Dear Editor,This letter focuses on the remaining useful life(RUL)prediction task under limited labeled samples.Existing machine-learning-based RUL prediction methods for this task usually pay attention to mining degra...Dear Editor,This letter focuses on the remaining useful life(RUL)prediction task under limited labeled samples.Existing machine-learning-based RUL prediction methods for this task usually pay attention to mining degradation information to improve the prediction accuracy of degradation value or health indicator for the next epoch.However,they ignore the cumulative prediction error caused by iterations before reaching the failure point.展开更多
基金supported in part by the National Natural Science Foundation of China(U2034209)the Postdoctoral Science Foundation of Chongqing(cstc2021jcyj-bsh X0047)+1 种基金the Fundamental Research Funds for the Central Universities(2022CDJJMRH-008)the National Natural Science Foundation of China(62203075)
文摘Dear Editor,This letter focuses on the remaining useful life(RUL)prediction task under limited labeled samples.Existing machine-learning-based RUL prediction methods for this task usually pay attention to mining degradation information to improve the prediction accuracy of degradation value or health indicator for the next epoch.However,they ignore the cumulative prediction error caused by iterations before reaching the failure point.