ray scattering(SAXS),and pulsed-field gradient nuclear magnetic resonance(PFG-NMR),the solvation structure and ion dynamics of magnesium bis(trifluoromethanesulfonyl)imide(Mg(TFSI)_(2))aqueous electrolyte at 1,2,and 3 m concentrations are investigated.From AIMD and CMD simulations,the first solvation shell of an Mg;ion is found to be composed of six water molecules in an octahedral configuration and the solvation shell is rather rigid.The TFSI^(-)ions prefer to stay in the second solvation shell and beyond.Meanwhile,the comparable diffusion coefficients of positive and negative ions in Mg(TFSI)_(2)aqueous electrolytes have been observed,which is mainly due to the formation of the stable[Mg(H_(2)O_(6))_(2)]^(+)complex,and,as a result,the increased effective Mg ion size.Finally,the calculated correlated transference numbers are lower than the uncorrelated ones even at the low concentration of 2 and 3 m,suggesting the enhanced correlations between ions in the multivalent electrolytes.This work provides a molecular-level understanding of how the solvation structure and multivalency of the ion affect the dynamics and transport properties of the multivalent electrolyte,providing insight for rational designs of electrolytes for improved ion transport properties.展开更多
The electrochemical stability of LiFePO4 in a Li+-containing aqueous electrolyte solution is critically dependent on the pH value of the aqueous solution. It shows a considerable decay in capacity of LiFePO4 upon cyc...The electrochemical stability of LiFePO4 in a Li+-containing aqueous electrolyte solution is critically dependent on the pH value of the aqueous solution. It shows a considerable decay in capacity of LiFePO4 upon cycling when the pH value is increased to 11. The mechanism responsible for the capacity fading is extensively investigated by means of cyclic voltammogram, ac impedance, charge/discharge, ex situ X-ray diffraction, and chemical analysis. LiFePO4 is relatively electrochemically stable in LiNO3 aqueous solution with pH=7. But the electrochemical performance of LiFePO4 in aqueous electrolyte is inferior to that in organic electrolyte. It is attributed to the loss of Li and the Fe, P dissolution during prolonged charge-discharge in aqueous medium. A precipitate is formed on the surface of LiFePO4 electrodes. It results in the change of crystalline structure, a large electrode polarization, and capacity fading.展开更多
Aqueous Zn-ion batteries(AZIBs) have emerged as potential candidates for Li-ion batteries due to their intrinsic safety and high capacity.However,metallic Zn anodes encounter dendrite growth and water-induced corrosio...Aqueous Zn-ion batteries(AZIBs) have emerged as potential candidates for Li-ion batteries due to their intrinsic safety and high capacity.However,metallic Zn anodes encounter dendrite growth and water-induced corrosion,rendering poor stability and severe irreversibility at the electrode/electrolyte interface during cycling.To stabilize the Zn anode,we report a low-cost and effective nonionic surfactant,Tween-20 polymer,as an electrolyte additive for AZIBs.For Tween-20,sequential oxyethylene groups tended to be preferentially adsorbed on the Zn electrode to form a shielding layer for regulating uniform Zn nucleation.Moreover,the hydrophobic hendecyl chains prevented H_(2)O-induced corrosion on the Zn anode surface.Benefiting from the desired functional groups,when only trace amounts of Tween-20(0.050 g·L^(-1)) were used,the Zn anode displayed good cycling stability over 2170 h at10 mA·cm^(-2) and a high average Coulombic efficiency of98.94% over 1000 cycles.The Tween-20 polymer can also be effectively employed in MnO_(2)/Zn full batteries.Considering their toxicity,price and amount of usage,these surfactant additives provide a promising strategy for realizing the stability and reversibility of high-performance Zn anodes.展开更多
Lithium heteropoly blue(Li 5PW Ⅵ 10 W Ⅴ 2O 40 ) was used as a non aqueous electrolyte in the polyacenic semiconductor (PAS) Li secondary battery instead of LiClO 4. The properties of the PAS Li secon...Lithium heteropoly blue(Li 5PW Ⅵ 10 W Ⅴ 2O 40 ) was used as a non aqueous electrolyte in the polyacenic semiconductor (PAS) Li secondary battery instead of LiClO 4. The properties of the PAS Li secondary battery, especially the effect of Li 5PW Ⅵ 10 W Ⅴ 2O 40 on the capacity, the cycle property and the self discharging of the battery have been investigated. The results indicate that not only Li 5PW Ⅵ 10 W Ⅴ 2O 40 can overcome the disadvantages of LiClO 4, which is apt to explode when heated or rammed, but also the PAS Li secondary battery assembled with the novel electrolyte has a larger capacity and smaller self discharging than that assembled with LiClO 4. Therefore, it is believed that lithium heteropoly blue is a better and novel electrolyte for the PAS secondary battery and exhibits significant and practical application.展开更多
The deep understanding about the electrochemical behavior of the nanostructured electrode in electrolytes provides crucial insights for the rational design of electrode for sodium(Na)-ion storage system(NIS).Here,we r...The deep understanding about the electrochemical behavior of the nanostructured electrode in electrolytes provides crucial insights for the rational design of electrode for sodium(Na)-ion storage system(NIS).Here,we report redox charge transfer kinetics and reversibility of VO_(2)(B) nanorod electrodes in both aqueous and organic electrolytes for NIS.The assynthesized VO_(2)(B) nanorods show the reversible redox reaction with the higher specific and rate capacitances at high current density in aqueous electrolytes than in organic electrolytes.Temperature-dependent impedance measurements demonstrate the more facile interfacial charge transfer of Na ions into VO_(2)(B) nanorods in aqueous electrolytes.The reversible evolution in oxidation state and chemical composition of VO_(2)(B) nanorods is observed in aqueous electrolytes,as confirmed by ex situ XRD and ex situ X-ray photoelectron spectroscopy analyses.Given by the facile and reversible pseudocapacitive feature,the electrochemical performances of VO_(2)(B) nanorods are further improved by constructing the hierarchical structure of the reduced graphene oxide-VO_(2) composite for aqueous Na+ion storage.展开更多
