Aqueous ammonium-ion batteries(AAIBs)have emerged as a promising candidate for grid-scale energy stor-age owing to their intrinsic safety(e.g.,dendrite-free and nonflammable),environmental friendliness,and potential f...Aqueous ammonium-ion batteries(AAIBs)have emerged as a promising candidate for grid-scale energy stor-age owing to their intrinsic safety(e.g.,dendrite-free and nonflammable),environmental friendliness,and potential for fast charge/discharge capability.Extensive research has been conducted in recent years to explore high-performance ammonium-ion storage materials and the associated electrochemistry to advance the commercialization of AAIBs.Therefore,it is necessary to review the progress in ammonium-ion storage materials and related electrochemical theories to guide further research on AAIBs.Herein,we systematically summarize the advanced electrode materials for AAIBs by introducing the physicochemical characteristics and ammonium-ion storage behaviors of various electrode materials,such as Prussian blue analogs,organic polymers,and metal oxides,discussing feasible material-design strategies to enhance their ammonium-ion storage performance,and outlining the future development prospects of AAIBs.This review aims to provide valuable insights into the design of advanced electrode materials for high-performance AAIBs.展开更多
The development of aqueous zinc-ion batteries is crucial for advancing sustainable energy storage technologies.However,their widespread application is hindered by Zn corrosion and uncontrolled Zn dendrite growth.One p...The development of aqueous zinc-ion batteries is crucial for advancing sustainable energy storage technologies.However,their widespread application is hindered by Zn corrosion and uncontrolled Zn dendrite growth.One promising approach involves creating a functional organic-inorganic interface on the Zn surface.Traditional binders,such as polyvinylidene fluoride(PVDF),fail to regulate water activity and ion migration,limiting the effectiveness of the interface.Herein,we introduce an aqueous dual ionic/electronic conducting binder,poly(3,4-ethylenedioxythiophene):polystyrene sulfonate(PEDOT:PSS),to build a water-scarce,Zn^(2+)-enriched interface.Our findings demonstrate that PEDOT:PSS not only facilitates uniform distribution of inorganic fillers,forming a cohesive and compact interface,but also significantly enhances mechanical integrity.Additionally,the sulfonate groups within the binder matrix disrupt the hydrogen bond network of water molecules,reducing water activity and lowering the desolvation energy barrier of Zn(H_(2)O)_(6)^(2+)clusters.Therefore,the transference number of Zn^(2+)is elevated to 0.81(compared to 0.61 with PVDF),mitigating undesirable side reactions and enabling dendrite-less Zn deposition.Consequently,symmetrical Zn||Zn cells with PEDOT:PSS binder demonstrate a lifetime with 4.2 times longer than those with PVDF.This work underscores the critical role of binder chemistry in stabilizing metal anodes for aqueous batteries.展开更多
Aqueous ion storage systems have motivated great interest by virtue of low reduction,high eco-sustainability and safety.Among various cathode candidates,transition metal compounds are featured with easy dissolution in...Aqueous ion storage systems have motivated great interest by virtue of low reduction,high eco-sustainability and safety.Among various cathode candidates,transition metal compounds are featured with easy dissolution in aqueous solutions and inferior conductivity,which severely hinder their application.Herein,advantages are taken of the“conveyor effect”of conjugated polyaniline to prepare an oxygen defective tungstate-linked polyaniline(O_(d)-WOP)material with chrysanthemum-like microstructure.By virtue of the high electronic conductivity derived from conductive conjugated polyaniline skeleton,unbalanced charge distribution triggered by the defective structure,and reversibly rapid ion(de)intercalation benefited from the open framework with porous chrysanthemum-like microstructure,it delivers outstanding rate capability with a maximum specific capacity of 162.2 mAh g^(-1)and great cycle stability for storing NH_(4)^(+).Additionally,it also adopts a high reversible capacity of 140.4 mAh g^(-1)and outstanding cycling performance to store Ca^(2+).Consequently,the assembled O_(d)-WOP//PTCDI flexible aqueous ammonium ion batteries and calcium ion batteries exhibit superior capacities,energy densities and flexibilities.O_(d)-WOP achieves the NH_(4)^(+) and Ca^(2+)storage capability by interacting with them through hydrogen and ionic bonds,respectively.The deep insight from this work sheds light upon a novel strategy to excavate greater potential of transition metal compounds for aqueous ion batteries.展开更多
Aqueous zinc-ion electrochromic(EC)technology,boasting the capability to fulfill both safety and cost-ef⁃fectiveness requirements,is garnering extensive attention in various application areas including smart windows,t...Aqueous zinc-ion electrochromic(EC)technology,boasting the capability to fulfill both safety and cost-ef⁃fectiveness requirements,is garnering extensive attention in various application areas including smart windows,thermal management,displays,and camouflage.However,typical inorganic EC materials,such as tungsten oxides(WO_(3)),of⁃ten suffer from slow ion diffusion kinetics and limited optical contrast within the aqueous Zn^(2+)electrolyte because of the large size and strong Coulombic interactions of the Zn^(2+),which limits their wide applicability.Here,ordered WO_(3)nanowire films,constructed by a one-step grazing angle deposition method,is demonstrated to boost the response speed and optical contrast during EC phenomena.Compared with dense films,the ordered WO_(3)nanowire films with a porosity of 44.6%demonstrate anti-reflective property and excellent comprehensive EC performance,including fast response time(3.6 s and 1.2 s for coloring and bleaching,respectively),large optical contrast(66.6%at 700 nm)and high col⁃oration efficiency(64.3 cm^(2)·C^(-1)).A large-area prototype EC device(17 cm×12 cm)with fast color-switching is also successfully achieved.Mechanistic studies show that the improved performance is mainly due to the ordered porous nanowire structures,which provides direct electron transfer paths and sufficient interfacial contacts,thus simultaneously enhancing the electrochemical activity and fast redox kinetics.This study provides a simple and effective strategy to im⁃prove the performance of tungsten oxide-based aqueous zinc ion EC materials and devices.展开更多
As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability...As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability of cathode materials under high-voltage conditions remains a critical challenge in improving its energy density.This review systematically explores the failure mechanisms of high-voltage cathode materials in AZIBs,including hydrogen evolution reaction,phase transformation and dissolution phenomena.To address these challenges,we propose a range of advanced strategies aimed at improving the stability of cathode materials.These strategies include surface coating and doping techniques designed to fortify the surface properties and structure integrity of the cathode materials under high-voltage conditions.Additionally,we emphasize the importance of designing antioxidant electrolytes,with a focus on understanding and optimizing electrolyte decomposition mechanisms.The review also highlights the significance of modifying conductive agents and employing innovative separators to further enhance the stability of AZIBs.By integrating these cutting-edge approaches,this review anticipates substantial advancements in the stability of high-voltage cathode materials,paving the way for the broader application and development of AZIBs in energy storage.展开更多
