[Objective] To get major genes for wool traits regulation from immune genes. [Methods] Microarray technology was used to detect differentially expressed immune genes between body side skin (more wool growing) and gr...[Objective] To get major genes for wool traits regulation from immune genes. [Methods] Microarray technology was used to detect differentially expressed immune genes between body side skin (more wool growing) and groin skin (no wool growing) of Aohan fine wool sheep. [Results] 46 immune genes (fold change 〉2.0) were identified and classified, and then 6 of which were selected for QPCR confir- mation. The degree of consistency of the QPCR and microarray results was 66.67%, [Conclusion] Immune privilege may participate in wool growth regulation.展开更多
Background: Increasing the polyunsaturated fatty acid (PUFA) content and decreasing the saturated fatty acid (SFA) content of mutton can help to improve its nutritional value for consumers. Several laboratories h...Background: Increasing the polyunsaturated fatty acid (PUFA) content and decreasing the saturated fatty acid (SFA) content of mutton can help to improve its nutritional value for consumers. Several laboratories have evaluated the effects of vitamin E on the fatty acid (FA) composition of muscle in sheep. However, little information is available on wool sheep, even though wool sheep breeds are an important source of mutton, especially in northern China where sheep are extensively farmed. The present study was designed to address the effects of vitamin E on muscle FA composition in male Aohan fine-wool sheep. Methods: Forty-two male Aohan fine-wool lambs (5 mo old) with similar initial body weight were randomly divided into seven groups and fed diets supplemented with 0 (control group), 20, 100, 200, 1,000, 2,000, or 2,400 IU/sheep/d vitamin E for 12 mo. Three lambs from each group were slaughtered to measure vitamin E and FA content in the Iongissimus lumborum (LL) and gluteus medius (GM) muscles. Results: Vitamin E concentrations in the LL and GM increased significantly after 12 mo of vitamin E supplementation (P 〈 0.05). However, this increase did not occur in a dose-dependent manner because the muscle vitamin E concentration was highest in the 200 IU/sheep/d group. Dietary vitamin E supplementation also caused a significant reduction in SFA content and an increase in monounsaturated FA (MUFA) content in the LL and GM (P 〈 0.05). All six doses of vitamin E significantly increased cis9 tronsl -conjugated linoleic acid (cgtl -CLA) content in the LL compared with the control group (P 〈 0.05). Conclusions: Dietary supplementation with vitamin E increased muscle vitamin E content and improved the nutritional value of mutton by decreasing SFA content and increasing MUFA and c9tl 1-CLA contents in Aohan fine-wool sheep. These effects were greatest in sheep fed a diet containing 200 IU/sheep/d vitamin E.展开更多
The evolvement of a vulnerable ecological region is a dynamic process, which is affected by various factors. During the evolvement process, human activities have a decisive effect. The purpose of studying vulnerable e...The evolvement of a vulnerable ecological region is a dynamic process, which is affected by various factors. During the evolvement process, human activities have a decisive effect. The purpose of studying vulnerable ecological region is to control human economic activities and to develop a negative feedback modulation mechanism.This paper established a model of vulnerable ecological region's evolvement by considering four synthetic variables.These synthetic variables are ecological carrying capacity, ecological resilience, economic development intensity, and economic development velocity. Finally, Ongniud Banner and Aohan Banner in North China were taken as study cases to simulate the evolvement processes of vulnerable ecological regions under different conditions of economic development. The results show that human activities have an important influence on the evolvement trend of vulnerable ecological region.展开更多
基金Supported by Project of National Hair Sheep Industry Technology System(CARS-40)~~
文摘[Objective] To get major genes for wool traits regulation from immune genes. [Methods] Microarray technology was used to detect differentially expressed immune genes between body side skin (more wool growing) and groin skin (no wool growing) of Aohan fine wool sheep. [Results] 46 immune genes (fold change 〉2.0) were identified and classified, and then 6 of which were selected for QPCR confir- mation. The degree of consistency of the QPCR and microarray results was 66.67%, [Conclusion] Immune privilege may participate in wool growth regulation.
基金financially supported by projects 200903060CARS-39 from China Agricultural Ministry
文摘Background: Increasing the polyunsaturated fatty acid (PUFA) content and decreasing the saturated fatty acid (SFA) content of mutton can help to improve its nutritional value for consumers. Several laboratories have evaluated the effects of vitamin E on the fatty acid (FA) composition of muscle in sheep. However, little information is available on wool sheep, even though wool sheep breeds are an important source of mutton, especially in northern China where sheep are extensively farmed. The present study was designed to address the effects of vitamin E on muscle FA composition in male Aohan fine-wool sheep. Methods: Forty-two male Aohan fine-wool lambs (5 mo old) with similar initial body weight were randomly divided into seven groups and fed diets supplemented with 0 (control group), 20, 100, 200, 1,000, 2,000, or 2,400 IU/sheep/d vitamin E for 12 mo. Three lambs from each group were slaughtered to measure vitamin E and FA content in the Iongissimus lumborum (LL) and gluteus medius (GM) muscles. Results: Vitamin E concentrations in the LL and GM increased significantly after 12 mo of vitamin E supplementation (P 〈 0.05). However, this increase did not occur in a dose-dependent manner because the muscle vitamin E concentration was highest in the 200 IU/sheep/d group. Dietary vitamin E supplementation also caused a significant reduction in SFA content and an increase in monounsaturated FA (MUFA) content in the LL and GM (P 〈 0.05). All six doses of vitamin E significantly increased cis9 tronsl -conjugated linoleic acid (cgtl -CLA) content in the LL compared with the control group (P 〈 0.05). Conclusions: Dietary supplementation with vitamin E increased muscle vitamin E content and improved the nutritional value of mutton by decreasing SFA content and increasing MUFA and c9tl 1-CLA contents in Aohan fine-wool sheep. These effects were greatest in sheep fed a diet containing 200 IU/sheep/d vitamin E.
基金Under the auspices of the National Natural Science Foundation of China (No. 40301052)the 10th Five-year National Key Technology R&D Program of Ministry of Science and Technology (No. 2001BA606A-01)
文摘The evolvement of a vulnerable ecological region is a dynamic process, which is affected by various factors. During the evolvement process, human activities have a decisive effect. The purpose of studying vulnerable ecological region is to control human economic activities and to develop a negative feedback modulation mechanism.This paper established a model of vulnerable ecological region's evolvement by considering four synthetic variables.These synthetic variables are ecological carrying capacity, ecological resilience, economic development intensity, and economic development velocity. Finally, Ongniud Banner and Aohan Banner in North China were taken as study cases to simulate the evolvement processes of vulnerable ecological regions under different conditions of economic development. The results show that human activities have an important influence on the evolvement trend of vulnerable ecological region.