A simple rational model is proposed for discharge of batteries with aqueous electrolytes, based on Nernst equation. Details of electrode kinetics are not taken into account. Only a few overall parameters of the batter...A simple rational model is proposed for discharge of batteries with aqueous electrolytes, based on Nernst equation. Details of electrode kinetics are not taken into account. Only a few overall parameters of the battery are considered. A simple algorithm, with variable time step-length <span style="font-family:Verdana;">Δ</span><i><span style="font-family:Verdana;">t</span></i><span style="font-family:Verdana;">, is presented, for proposed model. The model is first applied to Daniel cell, in order to clar</span><span style="font-family:Verdana;">ify</span><span style="font-family:""><span style="font-family:Verdana;"> concepts and principles of battery operation. It is found that initial pinching, in time-history curve of voltage </span><i><span style="font-family:Verdana;">E-t</span></i><span style="font-family:Verdana;">, is due to initial under-concentration of product ion. Then, model is applied </span></span><span style="font-family:Verdana;">to</span><span> a lead-acid battery. In absence of an ion product, and in order to construct nominator of Nernst ratio, such an ion, with coefficient tending to zero, is assumed, thus yielding unity in nominator. Time-history curves of voltage, for various values of internal resistance, are compared with corresponding published experimental curves. Temperature effect on voltage-time curve is examined. Proposed model can be extended to other types of batteries, which can be considered as having aqueous electrolytes, too.</span>展开更多
Accurate calculation of thermodynamic properties of electrolyte solution is essential in the design and optimization of many processes in chemical industries. A new electrolyte equation of state is developed for aqueo...Accurate calculation of thermodynamic properties of electrolyte solution is essential in the design and optimization of many processes in chemical industries. A new electrolyte equation of state is developed for aqueous electrolyte solutions. The Carnahan-Starling repulsive model and an attractive term based on square-well potential are adopted to represent the short range interaction of ionic and molecular species in the new electrolyte EOS. The long range interaction of ionic species is expressed by a simplified version of Mean Spherical Approximation theory (MSA). The new equation of state also contains a Born term for charging free energy of ions. Three adjustable parameters of new eEOS per each electrolyte solution are size parameter, square-well potential depth and square-well potential interaction range. The new eEOS is applied for correlation of mean activity coefficient and prediction of osmotic coefficient of various strong aqueous electrolyte solutions at 25℃ and 0.1 MPa. In addition, the extension of the new eEOS for correlation of mean activity coefficient and solution density of a few aqueous electrolytes at temperature range of 0 to 100℃ is carried out.展开更多
The V_2C compound,belonging to the group of two-dimensional transition metal carbonitrides,or MXenes,has demonstrated a promising electrochemical performance in capacitor applications in acidic electrolytes;however,th...The V_2C compound,belonging to the group of two-dimensional transition metal carbonitrides,or MXenes,has demonstrated a promising electrochemical performance in capacitor applications in acidic electrolytes;however,there is evidence to suggest that V_2C is unstable in an acidic environment.On the other hand,the performance of V_2C in neutral aqueous electrolytes is still moderate,and has not yet been systematically studied.The charge storage mechanism in a V_2C electrode,employed in neutral aqueous electrolytes,is investigated via cyclic voltammetry testing and in situ x-ray diffraction(XRD).Good specific capacitances are achieved,specifically208 F/g in 0.5 M Li_2SO_4,225 F/g in 1 M MgSO_4,120 F/g in 1 M Na_2 SO_4,and 104 F/g in 0.5 M K_2SO_4.Using in situ XRD,we observe that,during the charge and discharge process,the c-lattice parameter shrinks or expands by up to 0.25 A in MgSO_4,and 0.29 A in Li_2SO_4 which demonstrates the intercalation/de-intercalation of cations into the d-V_2C layer.展开更多
Aqueous zinc(Zn)metal batteries(AZMBs)have been recognized as one of the most sustainable energy conversion devices due to their high resourcefulness,low environmental toxicity,and rechargeability.Among them,the Zn me...Aqueous zinc(Zn)metal batteries(AZMBs)have been recognized as one of the most sustainable energy conversion devices due to their high resourcefulness,low environmental toxicity,and rechargeability.Among them,the Zn metal anode,featuring a suitable redox potential(0.76 V vs.standard hydrogen electrode,SHE),high theoretical specific capacity(820 mAh g^(-1),5855 mAh cm^(-3)),and high conductivity,presents a favorable compatibility with aqueous electrolytes[1].展开更多
A hydrophilic radical polymer, poly(2,2,6,6-teteramethylpiperidinyloxyl-4-yl acrylamide) (PTAm), was synthesized via oxidation of the corresponding precursor polymer, poly(2,2,6,6-teteramethylpiperidine-4-yl acry...A hydrophilic radical polymer, poly(2,2,6,6-teteramethylpiperidinyloxyl-4-yl acrylamide) (PTAm), was synthesized via oxidation of the corresponding precursor polymer, poly(2,2,6,6-teteramethylpiperidine-4-yl acrylamide). Electrochemical properties of the PTAm layer were characterized in three aqueous electrolytes of sodium chloride (NaCl), sodium tetrafluoroborate (NaBF4), and sodium hexafluorophosphate (NaPF6) to optimize its activity as an organic cathode. The counter anion species significantly affected the capacity and the cycle performance of the PTAm layer. The PTAm layer in the presence of BF4? displayed quantitative redox capacity beyond 1 μm layer thickness and maintained the discharging capacity of 110 mAh g-1 (97% vs. the calculated capacity) even after 1000 cycle charging/discharging, which could be ascribed to its appropriate affinity to the aqueous electrolyte without any dissolution into the electrolyte. A totally organic-based rechargeable cell was fabricated using PTAm and poly(N-4,4'-bipyridinium-N-decamethylene dibromide) as the cathode and the anode, respectively, and the aqueous electrolyte of NaBF4. The cell gave a plateau voltage at 1.2 V both on charging and discharging and an excellent charging/discharging cyclability of &gt;2000 with high coulombic efficiency of &gt;95%.展开更多