Aqueous zinc-ion batteries(AZIBs)are gaining attention owing to their affordability,high safety,and high energy density,making them a promising solution for large-scale energy storage.However,their performance is hamp...Aqueous zinc-ion batteries(AZIBs)are gaining attention owing to their affordability,high safety,and high energy density,making them a promising solution for large-scale energy storage.However,their performance is hampered by the instability of both the anode-electrolyte interface and the cathode-electrolyte interface.The use of sodium gluconate(SG),an organic sodium salt with multiple hydroxyl groups,as an electrolyte additive is suggested.Experimental and theoretical analyses demonstrate that Na^(+)from SG can intercalate and deintercalate within the associated V_(2)O_(5) cathode during in situ electrochemical processes.This action supports the layered structure of V_(2)O_(5),prevents structural collapse and phase transitions,and enhances Zn^(2+)diffusion kinetics.Additionally,the gluconate anion disrupts the original Zn^(2+)solvation structure,mitigates water-induced side reactions,and suppresses Zn dendrite growth.The synchronous regulation of both the V_(2)O_(5) cathode and Zn anode by the SG additive leads to considerable performance improvements.Zn‖Zn symmetric batteries demonstrate a cycle life exceeding 2800 h at 0.5 mA cm^(-2)and 1 mAh cm^(-2).In Zn‖V_(2)O_(5) full batteries,a high specific capacity of 288.92 mAh g^(-1)and capacity retention of 82.29%are maintained over 1000 cycles at a current density of 2 A g^(-1).This multifunctional additive strategy offers a new pathway for the practical application of AZIBs.展开更多
To achieve the target of carbon neutrality,it is crucial to develop an efficient and green synthesis methodology with good atomic economy to achieve sufficient utilization of energy and sustainable development.Photoin...To achieve the target of carbon neutrality,it is crucial to develop an efficient and green synthesis methodology with good atomic economy to achieve sufficient utilization of energy and sustainable development.Photoinduced electron transfer reversible addition-fragmentation chain-transfer(PET-RAFT)polymerization is a precise methodology for constructing polymers with well-defined structures.However,conventional semiconductor-mediated PET-RAFT polymerization still has considerable limitations in terms of efficiency as well as the polymerization environment.Herein,sulfur-doped carbonized polymer dots(CPDs)were hydrothermally synthesized for catalysis of aqueous PET-RAFT polymerization at unprecedented efficiency with a highest propagation rate of 5.05 h-1.The resulting polymers have well-controlled molecular weight and narrow molecular weight dispersion(Ð<1.10).Based on the optoelectronic characterizations,we obtained insights into the photoinduced electron transfer process and proposed the mechanism for CPD-mediated PET-RAFT polymerization.In addition,as-synthesized CPDs for PET-RAFT polymerization were also demonstrated to be suitable for a wide range of light sources(blue/green/solar irradiation),numerous monomers,low catalyst loading(low as 0.01 mg mL^(-1)),and multiple polar solvent environments,all of which allowed to achieve efficiencies much higher than those of existing semiconductor-mediated methods.Finally,the CPDs were confirmed to be non-cytotoxic and catalyzed PET-RAFT polymerization successfully in cell culture media,indicating broad prospects in biomedical fields.展开更多
Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growt...Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growth and spontaneous shuttle effect of active species have prohibited their practical implementation.Herein,a double-layered protective film based on zinc-ethylenediamine tetramethylene phosphonic acid(ZEA)artificial film and ZnF2-rich solid electrolyte interphase(SEI)layer has been successfully fabricated on the zinc metal anode via electrode/electrolyte synergistic optimization.The ZEA-based artificial film shows strong affinity for the ZnF2-rich SEI layer,therefore effectively suppressing the SEI breakage and facilitating the construction of double-layered protective film on the zinc metal anode.Such double-layered architecture not only modulates Zn2+flux and suppresses the zinc dendrite growth,but also blocks the direct contact between the metal anode and electrolyte,thus mitigating the corrosion from the active species.When employing optimized metal anodes and electrolytes,the as-developed zinc-(dual)halogen batteries present high areal capacity and satisfactory cycling stability.This work provides a new avenue for developing aqueous zinc-(dual)halogen batteries.展开更多
V_(2)O_(5)·nH_(2)O has been widely studied for aqueous zinc-ion batteries.The intercalation of inorganic ions has been used as a feasible method to improve the capacity of vanadium pentoxide.To further improve th...V_(2)O_(5)·nH_(2)O has been widely studied for aqueous zinc-ion batteries.The intercalation of inorganic ions has been used as a feasible method to improve the capacity of vanadium pentoxide.To further improve the stability,organic small molecule choline chloride intercalation is used to expand the spacing of the vanadium pentoxide layers and increase the cycling stability.Therefore,we consider the introduction of Sr^(2+)to cointercalate with choline chloride.Here,we synthes-ized vanadium pentoxide cointercalated with Sr^(2+)and choline ions(Ch^(+))via a simple hydrothermal method.The electro-chemical performance shows an enhanced cathode capacitance contribution of Sr&Ch-V_(2)O_(5),with a discharge capacity of 526 mAh·g^(-1)at 0.1 A·g^(-1)and a retention rate of 78.9%after 2000 cycles at 5 A·g^(-1).This work offers a novel strategy for the design of organic‒inorganic hybrid materials for use as cathodes in aqueous zinc-ion batteries.展开更多
For rechargeable aqueous zinc-ion batteries(ZIBs),the design of nanocomposites comprised of electrochemically active materials and carbon materials with novel structures has great prom-ise in addressing the issue of e...For rechargeable aqueous zinc-ion batteries(ZIBs),the design of nanocomposites comprised of electrochemically active materials and carbon materials with novel structures has great prom-ise in addressing the issue of electrical conductivity and structural stability in the electrode materials during electrochemical cycling.We report the production of a novel flexible electrode material,by anchoring MnO_(2) nanosheets on a B,N co-doped carbon nanotube ar-ray(BNCNTs)grown on carbon cloth(BNCNTs@MnO_(2)),which was fabricated by in-situ pyrolysis and hydrothermal growth.The generated BNCNTs were strongly bonded to the surface of the car-bon fibers in the carbon cloth which provides both excellent elec-tron transport and ion diffusion,and improves the stability and dur-ability of the cathode.Importantly,the BNCNTs offer more active sites for the hydrothermal growth of MnO_(2),ensuring a uniform dis-tribution.Electrochemical tests show that BNCNTs@MnO_(2) delivers a high specific capacity of 310.7 mAh g^(−1) at 0.1 A g^(−1),along with excellent rate capability and outstanding cycling stability,with a 79.7% capacity retention after 8000 cycles at 3 A g^(−1).展开更多
To address challenges related to the intermittency of renewable energy sources,aqueous potassium-ion batteries(AKIBs)are a promising and sustainable alternative to conventional systems for large-scale energy storage.T...To address challenges related to the intermittency of renewable energy sources,aqueous potassium-ion batteries(AKIBs)are a promising and sustainable alternative to conventional systems for large-scale energy storage.To enable their practical application,maximizing energy density and longevity while minimizing production and material costs is a key goal.In this work,we propose an AKIB consisting only of abundant and cost-efficient materials,which delivers a high energy density of more than 70 Wh kg^(-1).We combine simple strategies to stabilize the Mn-rich Prussian blue analog cathode by Fe-doping,improving the crystallinity,and tuning the electrolyte composition without employing expensive water-in-salt electrolytes.Using a mixed 2.5 M Ca(NO_(3))_(2)+1.5 M KNO_(3)electrolyte,we assemble a novel AKIB with a Fe-doped manganese hexacyanoferrate cathode and an organic poly(naphthalene-4-formylethylenediamine)anode.Besides a high energy density,the full cell delivers a specific capacity of approximately 60 mAhg^(-1),a power density of 5000 W kg^(-1),and 80% capacity retention after 600 cycles.展开更多
