期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于SDN的云数据App-RS路由算法 被引量:2
1
作者 文杰斌 廖海洲 《重庆理工大学学报(自然科学)》 CAS 2017年第11期172-178,共7页
当前,随着云数据服务应用的普及,因不同类型的云业务应用的网络需求不同,故不能平等地对待所有类型的云业务应用。为此,提出了一种App-RS(application-aware routing scheme)路由算法。对于calss 1业务应用,该算法考虑端对端的时延及链... 当前,随着云数据服务应用的普及,因不同类型的云业务应用的网络需求不同,故不能平等地对待所有类型的云业务应用。为此,提出了一种App-RS(application-aware routing scheme)路由算法。对于calss 1业务应用,该算法考虑端对端的时延及链路负载;对于calss 2业务应用,考虑延迟偏差及链路负载;对于其他业务应用,只考虑链路负载。仿真结果表明:APP-RS路由算法比CORouting路由算法在3类业务应用中的平均吞吐量分别高出9.86%、4.53%和4.07%,相比CORouting路由算法中的calss 1业务应用平均点对点延迟少25.47%,相比CORouting路由算法中的class 2业务应用平均时延偏差少49.65%。因此,APP-RS路由算法比CORouting路由算法更能满足SDN云数据中心所有class业务应用对网络的需求。 展开更多
关键词 SDN 云数据 app-rs 路由算法
在线阅读 下载PDF
Nilpotent Elements and Nil-Reflexive Property of Generalized Power Series Rings
2
作者 Eltiyeb Ali 《Advances in Pure Mathematics》 2022年第11期676-692,共17页
Let R be a ring and (S,≤) a strictly ordered monoid. In this paper, we deal with a new approach to reflexive property for rings by using nilpotent elements, in this direction we introduce the notions of generalized p... Let R be a ring and (S,≤) a strictly ordered monoid. In this paper, we deal with a new approach to reflexive property for rings by using nilpotent elements, in this direction we introduce the notions of generalized power series reflexive and nil generalized power series reflexive, respectively. We obtain various necessary or sufficient conditions for a ring to be generalized power series reflexive and nil generalized power series reflexive. Examples are given to show that, nil generalized power series reflexive need not be generalized power series reflexive and vice versa, and nil generalized power series reflexive but not semicommutative are presented. We proved that, if R is a left APP-ring, then R is generalized power series reflexive, and R is nil generalized power series reflexive if and only if R/I is nil generalized power series reflexive. Moreover, we investigate ring extensions which have roles in ring theory. 展开更多
关键词 Left app-ring Generalized Power Series Reflexive Ring Nil Generalized Power Series Reflexive Ring S-Quasi Armendariz Ring Semiprime Ring Semicommutative Ring
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部