Electrical double layer (EDL) capacitors based on recently emergent graphene materials have shown several folds performance improvement compared to conventional porous carbon materials, driving a wave of technology ...Electrical double layer (EDL) capacitors based on recently emergent graphene materials have shown several folds performance improvement compared to conventional porous carbon materials, driving a wave of technology breakthrough in portable and renewable energy storage. Accordingly, much interest has been generated to pursue a comprehensive understanding of the fundamental yet elusive double layer structure at file electrode^electrolyte interface. In this paper, we carried out comprehensive molecular dynamics simulations to obtain a com- prehensive picture of how ion type, solvent properties, and charging conditions affect the EDL structure at the graphene electrode surface, and thereby its contribution to capacitance. We show that different symmetrical monovalent aqueous electrolytes M^X- (M~ = Na~, K~, Rb+, and Cs+; X- = F-, CI-, and I ) indeed have distinctive EDL structures. Larger ions, such as, Rb*, Cs*, C1, and I, undergo partial dehydration and penetrate through the first water layer next to the graphene electrode surfaces under charging. As such, the electrical potential distribution through the EDL strongly depends on the ion type. Interestingly, we further reveal that the water can play a critical role in determining the capacitance value. The change of dielectric constant of water in different electrolytes largely cancels out the variance in electric potential drop across the EDL of different ion type. Our simulation sheds new lights on how the interplay between solvent molecules and EDL structure cooperatively contributes to capacitance, which agrees with our experimental results well.展开更多
Aqueous supercapacitors(SCs)have received considerable attention owing to the utilization of low-cost,non-flammable,and low-toxicity aqueous electrolytes thus could eliminate the safety and cost concerns,but their wid...Aqueous supercapacitors(SCs)have received considerable attention owing to the utilization of low-cost,non-flammable,and low-toxicity aqueous electrolytes thus could eliminate the safety and cost concerns,but their wide temperature range applications have generally suffered from frozen of electrolyte and insufficient ionic conductivity at low temperatures.Herein,we demonstrate the feasibility of using an unconventional Deep Eutectic Solvent(DES)based on H2O-Mg(ClO4)2·6 H2O binary system as electrolyte to construct all-climate aqueous carbon-based SC.This unconventional class DES completely base on inorganic substances and achieving simply mix inexpensive salts and water together at the right proportions.Attributed to the attractive feature of extremely low freeze temperature of-69℃,this electrolyte can enable the 1.8 V carbon-based SC to fully work at-40℃with outstanding cycling stability.This DES electrolyte comprising of a single salt and a single solvent without any additive will open up an avenue for developing simple and green electrolytes to construct all-climate SC.展开更多
As the demand for sustainable energy sources continues to rise,the need for efficient and reliable energy storage systems becomes crucial.In order to effectively store and distribute renewable energy,new and innovativ...As the demand for sustainable energy sources continues to rise,the need for efficient and reliable energy storage systems becomes crucial.In order to effectively store and distribute renewable energy,new and innovative solutions must be explored.This review examines the deep eutectic solvents(DESs)as a green,safe,and affordable solution for the electrochemical energy storage and conversion field,offering tremendous opportunities and a promising future.DESs are a class of environment-friendly solvents known for their low toxicity and unique properties,such as their good conductivity,high thermal stability,and nonflammability.This review explores the fundamentals,preparations,and various interactions that often predominate in the formation of DESs,the properties of DESs,and how DESs are better than traditional solvents involving cost-ineffective and unsafe organic electrolytes and ionic liquids as well as inefficient aqueous systems due to low energy density for electrochemical energy storage applications.Then,a particular focus is placed on the various electrochemical applications of DESs,including their role in the electrolytes in batteries/supercapacitors,electropolishing and electrodeposition of metals,synthesis of electrode materials,recycling of electrodes,and their potential for use in CO_(2)capture.The review concludes by exploring the challenges,research gaps,and future potential of DESs in electrochemical applications,providing a comprehensive overview,and highlighting key considerations for their design and use.展开更多
Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery...Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery damage or fracture is a critical concern.Water-based(aqueous)electrolytes have been receiving attention as an alternative to organic electrolytes.However,a narrow electrochemicalstability window,water decomposition,and the consequent low battery operating voltage and energy density hinder the practical use of aqueous electrolytes.Therefore,developing novel aqueous electrolytes for sustainable,safe,high-performance LIBs remains challenging.This Review first commences by summarizing the roles and requirements of electrolytes–separators and then delineates the progression of aqueous electrolytes for LIBs,encompassing aqueous liquid and gel electrolyte development trends along with detailed principles of the electrolytes.These aqueous electrolytes are progressed based on strategies using superconcentrated salts,concentrated diluents,polymer additives,polymer networks,and artificial passivation layers,which are used for suppressing water decomposition and widening the electrochemical stability window of water of the electrolytes.In addition,this Review discusses potential strategies for the implementation of aqueous Li-metal batteries with improved electrolyte–electrode interfaces.A comprehensive understanding of each strategy in the aqueous system will assist in the design of an aqueous electrolyte and the development of sustainable and safe high-performance batteries.展开更多
Aqueous zinc metal batteries are considered as promising candidates for next-generation electrochemical energy storage devices,especially for large-scale energy storage,due to the advantages of high-safety,high energy...Aqueous zinc metal batteries are considered as promising candidates for next-generation electrochemical energy storage devices,especially for large-scale energy storage,due to the advantages of high-safety,high energy density and low cost.As the bridge connecting cathode and anode,electrolyte provides a realistic operating environment.In alkaline and neutral aqueous zinc metal batteries,issues associated with electrolyte and anode are still intractable.In this review,we reveal the development and evolution of electrolytes for aqueous zinc metal batteries from alkaline to neutral via the description of fundamentals and challenges in terms of comparison and connection.We also elaborate the strategies in electrolytes regulation and highlight the basic roles and progresses in additives engineering.展开更多
Low temperature aqueous batteries(LT-ABs)have attracted extensive attention recent years.The LT-ABs suffer from electrolyte freezing,slow ionic diffusion and sluggish interfacial redox kinetics at low temperature.In t...Low temperature aqueous batteries(LT-ABs)have attracted extensive attention recent years.The LT-ABs suffer from electrolyte freezing,slow ionic diffusion and sluggish interfacial redox kinetics at low temperature.In this review,we discuss physicochemical properties of aqueous electrolytes in terms of phase diagram,ion diffusion and interfacial redox kinetics to guide the design of low temperature aqueous electrolytes(LT-AEs).Firstly,the characteristics of equilibrium and non equilibrium phase diagrams are introduced to analyze the antifreezing mechanisms and propose design strategies for LT-AEs.Then,the temperature/concentration/charge carrier dependence conductivity characteristics in aqueous electrolytes are reviewed to comprehend and regulate the ion diffusion kinetics.Moreover,we introduce interfacial studies in aqueous and non-aqueous batteries and propose potential improvement strategies for interfacial redox kinetics in LT-ABs.Finally,we summarize design strategies of LT-AEs for developing high performance LT-ABs.展开更多
Aqueous Zn-ion batteries(AZIBs)are regarded as a promising alternative to the widely used lithium-ion batteries in large-scale energy storage systems.The researches on the development of novel aqueous electrolyte to i...Aqueous Zn-ion batteries(AZIBs)are regarded as a promising alternative to the widely used lithium-ion batteries in large-scale energy storage systems.The researches on the development of novel aqueous electrolyte to improve battery performance have also attracted great interest since the electrolyte is a key com-ponent for Zn2+migration between cathode and anode.Herein,we briefly sum-marized and illuminated the recent development tendency of aqueous electrolyte for AZIBs,then deeply analyzed its existing issues(water decomposition,cathode dissolution,corrosion and passivation,and dendrite growth)and discussed the corresponding optimization strategies(pH regulation,concentrated salt solution,electrolyte composition design,and functional additives).The internal mecha-nisms of these strategies were further revealed and the relationships between issues and solutions were clarified,which could guide the future development of aqueous electrolytes for AZIBs.展开更多
基金financial support from National Natural Science Foundation of China (No. 21671173)the Independent Designing Scientific Research Project of Zhejiang Normal University (No. 2020ZS03)Zhejiang Provincial Ten Thousand Talent Program (No. 2017R52043)。
文摘Supercapacitors(SCs) with high power density and long cycling span life are demanding energy storage devices that will be an attractive power solution to modern electronic and electrical applications. Numerous theoretical and experimental works have been devoted to exploring various possibilities to increase the functionality and the specific capacitance of electrodes for SCs. Non-carbon two-dimensional(2D)materials have been considered as encouraging electrode candidates for their chemical and physical advantages such as tunable surface chemistry, high electronic conductivity, large mechanical strength, more active sites, and dual non-faradaic and faradaic electrochemical performances. Besides, these 2D materials also play particular roles in constructing highway channels for fast ion diffusion. This concise review summarizes cutting-edge progress of some representative 2D non-carbon materials for the aqueous electrolyte-based SCs, including transition metal oxides(TMOs), transition metal hydroxides(TMHs), transition metal chalcogenides(TMCs), MXenes, metal-organic frameworks(MOFs) and some emerging materials. Different synthetic methods, effective structural designs and corresponding electrochemical performances are reviewed in detail. And we finally present a detailed discussion of the current intractable challenges and technical bottlenecks, and highlight future directions and opportunities for the development of next-generation high-performance energy storage devices.