Aqueous sodium-ion batteries(ASIBs)have garnered significant attention as promising candidates for large-scale energy storage applications.This interest is primarily due to their abundant resource availability,environ...Aqueous sodium-ion batteries(ASIBs)have garnered significant attention as promising candidates for large-scale energy storage applications.This interest is primarily due to their abundant resource availability,environmental friendliness,cost-effectiveness,and high safety.However,their electrochemical performance is limited by the thermodynamic properties of water molecules,resulting in inadequate cycling stability and insufficient specific energy density.To address these challenges,this study developed a hydrogen-bond enhanced urea-glycerol eutectic electrolyte(UGE)to expand the electrochemical stability window(ESW)of the electrolyte and suppress corresponding side reactions.The eutectic component disrupts the original hydrogen bonding network in water,creating a new,enhanced network that reduces the activity of free water and forms a uniform,dense passivation layer on the anode.As a result,the optimized composition of UGE exhibits a broad ESW of up to 3 V(-1.44 to 1.6 V vs.Ag/AgCl).The Prussian blue(PB)/UGE/NaTi_(2)(PO_(4))_(3)@C full cell exhibits an exceptionally long lifespan of 10,000 cycles at 10 C.This study introduces a low-cost,ultra-long-life ASIB system,utilizing a green and economical eutectic electrolyte,which expands the use of eutectic electrolytes in aqueous batteries and opens a new research horizon for constructing efficient electrochemical energy storage and conversion.展开更多
High-performance aqueous zinc(Zn)-ion batteries(AZIBs)have emerged as one of the greatest favorable candidates for next-generation energy storage systems because of their low cost,sustainability,high safety,and eco-fr...High-performance aqueous zinc(Zn)-ion batteries(AZIBs)have emerged as one of the greatest favorable candidates for next-generation energy storage systems because of their low cost,sustainability,high safety,and eco-friendliness.In this report,we prepared magnesium vanadate(MgVO)-based nanostructures by a facile single-step solvothermal method with varying experimental reaction times(1,3,and 6 h)and investigated the effect of the reaction time on the morphology and layered structure for MgVO-based compounds.The newly prepared MgVO-1 h,MgVO-3 h and MgVO-6 h samples were used as cathode materials for AZIBs.Compared to the MgVO-1 h and MgVO-6 h cathodes,the MgVO-3 h cathode showed a higher specific capacity of 492.74 mA h g^(-1) at 1 A g^(-1) over 500 cycles and excellent rate behavior(291.58 mA h g^(-1) at 3.75 A g^(-1))with high cycling stability(116%)over 2000 cycles at 5 A g^(-1).Moreover,the MgVO-3 h electrode exhibited good electrochemical performance owing to its fast Zn-ion diffusion kinetics.Additionally,various ex-situ analyses confirmed that the MgVO-3 h cathode displayed excellent insertion/extraction of Zn^(2+)ions during charge and discharge processes.This study offers an efficient method for the synthesis of nanostructured MgVO-based cathode materials for high-performance AZIBs.展开更多
Zwitterionic materials with covalently tethered cations and anions have great potential as electrolyte additives for aqueous Znion batteries(AZIBs)owing to their appealing intrinsic characteristics and merits.However,...Zwitterionic materials with covalently tethered cations and anions have great potential as electrolyte additives for aqueous Znion batteries(AZIBs)owing to their appealing intrinsic characteristics and merits.However,the impact of cationic and anionic moieties within zwitterions on enhancing the performance of AZIBs remains poorly understood.Herein,three zwitterions,namely carboxybetaine methacrylate(CBMA),sulfobetaine methacrylate(SBMA),and 2-methacryloyloxyethyl phosphorylcholine(MPC),were selected as additives to investigate their different action mechanisms in AZIBs.All three zwitterions have the same quaternary ammonium as the positively charged group,but having different negatively charged segments,i.e.,carboxylate,sulfonate,and phosphate for CBMA,SBMA,and MPC,respectively.By systematical electrochemical analysis,these zwitterions all contribute to enhanced cycling life of Zn anode,with MPC having the most pronounced effect,which can be attributed to the synergistic effect of positively quaternary ammonium group and unique negatively phosphate groups.As a result,the Zn//Zn cell with MPC as additive in ZnSO_(4)electrolyte exhibits an ultralong lifespan over 5000 h.This work proposes new insights to the future development of multifunctional zwitterionic additives for remarkably stable AZIBs.展开更多
Metallic Tin(Sn)is an attractive anode material for aqueous batteries due to its high theoretical capacity,low redox potential and strong corrosion resistance.However,the uneven deposition of Sn and severe interfacial...Metallic Tin(Sn)is an attractive anode material for aqueous batteries due to its high theoretical capacity,low redox potential and strong corrosion resistance.However,the uneven deposition of Sn and severe interfacial side reactions limit its wide application.Herein,a nanoscale fullerene(C_(60))coating on a Sn anode has been developed by the physical evaporation deposition technology to eliminate complicated side reactions.This coating improves the homogeneity of the Sn anode surface electric field,and reduces the formation of“dead tin”.As a result,the C_(60)-coated Sn anode can maintain a low voltage hysteresis cycle for more than 850 h.The aqueous Ni O//Sn cell encapsulated by this anode achieves a maximum specific discharge capacity of 79.3 m Ah.g^(-1)at a current density of 1.5 A.g^(-1).Moreover,as a proof of concept,we propose an aqueous electrochromic Sn battery,which can realize energy storage and reversibly color switch,yielding favorable optical modulation of about 61.1%at 523 nm.This work has developed a cost-effective and high-reliability interfacial engineering strategy that boosts practical uses of Sn metal electrodes,as well as promotes the application of innovative aqueous rechargeable batteries with electrochromic properties.展开更多
The exosomes hold significant potential in disease diagnosis and therapeutic interventions.The objective of this study was to investigate the potential of aqueous two-phase systems(ATPSs)for the separation of bovine m...The exosomes hold significant potential in disease diagnosis and therapeutic interventions.The objective of this study was to investigate the potential of aqueous two-phase systems(ATPSs)for the separation of bovine milk exosomes.The milk exosome partition behaviors and bovine milk separation were investigated,and the ATPSs and bovine milk whey addition was optimized.The optimal separation conditions were identified as 16%(mass)polyethylene glycol 4000,10%(mass)dipotassium phosphate,and 1%(mass)enzymatic hydrolysis bovine milk whey.During the separation process,bovine milk exosomes were predominantly enriched in the interphase,while protein impurities were primarily found in the bottom phase.The process yielded bovine milk exosomes of 2.0×10^(11)particles per ml whey with high purity(staining rate>90%,7.01×10^(10)particles per mg protein)and high uniformity(polydispersity index<0.03).The isolated exosomes were characterized and identified by transmission electron microscopy,zeta potential and size distribution.The results demonstrated aqueous two-phase extraction possesses a robust capability for the enrichment and separation of exosomes directly from bovine milk whey,presenting a novel approach for the large-scale isolation of exosomes.展开更多
