期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多源里程融合的井下无人驾驶自主导航SLAM方法 被引量:1
1
作者 崔邵云 鲍久圣 +5 位作者 李芳威 袁晓明 阴妍 王茂森 张可琨 葛世荣 《煤炭科学技术》 北大核心 2025年第8期337-345,共9页
自主导航是实现无人驾驶的关键技术基础,采用即时定位与建图(Simultaneous Localization and Mapping,简称SLAM)技术是目前的主流解决方案。然而,在煤矿井下光照不足、巷道狭窄、粉尘干扰等恶劣环境下,基于视觉或激光雷达单一传感器的传... 自主导航是实现无人驾驶的关键技术基础,采用即时定位与建图(Simultaneous Localization and Mapping,简称SLAM)技术是目前的主流解决方案。然而,在煤矿井下光照不足、巷道狭窄、粉尘干扰等恶劣环境下,基于视觉或激光雷达单一传感器的传统SLAM技术容易失效,存在适应性不强与可靠性不足的问题。面向煤矿恶劣环境与复杂工况,提出了一种基于多源里程融合的井下无人驾驶自主导航SLAM方法,并通过试验进行了验证。首先,针对自主导航的核心问题——环境重构,开展了基于多源里程融合的环境重构方法研究:利用多传感器融合SLAM算法RTAB-Map(Real-Time Appearance-Based Mapping,基于外观的实时建图)实现环境重构,并为提高其在煤矿环境下的重构精度,通过卡尔曼滤波将激光里程计、视觉里程计、轮式里程计及IMU(Inertial Measurement Unit,惯性测量单元)进行紧耦合,以更高精度的耦合结果替代RTAB-Map原位姿估计信息;随后,针对当前单点导航重复繁琐、自主性降低的问题,提出了一种新的多点导航策略:基于现有的单点导航方法,通过构建可根据时间先后存储与发布位姿信息的中间节点来实现多点导航;最后,在实验室搭建无人驾驶试验平台及模拟井下巷道场景,开展无人驾驶自主导航试验,包括环境重构试验及多点自主导航试验,结果分别表明:融合多源里程的RTAB-Map算法可实现高精度的环境重构,模拟场景地图中所测量的多处标注尺寸的最大绝对误差绝对值仅为11.9 cm;多点自主导航方法实现了无人驾驶车辆至少3个目标点的依次连续导航,避免多次重复单点导航,有效提高自主导航运行效率,且轨迹拟合最大纵向误差仅为0.25 m,最大横向误差仅为0.19 m,具有良好的导航精度。 展开更多
关键词 无人驾驶 多源里程融合 Real-Time appearance-based Mapping 环境重构 多点自主导航
在线阅读 下载PDF
Visual Avoidance of Collision with Randomly Moving Obstacles through Approximate Reinforcement Learning 被引量:1
2
作者 Yunfei ZHANG Yanjun WANG +2 位作者 Haoxiang LANG Ying WANG Clarence W.DE SILVA 《Instrumentation》 2019年第3期59-66,共8页
In this research work,a hierarchical controller has been designed for an autonomous navigation robot to avoid unexpected moving obstacles where the state and action spaces are continuous.The proposed scheme consists o... In this research work,a hierarchical controller has been designed for an autonomous navigation robot to avoid unexpected moving obstacles where the state and action spaces are continuous.The proposed scheme consists of two parts:1)a controller with a high-level approximate reinforcement learning(ARL)technique for choosing an optimal trajectory in autonomous navigation;and 2)a low-level,appearance-based visual servoing(ABVS)controller which controls and execute the motion of the robot.A novel approach for path planning and visual servoing has been proposed by the combined system framework.The characteristics of the on-board camera which is equipped on the robot is naturally suitable for conducting the reinforcement learning algorithm.Regarding the ARL controller,the computational overhead is quite low thanks to the fact that a knowledge of obstacle motion is not necessary.The developed scheme has been implemented and validated in a simulation system of obstacle avoidance.It is noted that findings of the proposed method are successfully verified by obtaining an optimal robotic plan motion strategy. 展开更多
关键词 Approximate reinforcement learning Robotic obstacle avoidance appearance-based visual servoing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部