基金financially supported by the National Science Centre(MAESTRO project UMO-2016/22/A/ST4/00092)。
文摘We report a carbon/carbon capacitor based on micro/mesoporous carbon electrodes with cost-effective and eco-friendly aqueous choline bis(trifluoromethylsulfonyl)imide(Ch TFSI)electrolyte with a cosolvent enabling low-temperature operation down to-30℃.For this purpose,a Mg O-templated hierarchical carbon(MP98B)with an average mesopore diameter of 3.5 nm was prepared by pyrolysis of magnesium citrate hydrate at 900℃.To reach lower temperatures,the melting point and viscosity of the aqueous electrolyte were reduced by mixing water(W)with an organic solvent(methanol,M,or isopropanol,I)of high dielectric constant and low viscosity.5 mol kg^(-1)(5 m)Ch TFSI in an optimized volume fraction of cosolvent,M_(0.75)W_(0.25),and I_(0.75)W_(0.25),showed the highest conductivity;the higher conductivity in M_(0.75)W_(0.25)(22.8 and 3.1 m S cm^(-1) at 20 and-30℃,respectively)than in I_(0.75)W_(0.25)(8.5 and0.5 m S cm^(-1)at 20 and-30℃,respectively)is attributed to the lower viscosity of the M_(0.75)W_(0.25)solution.The electrochemical stability window(ESW)of 5 m Ch TFSI in M_(0.75)W_(0.25)and I_(0.75)W_(0.25)(1.6 V)on an MP98B electrode was determined by applying the S-method.Meanwhile,by adjusting the mass ratio of the two electrodes,a MP98B/MP98B capacitor using the 5 m electrolyte in M_(0.75)W_(0.25)could operate with a good life span up to 1.6 V while exhibiting a better charge propagation,greater specific capacitance,and higher specific energy than in I_(0.75)W_(0.25).
基金supported by the Ph.D. Program Foundation of the Ministry of Education of China (No.20050217019)
文摘LiAlxMn2-xO4 (0≤x≤0.5) was synthesized by high temperature solid-state reaction. The structure and morphology of LiAlxMn2-xO4 were investigated by X-ray diffraction and scanning electron microscopy (SEM). The results indicate that all samples show spinel phase. The polyhedral particles turn to club-shaped, then change to small spherical, and finally become agglomerates with increasing Al content. The supercapacitive performances of LiAlxMn2-xO4 were studied by means of galvanostatic charge-discharge, cyclic voltammetry, and alternating current (AC) impedance in 2 mol·L^-1 (NH4)2SO4 aqueous solution. The results show that LiAlxMn2-xO4 represents rectangular shape performance in the potential range of 0-1 V. The capacity and cycle performance can be improved by doping Al. The composition of x=0.1 has the maximum special capacitance of 160 F·g^-1, which is 1.37 times that of LiMn2O4 electrode. The capacitance loss of LiAlxMn2-xO4 with x=0.1 is only about 14% after 100 cycles.
基金supported by the Joint Center for Energy Storage Research(JCESR),a U.S.Department of Energy,Energy Innovation Hub。
文摘Using ab initio molecular dynamics(AIMD)simulations,classical molecular dynamics(CMD)simulations,small-angle X-ray scattering(SAXS),and pulsed-field gradient nuclear magnetic resonance(PFG-NMR),the solvation structure and ion dynamics of magnesium bis(trifluoromethanesulfonyl)imide(Mg(TFSI)_(2))aqueous electrolyte at 1,2,and 3 m concentrations are investigated.From AIMD and CMD simulations,the first solvation shell of an Mg;ion is found to be composed of six water molecules in an octahedral configuration and the solvation shell is rather rigid.The TFSI^(-)ions prefer to stay in the second solvation shell and beyond.Meanwhile,the comparable diffusion coefficients of positive and negative ions in Mg(TFSI)_(2)aqueous electrolytes have been observed,which is mainly due to the formation of the stable[Mg(H_(2)O_(6))_(2)]^(+)complex,and,as a result,the increased effective Mg ion size.Finally,the calculated correlated transference numbers are lower than the uncorrelated ones even at the low concentration of 2 and 3 m,suggesting the enhanced correlations between ions in the multivalent electrolytes.This work provides a molecular-level understanding of how the solvation structure and multivalency of the ion affect the dynamics and transport properties of the multivalent electrolyte,providing insight for rational designs of electrolytes for improved ion transport properties.
文摘The electrochemical stability of LiFePO4 in a Li+-containing aqueous electrolyte solution is critically dependent on the pH value of the aqueous solution. It shows a considerable decay in capacity of LiFePO4 upon cycling when the pH value is increased to 11. The mechanism responsible for the capacity fading is extensively investigated by means of cyclic voltammogram, ac impedance, charge/discharge, ex situ X-ray diffraction, and chemical analysis. LiFePO4 is relatively electrochemically stable in LiNO3 aqueous solution with pH=7. But the electrochemical performance of LiFePO4 in aqueous electrolyte is inferior to that in organic electrolyte. It is attributed to the loss of Li and the Fe, P dissolution during prolonged charge-discharge in aqueous medium. A precipitate is formed on the surface of LiFePO4 electrodes. It results in the change of crystalline structure, a large electrode polarization, and capacity fading.
基金financially supported by the National Natural Science Foundation of China (Nos.22102157 and U1910208)the Natural Science Foundation of Shanxi Province of China (Nos.20210302124097 and 20210302124663)+2 种基金the Opening Foundation of Shanxi Provincial Key Laboratory for HighPerformance Battery Materials and Devices (No.2022HPBMD02002)the Graduate Student Innovation Program of North University of China (No.20221871)the Natural Science Foundation of Hubei Province of China (No.2022CFB577)。
文摘Aqueous Zn-ion batteries(AZIBs) have emerged as potential candidates for Li-ion batteries due to their intrinsic safety and high capacity.However,metallic Zn anodes encounter dendrite growth and water-induced corrosion,rendering poor stability and severe irreversibility at the electrode/electrolyte interface during cycling.To stabilize the Zn anode,we report a low-cost and effective nonionic surfactant,Tween-20 polymer,as an electrolyte additive for AZIBs.For Tween-20,sequential oxyethylene groups tended to be preferentially adsorbed on the Zn electrode to form a shielding layer for regulating uniform Zn nucleation.Moreover,the hydrophobic hendecyl chains prevented H_(2)O-induced corrosion on the Zn anode surface.Benefiting from the desired functional groups,when only trace amounts of Tween-20(0.050 g·L^(-1)) were used,the Zn anode displayed good cycling stability over 2170 h at10 mA·cm^(-2) and a high average Coulombic efficiency of98.94% over 1000 cycles.The Tween-20 polymer can also be effectively employed in MnO_(2)/Zn full batteries.Considering their toxicity,price and amount of usage,these surfactant additives provide a promising strategy for realizing the stability and reversibility of high-performance Zn anodes.