α-MnO_(2) is a potential positive electrode material for aqueous zinc-ion batteries,but its electrochemical performance of zinc storage requires further improvement.In this paper,potassium ion-doped manganese dioxide...α-MnO_(2) is a potential positive electrode material for aqueous zinc-ion batteries,but its electrochemical performance of zinc storage requires further improvement.In this paper,potassium ion-doped manganese dioxide nanoscrolls(K-MnO_(2))with oxygen vacancy were synthesized by a one-step hydrothermal method.It was observed that the electrochemical specific capacity was 250.9 m Ah/g at a current density of 0.2 C,which was better than the existing commercialα-MnO_(2).At a high current of 1 C,these batteries demonstrate improved cycle stability.Synchrotron radiation and other experiments as well as DFT theoretical calculations provided additional evidence that K doping was efficient in regulating the metal bond type and the mean charge regulation of covalent bonds with oxygen atoms in MnO_(2).When Mn-O and Mn-K bonds are present,K-MnO_(2) showed outstanding adsorption of Zn~(2+)and further enhanced the Zn^(2+)embedding process.Simultaneously,oxygen defects caused by doping boosted the development of the nanoscroll structure,leading to an increase in active sites available for electrochemical reactions and subsequently enhancing the electrical conductivity ofα-MnO_(2).This study exhibits the potential of optimizing materials based on manganese with the introduction of a potassium doping strategy,resulting in improved performance for aquatic zinc-ion batteries,and presents novel perspectives for related research.展开更多
Bismuth oxybromide(BiOBr)is being actively researched as a promising anode material for aqueous batteries due to its unique layered structure,which theoretically allows for efficient ion diffusion.However,current stud...Bismuth oxybromide(BiOBr)is being actively researched as a promising anode material for aqueous batteries due to its unique layered structure,which theoretically allows for efficient ion diffusion.However,current studies have come across many challenges,e.g.serious capacity degradation and inferior rate capability caused by severe structural collapse and sluggish reaction kinetics,highlighting the need for further improvement in efficient utilization of the layered space.Herein,this study employs a novel crystal orientation regulation to enhance the performance of BiOBr electrode by a facile solvothermal method to efficiently utilize the interlayered structu re.The delicate design of BiOBr(BOB)succeeds in maximizing the exposed(110)crystalline plane,providing efficient pathways for ion diffusion and streamlining the mass migration process.Moreover,the optimized band structure and the formation of oxygen vacancies in this designed material have been found,enabling high electrical conductivity,accelerating the charge transfer process and facilitating rapid reaction rate.Owing to the simultaneously enhanced mass transfer at the interlayers and the charge transfer during the phase conversion process,the BOB-110 electrode exhibits exceptional electrochemical performances,boasting impressive charge storage and rate capability(159 mAh g^(-1)at 4 A g^(-1)),and outstanding cycling stability of capacity retention around 75%(119 mAh g^(-1))even after 1000 cycles at a high current density of 4 A g^(-1).These findings underscore the substantial potential of BiOBr electrodes for future energy storage devices such as wearable electronics and power grids where the power output,lifespan,and affordability are simultaneously required.展开更多
Aqueous zinc-ion batteries encounter enormous challenges such as Zn dendrites and parasitic reactions.Separator modification is a highly effective strategy to address these issues.With the advantages of low cost,nonto...Aqueous zinc-ion batteries encounter enormous challenges such as Zn dendrites and parasitic reactions.Separator modification is a highly effective strategy to address these issues.With the advantages of low cost,nontoxicity,biodegradability,good film-forming ability,superior hydro phi licity,and rich functional groups,chitosan is an ideal matrix for constructing separators.However,the presence of positive charges within chitosan in weakly acidic electrolytes is unfavorable for dendrite inhibition.Herein,Schiff base reaction is introduced to modify chitosan matrix,transforming its charge polarity from positive to negative.Additionally,NbN with excellent zincophilicity is coated onto chitosan matrix,forming a Janus separator with low thickness of 19μm and considerably improved mechanical properties.The resultant separator can promote the transport of Zn^(2+)ions while triggering a repulsive shielding effect against anions,therefore dramatically enhancing Zn^(2+)ion transfer number from 0.28 to 0.49.This separator can also facilitate desolvation process,improve exchange current density,restrict two-dimensional Zn^(2+)ion diffusion,and enhance electrochemical kinetics,contributing to significantly inhibited dendrite growth,by-product formation,and hydrogen evolution.Consequently,stable and reversible Zn stripping/plating process is enabled for over 2500 h at 2 mA cm^(-2)and 2 mAh cm^(-2).And great rate capability and excellent cyclability can be achieved for full batteries even under harsh conditions.This work provides new insights into separator design for Zn-based batteries.展开更多
Aqueous Zn-ion batteries have attracted much attention due to their unique high safety and low-cost merits.However,their practical applications are at a slow pace due to their short cycle life,which fundamentally resu...Aqueous Zn-ion batteries have attracted much attention due to their unique high safety and low-cost merits.However,their practical applications are at a slow pace due to their short cycle life,which fundamentally results from the instability of the positive/negative electrode interface in the traditional dilute aqueous electrolytes with high water activity.Developing highly concentrated electrolyte(HCE)has been considered as an effective solution.Unlike previous studies of single salt-based HCE(SSHCE),herein,a new dual-salt HCE(15 m ZnCl_(2)+10 m NH_(4)NH_(2)SO_(3)DS-HCE)was proposed for the first time.DS-HCE was proven to simultaneously possess higher conductivity than traditional dilute electrolytes and ultralow water activity of SS-HCE by the regulation of dual high-concentration salts on the solvation structure,which renders the Zn‖Zn symmetric cell the record-long cycling life of 2200 h compared with those with SS-HCE(30 m ZnCl_(2),300 h)and other reported HCEs.Additionally,the Zn‖NH_(4)V_(4)O_(10)full cell with DS-HCE demonstrated impressed rate capability within a wide-range current densities from 0.1 to 10 A g^(-1).Moreover,at the high current density of 5 A g^(-1),the full cell shows almost100%capacity retention after 4000 cycles,which indicates the promising future of the DS-HCE system for long-duration aqueous Zn-ion batteries.展开更多
基金Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515012087)funded by Science and Technology Projects in Guangzhou(Grant No.2024A04J3267)the Fundamental Research Funds for the Central Universities(Grant No.21624411).
文摘Aqueous ammonium-ion batteries(AAIBs)have emerged as a promising candidate for grid-scale energy stor-age owing to their intrinsic safety(e.g.,dendrite-free and nonflammable),environmental friendliness,and potential for fast charge/discharge capability.Extensive research has been conducted in recent years to explore high-performance ammonium-ion storage materials and the associated electrochemistry to advance the commercialization of AAIBs.Therefore,it is necessary to review the progress in ammonium-ion storage materials and related electrochemical theories to guide further research on AAIBs.Herein,we systematically summarize the advanced electrode materials for AAIBs by introducing the physicochemical characteristics and ammonium-ion storage behaviors of various electrode materials,such as Prussian blue analogs,organic polymers,and metal oxides,discussing feasible material-design strategies to enhance their ammonium-ion storage performance,and outlining the future development prospects of AAIBs.This review aims to provide valuable insights into the design of advanced electrode materials for high-performance AAIBs.
