The regiospecific oxidation of alkyl group of both sterically hindered and unhindered aromatic amine to corresponding carbonyl compound was done in aq. medium by using DDQ. The optimized reaction protocol was found to...The regiospecific oxidation of alkyl group of both sterically hindered and unhindered aromatic amine to corresponding carbonyl compound was done in aq. medium by using DDQ. The optimized reaction protocol was found to be most simple, high yielding and novel method for oxidation of alkyl group of aromatic amine in to its carbonyl compound.展开更多
The electrophoretic mobility of positively charged,cylindrically shaped α-FeO OH particles dispersed in dilute sodium chloride solutions was measured at 25℃,as a function of ionic strength and pH using microelectrop...The electrophoretic mobility of positively charged,cylindrically shaped α-FeO OH particles dispersed in dilute sodium chloride solutions was measured at 25℃,as a function of ionic strength and pH using microelectrophoresis apparatus. The mobility data were processed through a number of selected relationships that represent various stages of understanding of electrophoretic theory,culminating in the determination of values of the electrokinetic charge and zeta potential of the colloid α-FeO OH/NaCl aq.展开更多
Anthraquinone-2-sulfonate(AQS) was employed in humus substitutes to evaluate the effects and influencing factors of U(VI) reduction by Shewanella oneidensis MR-1(S. oneidensis MR-1) under anaerobic condition. Th...Anthraquinone-2-sulfonate(AQS) was employed in humus substitutes to evaluate the effects and influencing factors of U(VI) reduction by Shewanella oneidensis MR-1(S. oneidensis MR-1) under anaerobic condition. The removal rate of U(VI) at 30 °C reaches 99.0% afterd 96 h with the p H value of 7.0 and AQS concentration of 1.0 mmol/L. The effective concentrations of AQS as the accelerator for U(VI) bioreduction are approximately 0.5-1.0 mmol/L. The bioreduction of U(VI) is inhibited when the concentration of AQS exceeds 2.0 mmol/L. The coexistence of ions, such as Cu2+, Cr6+, Mn2+, shows a remarkable negative effect on the U(VI) reduction, and Zn2+ shows less influence on the process compared with other tested ions. The U(VI) reduction is remarkably inhibited when the concentration of nitrate ion exceeds 1.0 mmol/L. Otherwise, no difference is found when the nitrate ion concentration is less than 0.5 mmol/L. Sulfate ion(5.0 mmol/L) slightly promotes the U(VI) reduction. Zero-valent iron(ZVI) promotes the U(VI) reduction by S. oneidensis, and the reduction rate improves with increasing the amount of ZVI in the range of 0-2.0 g/L. The XPS result indicates that uranium deposits on the cell surface are in U(VI) and U(IV) forms, and the majority of uranium in the solution is stable UO2.展开更多
文摘The regiospecific oxidation of alkyl group of both sterically hindered and unhindered aromatic amine to corresponding carbonyl compound was done in aq. medium by using DDQ. The optimized reaction protocol was found to be most simple, high yielding and novel method for oxidation of alkyl group of aromatic amine in to its carbonyl compound.
文摘The electrophoretic mobility of positively charged,cylindrically shaped α-FeO OH particles dispersed in dilute sodium chloride solutions was measured at 25℃,as a function of ionic strength and pH using microelectrophoresis apparatus. The mobility data were processed through a number of selected relationships that represent various stages of understanding of electrophoretic theory,culminating in the determination of values of the electrokinetic charge and zeta potential of the colloid α-FeO OH/NaCl aq.
基金Projects(1117508111475080)supported by the National Natural Science Foundation of China+3 种基金project(13JJ3078)supported by the Natural Science Foundation of Hunan ProvinceChinaProject(14k083)supported by the Innovation Platform Open Fund Project of University in Hunan ProvinceChina
文摘Anthraquinone-2-sulfonate(AQS) was employed in humus substitutes to evaluate the effects and influencing factors of U(VI) reduction by Shewanella oneidensis MR-1(S. oneidensis MR-1) under anaerobic condition. The removal rate of U(VI) at 30 °C reaches 99.0% afterd 96 h with the p H value of 7.0 and AQS concentration of 1.0 mmol/L. The effective concentrations of AQS as the accelerator for U(VI) bioreduction are approximately 0.5-1.0 mmol/L. The bioreduction of U(VI) is inhibited when the concentration of AQS exceeds 2.0 mmol/L. The coexistence of ions, such as Cu2+, Cr6+, Mn2+, shows a remarkable negative effect on the U(VI) reduction, and Zn2+ shows less influence on the process compared with other tested ions. The U(VI) reduction is remarkably inhibited when the concentration of nitrate ion exceeds 1.0 mmol/L. Otherwise, no difference is found when the nitrate ion concentration is less than 0.5 mmol/L. Sulfate ion(5.0 mmol/L) slightly promotes the U(VI) reduction. Zero-valent iron(ZVI) promotes the U(VI) reduction by S. oneidensis, and the reduction rate improves with increasing the amount of ZVI in the range of 0-2.0 g/L. The XPS result indicates that uranium deposits on the cell surface are in U(VI) and U(IV) forms, and the majority of uranium in the solution is stable UO2.