基金Supported by Education Com mittee Foundation of L iaoning Province(No.970 912 12 11) .
文摘Lithium heteropoly blue(Li 5PW Ⅵ 10 W Ⅴ 2O 40 ) was used as a non aqueous electrolyte in the polyacenic semiconductor (PAS) Li secondary battery instead of LiClO 4. The properties of the PAS Li secondary battery, especially the effect of Li 5PW Ⅵ 10 W Ⅴ 2O 40 on the capacity, the cycle property and the self discharging of the battery have been investigated. The results indicate that not only Li 5PW Ⅵ 10 W Ⅴ 2O 40 can overcome the disadvantages of LiClO 4, which is apt to explode when heated or rammed, but also the PAS Li secondary battery assembled with the novel electrolyte has a larger capacity and smaller self discharging than that assembled with LiClO 4. Therefore, it is believed that lithium heteropoly blue is a better and novel electrolyte for the PAS secondary battery and exhibits significant and practical application.
基金supported by both the Technology Innovation Program(20004958,Development of ultra-high performance supercapacitor and high power module)funded by the Ministry of Trade,Industry and Energy(MOTIE)Creative Materials Discovery Program through the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT(2018M3D1A1058744).
文摘The deep understanding about the electrochemical behavior of the nanostructured electrode in electrolytes provides crucial insights for the rational design of electrode for sodium(Na)-ion storage system(NIS).Here,we report redox charge transfer kinetics and reversibility of VO_(2)(B) nanorod electrodes in both aqueous and organic electrolytes for NIS.The assynthesized VO_(2)(B) nanorods show the reversible redox reaction with the higher specific and rate capacitances at high current density in aqueous electrolytes than in organic electrolytes.Temperature-dependent impedance measurements demonstrate the more facile interfacial charge transfer of Na ions into VO_(2)(B) nanorods in aqueous electrolytes.The reversible evolution in oxidation state and chemical composition of VO_(2)(B) nanorods is observed in aqueous electrolytes,as confirmed by ex situ XRD and ex situ X-ray photoelectron spectroscopy analyses.Given by the facile and reversible pseudocapacitive feature,the electrochemical performances of VO_(2)(B) nanorods are further improved by constructing the hierarchical structure of the reduced graphene oxide-VO_(2) composite for aqueous Na+ion storage.
文摘A simple rational model is proposed for discharge of batteries with aqueous electrolytes, based on Nernst equation. Details of electrode kinetics are not taken into account. Only a few overall parameters of the battery are considered. A simple algorithm, with variable time step-length <span style="font-family:Verdana;">Δ</span><i><span style="font-family:Verdana;">t</span></i><span style="font-family:Verdana;">, is presented, for proposed model. The model is first applied to Daniel cell, in order to clar</span><span style="font-family:Verdana;">ify</span><span style="font-family:""><span style="font-family:Verdana;"> concepts and principles of battery operation. It is found that initial pinching, in time-history curve of voltage </span><i><span style="font-family:Verdana;">E-t</span></i><span style="font-family:Verdana;">, is due to initial under-concentration of product ion. Then, model is applied </span></span><span style="font-family:Verdana;">to</span><span> a lead-acid battery. In absence of an ion product, and in order to construct nominator of Nernst ratio, such an ion, with coefficient tending to zero, is assumed, thus yielding unity in nominator. Time-history curves of voltage, for various values of internal resistance, are compared with corresponding published experimental curves. Temperature effect on voltage-time curve is examined. Proposed model can be extended to other types of batteries, which can be considered as having aqueous electrolytes, too.</span>
文摘Accurate calculation of thermodynamic properties of electrolyte solution is essential in the design and optimization of many processes in chemical industries. A new electrolyte equation of state is developed for aqueous electrolyte solutions. The Carnahan-Starling repulsive model and an attractive term based on square-well potential are adopted to represent the short range interaction of ionic and molecular species in the new electrolyte EOS. The long range interaction of ionic species is expressed by a simplified version of Mean Spherical Approximation theory (MSA). The new equation of state also contains a Born term for charging free energy of ions. Three adjustable parameters of new eEOS per each electrolyte solution are size parameter, square-well potential depth and square-well potential interaction range. The new eEOS is applied for correlation of mean activity coefficient and prediction of osmotic coefficient of various strong aqueous electrolyte solutions at 25℃ and 0.1 MPa. In addition, the extension of the new eEOS for correlation of mean activity coefficient and solution density of a few aqueous electrolytes at temperature range of 0 to 100℃ is carried out.