基金supported by the National Natural Science Foundation of China(Grant No.22461142135,22479046)the Key Programs funded by Science and Technology Department of Shaanxi Provincial Government(Grant:No.2024GX-YBXM-336)+2 种基金the Xi’an Municipal Bureau of Science and Technology(Grant:No.2023JHGXRC-0097)the Yulin Science and Technology Bureau(Grant:No.2024-CXY-161)the Xi’an Beilin District Science and Technology and Industrial Information Bureau(Grant:No.GX2440)。
文摘The development of aqueous zinc-ion batteries is crucial for advancing sustainable energy storage technologies.However,their widespread application is hindered by Zn corrosion and uncontrolled Zn dendrite growth.One promising approach involves creating a functional organic-inorganic interface on the Zn surface.Traditional binders,such as polyvinylidene fluoride(PVDF),fail to regulate water activity and ion migration,limiting the effectiveness of the interface.Herein,we introduce an aqueous dual ionic/electronic conducting binder,poly(3,4-ethylenedioxythiophene):polystyrene sulfonate(PEDOT:PSS),to build a water-scarce,Zn^(2+)-enriched interface.Our findings demonstrate that PEDOT:PSS not only facilitates uniform distribution of inorganic fillers,forming a cohesive and compact interface,but also significantly enhances mechanical integrity.Additionally,the sulfonate groups within the binder matrix disrupt the hydrogen bond network of water molecules,reducing water activity and lowering the desolvation energy barrier of Zn(H_(2)O)_(6)^(2+)clusters.Therefore,the transference number of Zn^(2+)is elevated to 0.81(compared to 0.61 with PVDF),mitigating undesirable side reactions and enabling dendrite-less Zn deposition.Consequently,symmetrical Zn||Zn cells with PEDOT:PSS binder demonstrate a lifetime with 4.2 times longer than those with PVDF.This work underscores the critical role of binder chemistry in stabilizing metal anodes for aqueous batteries.
基金supported by the Natural Science Foundation of Liaoning Province(2023-MS-115).
文摘Aqueous ion storage systems have motivated great interest by virtue of low reduction,high eco-sustainability and safety.Among various cathode candidates,transition metal compounds are featured with easy dissolution in aqueous solutions and inferior conductivity,which severely hinder their application.Herein,advantages are taken of the“conveyor effect”of conjugated polyaniline to prepare an oxygen defective tungstate-linked polyaniline(O_(d)-WOP)material with chrysanthemum-like microstructure.By virtue of the high electronic conductivity derived from conductive conjugated polyaniline skeleton,unbalanced charge distribution triggered by the defective structure,and reversibly rapid ion(de)intercalation benefited from the open framework with porous chrysanthemum-like microstructure,it delivers outstanding rate capability with a maximum specific capacity of 162.2 mAh g^(-1)and great cycle stability for storing NH_(4)^(+).Additionally,it also adopts a high reversible capacity of 140.4 mAh g^(-1)and outstanding cycling performance to store Ca^(2+).Consequently,the assembled O_(d)-WOP//PTCDI flexible aqueous ammonium ion batteries and calcium ion batteries exhibit superior capacities,energy densities and flexibilities.O_(d)-WOP achieves the NH_(4)^(+) and Ca^(2+)storage capability by interacting with them through hydrogen and ionic bonds,respectively.The deep insight from this work sheds light upon a novel strategy to excavate greater potential of transition metal compounds for aqueous ion batteries.
基金Supported by Jilin Provincial Scientific and Technological Development Program(20230508109RC,20230201051GX,20220201091GX)National Natural Science Foundation of China(62035013,61275235)。
文摘Aqueous zinc-ion electrochromic(EC)technology,boasting the capability to fulfill both safety and cost-ef⁃fectiveness requirements,is garnering extensive attention in various application areas including smart windows,thermal management,displays,and camouflage.However,typical inorganic EC materials,such as tungsten oxides(WO_(3)),of⁃ten suffer from slow ion diffusion kinetics and limited optical contrast within the aqueous Zn^(2+)electrolyte because of the large size and strong Coulombic interactions of the Zn^(2+),which limits their wide applicability.Here,ordered WO_(3)nanowire films,constructed by a one-step grazing angle deposition method,is demonstrated to boost the response speed and optical contrast during EC phenomena.Compared with dense films,the ordered WO_(3)nanowire films with a porosity of 44.6%demonstrate anti-reflective property and excellent comprehensive EC performance,including fast response time(3.6 s and 1.2 s for coloring and bleaching,respectively),large optical contrast(66.6%at 700 nm)and high col⁃oration efficiency(64.3 cm^(2)·C^(-1)).A large-area prototype EC device(17 cm×12 cm)with fast color-switching is also successfully achieved.Mechanistic studies show that the improved performance is mainly due to the ordered porous nanowire structures,which provides direct electron transfer paths and sufficient interfacial contacts,thus simultaneously enhancing the electrochemical activity and fast redox kinetics.This study provides a simple and effective strategy to im⁃prove the performance of tungsten oxide-based aqueous zinc ion EC materials and devices.
基金supported by the Exchange Program of Highend Foreign Experts of Ministry of Science and Technology of People’s Republic of China(No.G2023041003L)the Natural Science Foundation of Shaanxi Provincial Department of Education(No.23JK0367)+1 种基金the Scientific Research Startup Program for Introduced Talents of Shaanxi University of Technology(Nos.SLGRCQD2208,SLGRCQD2306,SLGRCQD2133)Contaminated Soil Remediation and Resource Utilization Innovation Team at Shaanxi University of Technology。
文摘As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability of cathode materials under high-voltage conditions remains a critical challenge in improving its energy density.This review systematically explores the failure mechanisms of high-voltage cathode materials in AZIBs,including hydrogen evolution reaction,phase transformation and dissolution phenomena.To address these challenges,we propose a range of advanced strategies aimed at improving the stability of cathode materials.These strategies include surface coating and doping techniques designed to fortify the surface properties and structure integrity of the cathode materials under high-voltage conditions.Additionally,we emphasize the importance of designing antioxidant electrolytes,with a focus on understanding and optimizing electrolyte decomposition mechanisms.The review also highlights the significance of modifying conductive agents and employing innovative separators to further enhance the stability of AZIBs.By integrating these cutting-edge approaches,this review anticipates substantial advancements in the stability of high-voltage cathode materials,paving the way for the broader application and development of AZIBs in energy storage.
