期刊文献+
共找到264篇文章
< 1 2 14 >
每页显示 20 50 100
KSb_(2)F_(7)·2KNO_(3):Unveiling the peak birefringence in inorganic antimony oxysalts 被引量:1
1
作者 Qin Wang Han Luo +4 位作者 Luli Wang Ling Huang Liling Cao Xuehua Dong Guohong Zou 《Chinese Chemical Letters》 2025年第7期626-630,共5页
Birefringent materials possess significant optical anisotropy,making them pivotal in modulating light polarization,particularly in laser technology and scientific applications.In this study,five variants of antimony p... Birefringent materials possess significant optical anisotropy,making them pivotal in modulating light polarization,particularly in laser technology and scientific applications.In this study,five variants of antimony potassium fluoronitrates named SbF_(3)·KNO_(3)(1),SbF_(3)·3KNO_(3)(2),SbF_(3)·3KSbF_(4)·KNO_(3)(3),KSb_(2)F_(7)·3KNO_(3)(4),and KSb_(2)F_(7)·2KNO_(3)(5)were obtained.Remarkably,each compound contains distinct Sb-polyhedra configurations.Compounds 1 and 2 consist of singular[SbF_(3)]units,compound 3 harbors a mixture of[SbF_(3)]and[SbF_(4)]units,while compounds 4 and 5 feature single[SbF_(4)]units.Interestingly,the birefringence escalates progressively from 1 to 5,and notably,compound 5 exhibits the most pronounced birefringence among all reported inorganic antimony oxysalts.Detailed structural and property analyses affirm that the structural variance among the five compounds underpins the observed differences in birefringence.Moreover,the synergistic interplay between planarπ-conjugated NO_(3)^(−)groups and Sb^(3+)ions with lone-pair electrons facilitates the emergence of substantial polarization anisotropy. 展开更多
关键词 Structural variance Birefringent materials antimony nitrate π-Conjugated Lone pair of electrons
原文传递
Compositional engineering for lead-free antimony bismuth alloy-based halide perovskite solar cells 被引量:1
2
作者 Ziyu Cai Junchi Zhu +7 位作者 Chenyuan Ding Tao Dong Boyang Yu Wenzheng Hu Jiayi Xie Feng Ye Qiufeng Ye Zebo Fang 《Journal of Semiconductors》 2025年第5期96-101,共6页
Owing to their low toxicity and remarkable stability, perovskites based on antimony and bismuth have garnered significant interest in recent years. However, A_(3)B_(2)X_(9) perovskite materials derived from antimony a... Owing to their low toxicity and remarkable stability, perovskites based on antimony and bismuth have garnered significant interest in recent years. However, A_(3)B_(2)X_(9) perovskite materials derived from antimony and bismuth face several challenges, including excessively wide band gaps, elevated defect densities, and suboptimal film quality, all of which hinder advancements in device efficiency. While extensive studies have been undertaken to investigate the effects of modulating the A-site and X-site elements in lead-free A_(3)B_(2)X_(9) perovskites, there remains a notable scarcity of reports addressing the impact of modifications to the B-site element. In this study, we investigated the alloying of antimony and bismuth within the 2D Cs_(3)B_(2)I_(6)Br_(3) perovskite. By systematically varying the ratios of two elements, we found that the incorporation of both antimony and bismuth at the B-site significantly enhances the quality of the perovskite films. Our findings indicate that a 1 : 1 ratio of antimony to bismuth produces the densest films, the highest photoluminescence intensity, and superior photovoltaic performance. Ultimately,the devices fabricated using this optimal ratio achieved an open-circuit voltage(VOC) of 1.01 V and a power conversion efficiency(PCE) of 0.645%. 展开更多
关键词 low toxicity lead free antimony bismuth alloy perovskite solar cells
在线阅读 下载PDF
Standardized framework for assessing soil quality at antimony smelting site by considering microbial-induced resilience and heavy metal contamination 被引量:1
3
作者 Shasha Jiang Xiaoyu Deng +6 位作者 Liyuan Ma Hongmei Wang Xingjie Wang Liang Feng Feng Zhu Shengguo Xue Arif Mohammad 《Journal of Environmental Sciences》 2025年第2期306-320,共15页