基金Supported by the Science&Technology Department of Jilin Province (Grant Nos.20180101199JC and 20180101204JC)Jilin Province/Jilin University Co-construction Project-Funds for New Materials (SXGJSF2017-3)。
文摘The V_2C compound,belonging to the group of two-dimensional transition metal carbonitrides,or MXenes,has demonstrated a promising electrochemical performance in capacitor applications in acidic electrolytes;however,there is evidence to suggest that V_2C is unstable in an acidic environment.On the other hand,the performance of V_2C in neutral aqueous electrolytes is still moderate,and has not yet been systematically studied.The charge storage mechanism in a V_2C electrode,employed in neutral aqueous electrolytes,is investigated via cyclic voltammetry testing and in situ x-ray diffraction(XRD).Good specific capacitances are achieved,specifically208 F/g in 0.5 M Li_2SO_4,225 F/g in 1 M MgSO_4,120 F/g in 1 M Na_2 SO_4,and 104 F/g in 0.5 M K_2SO_4.Using in situ XRD,we observe that,during the charge and discharge process,the c-lattice parameter shrinks or expands by up to 0.25 A in MgSO_4,and 0.29 A in Li_2SO_4 which demonstrates the intercalation/de-intercalation of cations into the d-V_2C layer.
基金supported by the National Natural Science Foundation of China(51502036)the Young Top Talent of Fujian Young Eagle Program of Fujian Province and Natural Science Foundation of Fujian Province(2023J02013,2023YZ038001).
文摘Aqueous zinc(Zn)metal batteries(AZMBs)have been recognized as one of the most sustainable energy conversion devices due to their high resourcefulness,low environmental toxicity,and rechargeability.Among them,the Zn metal anode,featuring a suitable redox potential(0.76 V vs.standard hydrogen electrode,SHE),high theoretical specific capacity(820 mAh g^(-1),5855 mAh cm^(-3)),and high conductivity,presents a favorable compatibility with aqueous electrolytes[1].
基金supported by Grants-in-Aid for Scientific Research (19105003)Global COE Program at Waseda University from MEXT, JapanResearch Project "Radical Polymers" at Advanced Research Institute for Science & Engineering, Waseda University
文摘A hydrophilic radical polymer, poly(2,2,6,6-teteramethylpiperidinyloxyl-4-yl acrylamide) (PTAm), was synthesized via oxidation of the corresponding precursor polymer, poly(2,2,6,6-teteramethylpiperidine-4-yl acrylamide). Electrochemical properties of the PTAm layer were characterized in three aqueous electrolytes of sodium chloride (NaCl), sodium tetrafluoroborate (NaBF4), and sodium hexafluorophosphate (NaPF6) to optimize its activity as an organic cathode. The counter anion species significantly affected the capacity and the cycle performance of the PTAm layer. The PTAm layer in the presence of BF4? displayed quantitative redox capacity beyond 1 μm layer thickness and maintained the discharging capacity of 110 mAh g-1 (97% vs. the calculated capacity) even after 1000 cycle charging/discharging, which could be ascribed to its appropriate affinity to the aqueous electrolyte without any dissolution into the electrolyte. A totally organic-based rechargeable cell was fabricated using PTAm and poly(N-4,4'-bipyridinium-N-decamethylene dibromide) as the cathode and the anode, respectively, and the aqueous electrolyte of NaBF4. The cell gave a plateau voltage at 1.2 V both on charging and discharging and an excellent charging/discharging cyclability of &gt;2000 with high coulombic efficiency of &gt;95%.
文摘Electrical double layer (EDL) capacitors based on recently emergent graphene materials have shown several folds performance improvement compared to conventional porous carbon materials, driving a wave of technology breakthrough in portable and renewable energy storage. Accordingly, much interest has been generated to pursue a comprehensive understanding of the fundamental yet elusive double layer structure at file electrode^electrolyte interface. In this paper, we carried out comprehensive molecular dynamics simulations to obtain a com- prehensive picture of how ion type, solvent properties, and charging conditions affect the EDL structure at the graphene electrode surface, and thereby its contribution to capacitance. We show that different symmetrical monovalent aqueous electrolytes M^X- (M~ = Na~, K~, Rb+, and Cs+; X- = F-, CI-, and I ) indeed have distinctive EDL structures. Larger ions, such as, Rb*, Cs*, C1, and I, undergo partial dehydration and penetrate through the first water layer next to the graphene electrode surfaces under charging. As such, the electrical potential distribution through the EDL strongly depends on the ion type. Interestingly, we further reveal that the water can play a critical role in determining the capacitance value. The change of dielectric constant of water in different electrolytes largely cancels out the variance in electric potential drop across the EDL of different ion type. Our simulation sheds new lights on how the interplay between solvent molecules and EDL structure cooperatively contributes to capacitance, which agrees with our experimental results well.
基金financially supported by the DNL Cooperation Fund,Chinese Academy of Sciences(DNL180307)Natural Science Foundation of Gansu Province(18JR3RA159)。
文摘Aqueous supercapacitors(SCs)have received considerable attention owing to the utilization of low-cost,non-flammable,and low-toxicity aqueous electrolytes thus could eliminate the safety and cost concerns,but their wide temperature range applications have generally suffered from frozen of electrolyte and insufficient ionic conductivity at low temperatures.Herein,we demonstrate the feasibility of using an unconventional Deep Eutectic Solvent(DES)based on H2O-Mg(ClO4)2·6 H2O binary system as electrolyte to construct all-climate aqueous carbon-based SC.This unconventional class DES completely base on inorganic substances and achieving simply mix inexpensive salts and water together at the right proportions.Attributed to the attractive feature of extremely low freeze temperature of-69℃,this electrolyte can enable the 1.8 V carbon-based SC to fully work at-40℃with outstanding cycling stability.This DES electrolyte comprising of a single salt and a single solvent without any additive will open up an avenue for developing simple and green electrolytes to construct all-climate SC.