基金supported by the Battery Energy Storage Testing Center of Chongqing through their provision of testing support and technical assistance。
文摘Aqueous zinc-ion batteries(AZIBs)are gaining attention owing to their affordability,high safety,and high energy density,making them a promising solution for large-scale energy storage.However,their performance is hampered by the instability of both the anode-electrolyte interface and the cathode-electrolyte interface.The use of sodium gluconate(SG),an organic sodium salt with multiple hydroxyl groups,as an electrolyte additive is suggested.Experimental and theoretical analyses demonstrate that Na^(+)from SG can intercalate and deintercalate within the associated V_(2)O_(5) cathode during in situ electrochemical processes.This action supports the layered structure of V_(2)O_(5),prevents structural collapse and phase transitions,and enhances Zn^(2+)diffusion kinetics.Additionally,the gluconate anion disrupts the original Zn^(2+)solvation structure,mitigates water-induced side reactions,and suppresses Zn dendrite growth.The synchronous regulation of both the V_(2)O_(5) cathode and Zn anode by the SG additive leads to considerable performance improvements.Zn‖Zn symmetric batteries demonstrate a cycle life exceeding 2800 h at 0.5 mA cm^(-2)and 1 mAh cm^(-2).In Zn‖V_(2)O_(5) full batteries,a high specific capacity of 288.92 mAh g^(-1)and capacity retention of 82.29%are maintained over 1000 cycles at a current density of 2 A g^(-1).This multifunctional additive strategy offers a new pathway for the practical application of AZIBs.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant No.22035001 and No.52233005.
文摘To achieve the target of carbon neutrality,it is crucial to develop an efficient and green synthesis methodology with good atomic economy to achieve sufficient utilization of energy and sustainable development.Photoinduced electron transfer reversible addition-fragmentation chain-transfer(PET-RAFT)polymerization is a precise methodology for constructing polymers with well-defined structures.However,conventional semiconductor-mediated PET-RAFT polymerization still has considerable limitations in terms of efficiency as well as the polymerization environment.Herein,sulfur-doped carbonized polymer dots(CPDs)were hydrothermally synthesized for catalysis of aqueous PET-RAFT polymerization at unprecedented efficiency with a highest propagation rate of 5.05 h-1.The resulting polymers have well-controlled molecular weight and narrow molecular weight dispersion(Ð<1.10).Based on the optoelectronic characterizations,we obtained insights into the photoinduced electron transfer process and proposed the mechanism for CPD-mediated PET-RAFT polymerization.In addition,as-synthesized CPDs for PET-RAFT polymerization were also demonstrated to be suitable for a wide range of light sources(blue/green/solar irradiation),numerous monomers,low catalyst loading(low as 0.01 mg mL^(-1)),and multiple polar solvent environments,all of which allowed to achieve efficiencies much higher than those of existing semiconductor-mediated methods.Finally,the CPDs were confirmed to be non-cytotoxic and catalyzed PET-RAFT polymerization successfully in cell culture media,indicating broad prospects in biomedical fields.
基金support from the National Natural Science Foundation of China(22209089,22178187)Natural Science Foundation of Shandong Province(ZR2022QB048,ZR2021MB006)+2 种基金Excellent Youth Science Foundation of Shandong Province(Overseas)(2023HWYQ-089)the Taishan Scholars Program of Shandong Province(tsqn201909091)Open Research Fund of School of Chemistry and Chemical Engineering,Henan Normal University.
文摘Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growth and spontaneous shuttle effect of active species have prohibited their practical implementation.Herein,a double-layered protective film based on zinc-ethylenediamine tetramethylene phosphonic acid(ZEA)artificial film and ZnF2-rich solid electrolyte interphase(SEI)layer has been successfully fabricated on the zinc metal anode via electrode/electrolyte synergistic optimization.The ZEA-based artificial film shows strong affinity for the ZnF2-rich SEI layer,therefore effectively suppressing the SEI breakage and facilitating the construction of double-layered protective film on the zinc metal anode.Such double-layered architecture not only modulates Zn2+flux and suppresses the zinc dendrite growth,but also blocks the direct contact between the metal anode and electrolyte,thus mitigating the corrosion from the active species.When employing optimized metal anodes and electrolytes,the as-developed zinc-(dual)halogen batteries present high areal capacity and satisfactory cycling stability.This work provides a new avenue for developing aqueous zinc-(dual)halogen batteries.
文摘V_(2)O_(5)·nH_(2)O has been widely studied for aqueous zinc-ion batteries.The intercalation of inorganic ions has been used as a feasible method to improve the capacity of vanadium pentoxide.To further improve the stability,organic small molecule choline chloride intercalation is used to expand the spacing of the vanadium pentoxide layers and increase the cycling stability.Therefore,we consider the introduction of Sr^(2+)to cointercalate with choline chloride.Here,we synthes-ized vanadium pentoxide cointercalated with Sr^(2+)and choline ions(Ch^(+))via a simple hydrothermal method.The electro-chemical performance shows an enhanced cathode capacitance contribution of Sr&Ch-V_(2)O_(5),with a discharge capacity of 526 mAh·g^(-1)at 0.1 A·g^(-1)and a retention rate of 78.9%after 2000 cycles at 5 A·g^(-1).This work offers a novel strategy for the design of organic‒inorganic hybrid materials for use as cathodes in aqueous zinc-ion batteries.
基金financial support from projects funded by the National Natural Science Foundation of China(52172038,22179017)the National Key Research and Development Program of China(2022YFB4101600,2022YFB4101601)。
文摘For rechargeable aqueous zinc-ion batteries(ZIBs),the design of nanocomposites comprised of electrochemically active materials and carbon materials with novel structures has great prom-ise in addressing the issue of electrical conductivity and structural stability in the electrode materials during electrochemical cycling.We report the production of a novel flexible electrode material,by anchoring MnO_(2) nanosheets on a B,N co-doped carbon nanotube ar-ray(BNCNTs)grown on carbon cloth(BNCNTs@MnO_(2)),which was fabricated by in-situ pyrolysis and hydrothermal growth.The generated BNCNTs were strongly bonded to the surface of the car-bon fibers in the carbon cloth which provides both excellent elec-tron transport and ion diffusion,and improves the stability and dur-ability of the cathode.Importantly,the BNCNTs offer more active sites for the hydrothermal growth of MnO_(2),ensuring a uniform dis-tribution.Electrochemical tests show that BNCNTs@MnO_(2) delivers a high specific capacity of 310.7 mAh g^(−1) at 0.1 A g^(−1),along with excellent rate capability and outstanding cycling stability,with a 79.7% capacity retention after 8000 cycles at 3 A g^(−1).
基金Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)under Germany’s Excellence Strategy-EXC 2089/1-390776260(e-conversion)for fundingfinancial support from TUM Innovation Network for Artificial Intelligence powered Multifunctional Material Design(ARTEMIS)。
文摘To address challenges related to the intermittency of renewable energy sources,aqueous potassium-ion batteries(AKIBs)are a promising and sustainable alternative to conventional systems for large-scale energy storage.To enable their practical application,maximizing energy density and longevity while minimizing production and material costs is a key goal.In this work,we propose an AKIB consisting only of abundant and cost-efficient materials,which delivers a high energy density of more than 70 Wh kg^(-1).We combine simple strategies to stabilize the Mn-rich Prussian blue analog cathode by Fe-doping,improving the crystallinity,and tuning the electrolyte composition without employing expensive water-in-salt electrolytes.Using a mixed 2.5 M Ca(NO_(3))_(2)+1.5 M KNO_(3)electrolyte,we assemble a novel AKIB with a Fe-doped manganese hexacyanoferrate cathode and an organic poly(naphthalene-4-formylethylenediamine)anode.Besides a high energy density,the full cell delivers a specific capacity of approximately 60 mAhg^(-1),a power density of 5000 W kg^(-1),and 80% capacity retention after 600 cycles.