Antimony smelting activities damage the soil and vegetation surroundings while generating economic value.However,no standardizedmethods are available to diagnose the extent of soil degradation at antimony smelting sit... Antimony smelting activities damage the soil and vegetation surroundings while generating economic value.However,no standardizedmethods are available to diagnose the extent of soil degradation at antimony smelting sites.This study developed a standardized framework for assessing soil quality by consideringmicrobial-induced resilience and heavymetal contamination at Xikuangshan antimony smelting site.The soil resilience index(SRI)and soil contamination index(SCI)were calculated byMinimum Data Set and geo-accumulation model,respectively.After standardized by a multi-criteria quantitative procedure of modified Nemerow’s pollution index(NPI),the integrated assessment of soil quality index(SQI),which is the minimumof SRINPI and SCINPI,was achieved.The results showed that Sb and As were the prominent metal(loid)pollutants,and significant correlations between SQI and SRI indicated that the poor soil quality was mainly caused by the low level of soil resilience.The primary limiting factors of SRI were Fungi in high andmiddle contaminated areas,and Skermanella in low contaminated area,suggesting that the weak soil resilience was caused by low specific microbial abundances.Microbial regulation and phytoremediation are greatly required to improve the soil quality at antimony smelting sites from the perspectives of pollution control and resilience improvement.This study improves our understanding of ecological effects of antimony smelting sites and provides a theoretical basis for ecological restoration and sustainable development of mining areas. 展开更多
关键词 antimony smelting site Soil resilience index(SRI) Soil contamination index(SCI) MICROORGANISMS Nemerow’s pollution index(NPI)
原文传递
Sensing mechanisms of hierarchical bismuth-doped antimony tungstate microspheres for CO_(2) detection at ambient temperatures
4
作者 Zi-Chen Zheng Ke-Wei Liu +8 位作者 Yi-Wen Zhou Zi-Cong Zhang Yong-Bin Qin Yi-Fan Luo Kai-Chun Xu Liang-Chao Guo Marc Debliquy Carla Bittencourt Chao Zhang 《Rare Metals》 2025年第8期5580-5593,共14页
Bismuth-doped antimony tungstate(Bi-doped Sb_(2)WO_(6))microspheres were synthesized via a novel hydrothermal synthesis approach.These microspheres were then used as active layers in gas sensors for the detection of c... Bismuth-doped antimony tungstate(Bi-doped Sb_(2)WO_(6))microspheres were synthesized via a novel hydrothermal synthesis approach.These microspheres were then used as active layers in gas sensors for the detection of carbon dioxide(CO_(2)),a significant greenhouse gas and a critical parameter for evaluating air quality.The incorporation of bismuth significantly enhances the gas-sensing performance of the Sb_(2)WO_(6)microspheres,with the 4%Bidoped sensing active layer achieving a remarkable response value of 15 when exposed to 200 ppm of CO_(2),outperforming the undoped Sb_(2)WO_(6).Furthermore,the selectivity of the 4%Bi-Sb_(2)WO_(6)sensor toward CO_(2)gas was enhanced relative to the Sb_(2)WO_(6)sensor.The fundamental mechanisms of gas sensing and the factors contributing to the improved CO_(2)response of 4%Bi-Sb_(2)WO_(6)micro spheres were investigated using density functional theory.Bi-doped Sb_(2)WO_(6)materials exhibit significant advantages in gas-sensing applications,including improved conductivity,enhanced gas adsorption capacity,increased reaction rates,good chemical stability,excellent selectivity,and the ability to adjust electron density.These characteristics enable Bi-doped Sb_(2)WO_(6)to demonstrate higher sensitivity and rapid response capabilities in gas sensors,making it suitable for practical applications. 展开更多
关键词 antimony tungstate Carbon dioxide DOPING Room temperature DFT analysis
原文传递
Biogeochemical mechanisms of zero-valent iron and biochar for synergistically mitigating antimony uptake in rice