文摘As the demand for sustainable energy sources continues to rise,the need for efficient and reliable energy storage systems becomes crucial.In order to effectively store and distribute renewable energy,new and innovative solutions must be explored.This review examines the deep eutectic solvents(DESs)as a green,safe,and affordable solution for the electrochemical energy storage and conversion field,offering tremendous opportunities and a promising future.DESs are a class of environment-friendly solvents known for their low toxicity and unique properties,such as their good conductivity,high thermal stability,and nonflammability.This review explores the fundamentals,preparations,and various interactions that often predominate in the formation of DESs,the properties of DESs,and how DESs are better than traditional solvents involving cost-ineffective and unsafe organic electrolytes and ionic liquids as well as inefficient aqueous systems due to low energy density for electrochemical energy storage applications.Then,a particular focus is placed on the various electrochemical applications of DESs,including their role in the electrolytes in batteries/supercapacitors,electropolishing and electrodeposition of metals,synthesis of electrode materials,recycling of electrodes,and their potential for use in CO_(2)capture.The review concludes by exploring the challenges,research gaps,and future potential of DESs in electrochemical applications,providing a comprehensive overview,and highlighting key considerations for their design and use.
基金the National Research Foundation(NRF)of Korea(No.2022R1A2B5B02002097),funded by the Korea government(MSIT).
文摘Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery damage or fracture is a critical concern.Water-based(aqueous)electrolytes have been receiving attention as an alternative to organic electrolytes.However,a narrow electrochemicalstability window,water decomposition,and the consequent low battery operating voltage and energy density hinder the practical use of aqueous electrolytes.Therefore,developing novel aqueous electrolytes for sustainable,safe,high-performance LIBs remains challenging.This Review first commences by summarizing the roles and requirements of electrolytes–separators and then delineates the progression of aqueous electrolytes for LIBs,encompassing aqueous liquid and gel electrolyte development trends along with detailed principles of the electrolytes.These aqueous electrolytes are progressed based on strategies using superconcentrated salts,concentrated diluents,polymer additives,polymer networks,and artificial passivation layers,which are used for suppressing water decomposition and widening the electrochemical stability window of water of the electrolytes.In addition,this Review discusses potential strategies for the implementation of aqueous Li-metal batteries with improved electrolyte–electrode interfaces.A comprehensive understanding of each strategy in the aqueous system will assist in the design of an aqueous electrolyte and the development of sustainable and safe high-performance batteries.
基金the Natural Science Foundation of Sichuan Province(No.2023NSFSC0116)the University of Electronic Science and Technology of China for startup funding(No.A1098531023601355).
文摘Aqueous zinc metal batteries are considered as promising candidates for next-generation electrochemical energy storage devices,especially for large-scale energy storage,due to the advantages of high-safety,high energy density and low cost.As the bridge connecting cathode and anode,electrolyte provides a realistic operating environment.In alkaline and neutral aqueous zinc metal batteries,issues associated with electrolyte and anode are still intractable.In this review,we reveal the development and evolution of electrolytes for aqueous zinc metal batteries from alkaline to neutral via the description of fundamentals and challenges in terms of comparison and connection.We also elaborate the strategies in electrolytes regulation and highlight the basic roles and progresses in additives engineering.
基金The work described in this paper was fully supported by a grant from the Research Grant Council of the Hong Kong Special Administrative Region,China(No.CUHK14304520).
文摘Low temperature aqueous batteries(LT-ABs)have attracted extensive attention recent years.The LT-ABs suffer from electrolyte freezing,slow ionic diffusion and sluggish interfacial redox kinetics at low temperature.In this review,we discuss physicochemical properties of aqueous electrolytes in terms of phase diagram,ion diffusion and interfacial redox kinetics to guide the design of low temperature aqueous electrolytes(LT-AEs).Firstly,the characteristics of equilibrium and non equilibrium phase diagrams are introduced to analyze the antifreezing mechanisms and propose design strategies for LT-AEs.Then,the temperature/concentration/charge carrier dependence conductivity characteristics in aqueous electrolytes are reviewed to comprehend and regulate the ion diffusion kinetics.Moreover,we introduce interfacial studies in aqueous and non-aqueous batteries and propose potential improvement strategies for interfacial redox kinetics in LT-ABs.Finally,we summarize design strategies of LT-AEs for developing high performance LT-ABs.
基金the National Nature Science Foundation of China,Grant/Award Numbers:21975289,U19A2019Hunan Provincial Research and Development Plan in Key Areas,Grant/Award Number:2019GK2033Hunan Provincial Science and Technology Plan Project of China,Grant/Award Num-bers:2017TP1001,2020JJ2042,2018RS3009。
文摘Aqueous Zn-ion batteries(AZIBs)are regarded as a promising alternative to the widely used lithium-ion batteries in large-scale energy storage systems.The researches on the development of novel aqueous electrolyte to improve battery performance have also attracted great interest since the electrolyte is a key com-ponent for Zn2+migration between cathode and anode.Herein,we briefly sum-marized and illuminated the recent development tendency of aqueous electrolyte for AZIBs,then deeply analyzed its existing issues(water decomposition,cathode dissolution,corrosion and passivation,and dendrite growth)and discussed the corresponding optimization strategies(pH regulation,concentrated salt solution,electrolyte composition design,and functional additives).The internal mecha-nisms of these strategies were further revealed and the relationships between issues and solutions were clarified,which could guide the future development of aqueous electrolytes for AZIBs.