基金support by the Department of Science&Technology of Zhejiang Province under grant No.2024C01095the Fundamental Research Funds for the Provincial Universities of Zhejiang under grant No.RF-C2022008the National Natural Science Foundation of China(NSFC)under grant Nos.U20A20253,52372235,and 22279116。
文摘Aqueous sodium-ion batteries(ASIBs)have garnered significant attention as promising candidates for large-scale energy storage applications.This interest is primarily due to their abundant resource availability,environmental friendliness,cost-effectiveness,and high safety.However,their electrochemical performance is limited by the thermodynamic properties of water molecules,resulting in inadequate cycling stability and insufficient specific energy density.To address these challenges,this study developed a hydrogen-bond enhanced urea-glycerol eutectic electrolyte(UGE)to expand the electrochemical stability window(ESW)of the electrolyte and suppress corresponding side reactions.The eutectic component disrupts the original hydrogen bonding network in water,creating a new,enhanced network that reduces the activity of free water and forms a uniform,dense passivation layer on the anode.As a result,the optimized composition of UGE exhibits a broad ESW of up to 3 V(-1.44 to 1.6 V vs.Ag/AgCl).The Prussian blue(PB)/UGE/NaTi_(2)(PO_(4))_(3)@C full cell exhibits an exceptionally long lifespan of 10,000 cycles at 10 C.This study introduces a low-cost,ultra-long-life ASIB system,utilizing a green and economical eutectic electrolyte,which expands the use of eutectic electrolytes in aqueous batteries and opens a new research horizon for constructing efficient electrochemical energy storage and conversion.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIP)(No.2018R1A6A1A03025708).
文摘High-performance aqueous zinc(Zn)-ion batteries(AZIBs)have emerged as one of the greatest favorable candidates for next-generation energy storage systems because of their low cost,sustainability,high safety,and eco-friendliness.In this report,we prepared magnesium vanadate(MgVO)-based nanostructures by a facile single-step solvothermal method with varying experimental reaction times(1,3,and 6 h)and investigated the effect of the reaction time on the morphology and layered structure for MgVO-based compounds.The newly prepared MgVO-1 h,MgVO-3 h and MgVO-6 h samples were used as cathode materials for AZIBs.Compared to the MgVO-1 h and MgVO-6 h cathodes,the MgVO-3 h cathode showed a higher specific capacity of 492.74 mA h g^(-1) at 1 A g^(-1) over 500 cycles and excellent rate behavior(291.58 mA h g^(-1) at 3.75 A g^(-1))with high cycling stability(116%)over 2000 cycles at 5 A g^(-1).Moreover,the MgVO-3 h electrode exhibited good electrochemical performance owing to its fast Zn-ion diffusion kinetics.Additionally,various ex-situ analyses confirmed that the MgVO-3 h cathode displayed excellent insertion/extraction of Zn^(2+)ions during charge and discharge processes.This study offers an efficient method for the synthesis of nanostructured MgVO-based cathode materials for high-performance AZIBs.
基金supported by the Australian Research Council(LP220100036)the National Key Research and Development Program(2022YFB2502104 and 2022YFA1602700)+3 种基金the Key Research and Development Program of Jiangsu Provincial Department of Science and Technology of China(BE2022332)the Jiangsu Carbon Peak Carbon Neutralization Science and Technology Innovation Special Fund(BE2022605)the Australian Research Council for his Discovery Early Career Researcher Award fellowship(DE230101105)the China Scholarship Council(CSC,grant no.202306190185)for funding a scholarship。
文摘Zwitterionic materials with covalently tethered cations and anions have great potential as electrolyte additives for aqueous Znion batteries(AZIBs)owing to their appealing intrinsic characteristics and merits.However,the impact of cationic and anionic moieties within zwitterions on enhancing the performance of AZIBs remains poorly understood.Herein,three zwitterions,namely carboxybetaine methacrylate(CBMA),sulfobetaine methacrylate(SBMA),and 2-methacryloyloxyethyl phosphorylcholine(MPC),were selected as additives to investigate their different action mechanisms in AZIBs.All three zwitterions have the same quaternary ammonium as the positively charged group,but having different negatively charged segments,i.e.,carboxylate,sulfonate,and phosphate for CBMA,SBMA,and MPC,respectively.By systematical electrochemical analysis,these zwitterions all contribute to enhanced cycling life of Zn anode,with MPC having the most pronounced effect,which can be attributed to the synergistic effect of positively quaternary ammonium group and unique negatively phosphate groups.As a result,the Zn//Zn cell with MPC as additive in ZnSO_(4)electrolyte exhibits an ultralong lifespan over 5000 h.This work proposes new insights to the future development of multifunctional zwitterionic additives for remarkably stable AZIBs.
基金financially supported by the Science and Technology Project of Xiamen City(No.3502Z202372049)the Educational and Scientific Research Project for Middle-Aged and Young Teachers in Fujian Province(No.JAT220333)+3 种基金the Science and technology projects of Xiamen University of Technology(No.YKJ22058R)the National Natural Science Foundation of China Joint Fund for Cross-strait Scientific and Technological Cooperation(No.U2005212)the Major Project of Science and Technology of Xiamen City(Nos.3502ZCQ20201001and 3502Z20201003)the Key Technologies Innovation and Industrialization Projects of Fujian Province(No.2023XQ022)。
文摘Metallic Tin(Sn)is an attractive anode material for aqueous batteries due to its high theoretical capacity,low redox potential and strong corrosion resistance.However,the uneven deposition of Sn and severe interfacial side reactions limit its wide application.Herein,a nanoscale fullerene(C_(60))coating on a Sn anode has been developed by the physical evaporation deposition technology to eliminate complicated side reactions.This coating improves the homogeneity of the Sn anode surface electric field,and reduces the formation of“dead tin”.As a result,the C_(60)-coated Sn anode can maintain a low voltage hysteresis cycle for more than 850 h.The aqueous Ni O//Sn cell encapsulated by this anode achieves a maximum specific discharge capacity of 79.3 m Ah.g^(-1)at a current density of 1.5 A.g^(-1).Moreover,as a proof of concept,we propose an aqueous electrochromic Sn battery,which can realize energy storage and reversibly color switch,yielding favorable optical modulation of about 61.1%at 523 nm.This work has developed a cost-effective and high-reliability interfacial engineering strategy that boosts practical uses of Sn metal electrodes,as well as promotes the application of innovative aqueous rechargeable batteries with electrochromic properties.
基金supported by the National Natural Science Foundation of China(22378350).
