Unlike the luminous objects observed, dark matter does not emit light but can be only detected by its gravitational effect. Modern cosmology considers that most matter in Universe is dark matter. However, it is still ...Unlike the luminous objects observed, dark matter does not emit light but can be only detected by its gravitational effect. Modern cosmology considers that most matter in Universe is dark matter. However, it is still not clear what the dark matter was. Two origins have been proposed by astrophysicists, astrophysics candidates and particle physics candidates. The most differences are their morphology, the former are compact objects and the latter are dispersed. Under Einstein</span><span style="font-family:Verdana;">’</span><span style="font-family:""><span style="font-family:Verdana;">s theory of general relativity, light bends as it passes near a compact object, creating a convergence effect like a lens. When background light source, intervening lense and the observer lie on a straight line, the brightness of the background source will be significantly magnified. In astrophysics, this effect is called microlensing. If compact dark matter is abundant in the universe, it is possible to frequently observe “microlensing” events when observing high redshift objects, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> the objects temporarily brighten for a certain time. The microlensing technique has been applied to study the dark matter in halo of Milky Way. The difficulty occurs when applying to study the cosmic dark matter as the crossing time of cosmic microlensing events </span></span><span style="font-family:Verdana;">is</span><span style="font-family:Verdana;"> too long for observations. Apparent superluminal jets in bright quasars are idea background objects, significantly enhancing the efficiency of cosmic microlensing survey. Here, we tentatively designed an observational experiment to study the morphology of dark matter in Universe via statistics of microlensing events towards luminous quasars with apparent superluminal jets.展开更多
The Qianguo Ms5. 8 earthquake swarm of 2013 occurred in Qianguo, Jilin Province, China. There are five earthquakes with Ms ≥5. 0 in the Qianguo earthquake swarm, with magnitudes of Ms 5. 5, Ms 5. 0, Ms 5. 3, Ms 5. 8 ...The Qianguo Ms5. 8 earthquake swarm of 2013 occurred in Qianguo, Jilin Province, China. There are five earthquakes with Ms ≥5. 0 in the Qianguo earthquake swarm, with magnitudes of Ms 5. 5, Ms 5. 0, Ms 5. 3, Ms 5. 8 and Ms 5. 0. In this study, the far-field seismic radiated energy characteristics of the earthquakes are compared based on the source spectrum and the ground motion spectrum of the earthquake swarm. The ground motion spectrum of the five earthquakes at Changchun seismic station (CN2), which is the national standard station, is first investigated with the recorded ground motions, and then the far-field seismic radiated energy is calculated and combined with the relationships of the source spectrum to describe the variable characteristics of the Qianguo earthquake swarm. Research results indicate that the second earthquake (No. 2) with Ms5. 0 is the key event of the earthquake swarm, which occurred on October 31, the same day following the first Ms5. 5 earthquake (No.l). In fact, the magnitude of event No. 2 decreased compared to event No.l, which did not agree with its large far-field seismic radiated energy. It needs to be pointed out that event No. 2 was the turning point event of the Qianguo earthquake swarm, as being a significant transition before the largest Ms5. 8 earthquake.展开更多
文摘Unlike the luminous objects observed, dark matter does not emit light but can be only detected by its gravitational effect. Modern cosmology considers that most matter in Universe is dark matter. However, it is still not clear what the dark matter was. Two origins have been proposed by astrophysicists, astrophysics candidates and particle physics candidates. The most differences are their morphology, the former are compact objects and the latter are dispersed. Under Einstein</span><span style="font-family:Verdana;">’</span><span style="font-family:""><span style="font-family:Verdana;">s theory of general relativity, light bends as it passes near a compact object, creating a convergence effect like a lens. When background light source, intervening lense and the observer lie on a straight line, the brightness of the background source will be significantly magnified. In astrophysics, this effect is called microlensing. If compact dark matter is abundant in the universe, it is possible to frequently observe “microlensing” events when observing high redshift objects, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> the objects temporarily brighten for a certain time. The microlensing technique has been applied to study the dark matter in halo of Milky Way. The difficulty occurs when applying to study the cosmic dark matter as the crossing time of cosmic microlensing events </span></span><span style="font-family:Verdana;">is</span><span style="font-family:Verdana;"> too long for observations. Apparent superluminal jets in bright quasars are idea background objects, significantly enhancing the efficiency of cosmic microlensing survey. Here, we tentatively designed an observational experiment to study the morphology of dark matter in Universe via statistics of microlensing events towards luminous quasars with apparent superluminal jets.
基金funded by the National Natural Science Foundation,China(Grant No.41404045,No.41504047)
文摘The Qianguo Ms5. 8 earthquake swarm of 2013 occurred in Qianguo, Jilin Province, China. There are five earthquakes with Ms ≥5. 0 in the Qianguo earthquake swarm, with magnitudes of Ms 5. 5, Ms 5. 0, Ms 5. 3, Ms 5. 8 and Ms 5. 0. In this study, the far-field seismic radiated energy characteristics of the earthquakes are compared based on the source spectrum and the ground motion spectrum of the earthquake swarm. The ground motion spectrum of the five earthquakes at Changchun seismic station (CN2), which is the national standard station, is first investigated with the recorded ground motions, and then the far-field seismic radiated energy is calculated and combined with the relationships of the source spectrum to describe the variable characteristics of the Qianguo earthquake swarm. Research results indicate that the second earthquake (No. 2) with Ms5. 0 is the key event of the earthquake swarm, which occurred on October 31, the same day following the first Ms5. 5 earthquake (No.l). In fact, the magnitude of event No. 2 decreased compared to event No.l, which did not agree with its large far-field seismic radiated energy. It needs to be pointed out that event No. 2 was the turning point event of the Qianguo earthquake swarm, as being a significant transition before the largest Ms5. 8 earthquake.