文摘The exosomes hold significant potential in disease diagnosis and therapeutic interventions.The objective of this study was to investigate the potential of aqueous two-phase systems(ATPSs)for the separation of bovine milk exosomes.The milk exosome partition behaviors and bovine milk separation were investigated,and the ATPSs and bovine milk whey addition was optimized.The optimal separation conditions were identified as 16%(mass)polyethylene glycol 4000,10%(mass)dipotassium phosphate,and 1%(mass)enzymatic hydrolysis bovine milk whey.During the separation process,bovine milk exosomes were predominantly enriched in the interphase,while protein impurities were primarily found in the bottom phase.The process yielded bovine milk exosomes of 2.0×10^(11)particles per ml whey with high purity(staining rate>90%,7.01×10^(10)particles per mg protein)and high uniformity(polydispersity index<0.03).The isolated exosomes were characterized and identified by transmission electron microscopy,zeta potential and size distribution.The results demonstrated aqueous two-phase extraction possesses a robust capability for the enrichment and separation of exosomes directly from bovine milk whey,presenting a novel approach for the large-scale isolation of exosomes.
基金supported by Beijing Synchrotron Radiation 4B9A and 1W2A Work Station in China,National Natural Science Foundation of China(No.52250710161)。
文摘α-MnO_(2) is a potential positive electrode material for aqueous zinc-ion batteries,but its electrochemical performance of zinc storage requires further improvement.In this paper,potassium ion-doped manganese dioxide nanoscrolls(K-MnO_(2))with oxygen vacancy were synthesized by a one-step hydrothermal method.It was observed that the electrochemical specific capacity was 250.9 m Ah/g at a current density of 0.2 C,which was better than the existing commercialα-MnO_(2).At a high current of 1 C,these batteries demonstrate improved cycle stability.Synchrotron radiation and other experiments as well as DFT theoretical calculations provided additional evidence that K doping was efficient in regulating the metal bond type and the mean charge regulation of covalent bonds with oxygen atoms in MnO_(2).When Mn-O and Mn-K bonds are present,K-MnO_(2) showed outstanding adsorption of Zn~(2+)and further enhanced the Zn^(2+)embedding process.Simultaneously,oxygen defects caused by doping boosted the development of the nanoscroll structure,leading to an increase in active sites available for electrochemical reactions and subsequently enhancing the electrical conductivity ofα-MnO_(2).This study exhibits the potential of optimizing materials based on manganese with the introduction of a potassium doping strategy,resulting in improved performance for aquatic zinc-ion batteries,and presents novel perspectives for related research.
基金supported by the CRF grant of the Hong Kong Research Grant Council(C5031-20G)the Guang Dong Basic and Applied Basic Research Foundation(2024A1515013283)the Seed Fund of University Research Committee(2201100760)。
文摘Bismuth oxybromide(BiOBr)is being actively researched as a promising anode material for aqueous batteries due to its unique layered structure,which theoretically allows for efficient ion diffusion.However,current studies have come across many challenges,e.g.serious capacity degradation and inferior rate capability caused by severe structural collapse and sluggish reaction kinetics,highlighting the need for further improvement in efficient utilization of the layered space.Herein,this study employs a novel crystal orientation regulation to enhance the performance of BiOBr electrode by a facile solvothermal method to efficiently utilize the interlayered structu re.The delicate design of BiOBr(BOB)succeeds in maximizing the exposed(110)crystalline plane,providing efficient pathways for ion diffusion and streamlining the mass migration process.Moreover,the optimized band structure and the formation of oxygen vacancies in this designed material have been found,enabling high electrical conductivity,accelerating the charge transfer process and facilitating rapid reaction rate.Owing to the simultaneously enhanced mass transfer at the interlayers and the charge transfer during the phase conversion process,the BOB-110 electrode exhibits exceptional electrochemical performances,boasting impressive charge storage and rate capability(159 mAh g^(-1)at 4 A g^(-1)),and outstanding cycling stability of capacity retention around 75%(119 mAh g^(-1))even after 1000 cycles at a high current density of 4 A g^(-1).These findings underscore the substantial potential of BiOBr electrodes for future energy storage devices such as wearable electronics and power grids where the power output,lifespan,and affordability are simultaneously required.
基金the financial support from the Natural Science Foundation of Jiangsu Province(BK20231292)the Jiangsu Agricultural Science and Technology Innovation Fund(CX(24)3091)+2 种基金the National Natural Science Foundation of China(12464032)the Natural Science Foundation of Jiangxi Province(20232BAB201032)supported by the high performance computing university-level public platform of Jinggangshan University.
文摘Aqueous zinc-ion batteries encounter enormous challenges such as Zn dendrites and parasitic reactions.Separator modification is a highly effective strategy to address these issues.With the advantages of low cost,nontoxicity,biodegradability,good film-forming ability,superior hydro phi licity,and rich functional groups,chitosan is an ideal matrix for constructing separators.However,the presence of positive charges within chitosan in weakly acidic electrolytes is unfavorable for dendrite inhibition.Herein,Schiff base reaction is introduced to modify chitosan matrix,transforming its charge polarity from positive to negative.Additionally,NbN with excellent zincophilicity is coated onto chitosan matrix,forming a Janus separator with low thickness of 19μm and considerably improved mechanical properties.The resultant separator can promote the transport of Zn^(2+)ions while triggering a repulsive shielding effect against anions,therefore dramatically enhancing Zn^(2+)ion transfer number from 0.28 to 0.49.This separator can also facilitate desolvation process,improve exchange current density,restrict two-dimensional Zn^(2+)ion diffusion,and enhance electrochemical kinetics,contributing to significantly inhibited dendrite growth,by-product formation,and hydrogen evolution.Consequently,stable and reversible Zn stripping/plating process is enabled for over 2500 h at 2 mA cm^(-2)and 2 mAh cm^(-2).And great rate capability and excellent cyclability can be achieved for full batteries even under harsh conditions.This work provides new insights into separator design for Zn-based batteries.
基金financially supported by the National Natural Science Foundation of China(Grant No.52171147)the Tenthousand Talents Program+2 种基金the K.C.Wong Pioneer Talent Programthe National Key R&D Program of China(2024YFE0101100)the Inner Mengolia Science and Technology Plan(No.2021ZD0033).
文摘Aqueous Zn-ion batteries have attracted much attention due to their unique high safety and low-cost merits.However,their practical applications are at a slow pace due to their short cycle life,which fundamentally results from the instability of the positive/negative electrode interface in the traditional dilute aqueous electrolytes with high water activity.Developing highly concentrated electrolyte(HCE)has been considered as an effective solution.Unlike previous studies of single salt-based HCE(SSHCE),herein,a new dual-salt HCE(15 m ZnCl_(2)+10 m NH_(4)NH_(2)SO_(3)DS-HCE)was proposed for the first time.DS-HCE was proven to simultaneously possess higher conductivity than traditional dilute electrolytes and ultralow water activity of SS-HCE by the regulation of dual high-concentration salts on the solvation structure,which renders the Zn‖Zn symmetric cell the record-long cycling life of 2200 h compared with those with SS-HCE(30 m ZnCl_(2),300 h)and other reported HCEs.Additionally,the Zn‖NH_(4)V_(4)O_(10)full cell with DS-HCE demonstrated impressed rate capability within a wide-range current densities from 0.1 to 10 A g^(-1).Moreover,at the high current density of 5 A g^(-1),the full cell shows almost100%capacity retention after 4000 cycles,which indicates the promising future of the DS-HCE system for long-duration aqueous Zn-ion batteries.