5
作者 Xiaofeng Zhang Jialin Chi +7 位作者 Huanyun Yu Liping Fang Tongxu Liu Yanhong Du Chuanping Liu Xiangqin Wang Qian Xu Fangbai Li 《Journal of Environmental Sciences》 2025年第7期76-86,共11页
Antimony(Sb)contamination in paddy fields can lead to its accumulation in rice grains,posing a threat to food safety.To address this issue,the combined use of zero-valent iron(ZVI)and biochar(BC)were applied to decrea... Antimony(Sb)contamination in paddy fields can lead to its accumulation in rice grains,posing a threat to food safety.To address this issue,the combined use of zero-valent iron(ZVI)and biochar(BC)were applied to decrease the uptake of Sb in Sb-polluted soils,and their effects on Sb uptake from soil to rice grains were investigated.Our results showed that the combination treatment of 0.05%ZVI and 0.095%BC resulted in a significant decrease(42.8%)in Sb accumulation in rice grains that was comparably more efficient than that by 0.05%ZVI(decrease of 15.8%Sb accumulation)or 0.095%BC(decrease of 12.7%Sb accumulation)alone,demonstrating the synergistic effect of ZVI and BC on mitigating Sb uptake by rice plants.ZVI presence resulted in the formation of iron oxides in the soil and on root surfaces,and the S^(2-)/S_(2)^(2-)ascent also increased by 58.7%on day 75 compared with that of the control,facilitating the reduction of Sb(Ⅴ)to less mobile Sb(Ⅲ),thereby decreasing Sb accumulation in rice plants.BC initially increased themobility of Sb owing to its alkaline nature,whereas the electron shuttle properties of BC contributed to a decrease in Sbmobility.The abundance of the arsenite-reducing gene arrA ultimately increased by 203.2% on day 120 compared with the initial phase on day 5,and BC caused a remarkable increase in arrA gene abundance.This study revealed the synergistic mechanisms by combining ZVI and BC to mitigate Sb uptake by rice,which may be useful for the sustainable remediation of contaminated rice paddies. 展开更多
关键词 antimony Zero-valent iron BIOCHAR Synergistic remediation Soil-rice system
原文传递
Efficient Application to Remove Arsenic and Antimony from theWater Environment Using Renewable Carbon-Based Materials:A Review
6
作者 Tongtong Wang Zhenhui Pan +5 位作者 Di Zhang Hui Shi Murat Yilmaz Amit Kumar Gaurav Sharma Tao Liu 《Journal of Renewable Materials》 2025年第6期1103-1137,共35页
With the rapid development of industry,the environmental problems caused by heavy metal arsenic and antimony are becoming increasingly serious.Therefore,it is urgent to solve the problem of arsenic and antimony pollut... With the rapid development of industry,the environmental problems caused by heavy metal arsenic and antimony are becoming increasingly serious.Therefore,it is urgent to solve the problem of arsenic and antimony pollution in the water environment.Renewable carbon-based materials,as a kind of adsorbent widely used in wastewater treatment,have been the focus of scholars’research for many years.In this review,the preparation methods,characteristics,and applications of renewable carbon-based materials(biochar,activated carbon,carbon nanotubes,and graphene)for the removal of arsenic and antimony are described in detail.Based on adsorption kinetics,isothermal adsorption,temperature,pH,and coexisting ions,we discuss the process of adsorption of arsenic and antimony by renewable carbon-based materials,explore the mechanism of adsorption of anions in water by renewable carbon-basedmaterials,and comparatively analyze the differences in adsorption performance of arsenic and antimony by different renewable carbon-based materials.Compared with biochar,activated carbon,carbon nanotube,and graphene renewable materials loaded with iron-manganese oxides have better removal effects on arsenic and antimony wastewater.Extensive research data shows that biochar,as a renewable material,is recommended,followed by activated carbon.Both are recommended because of their excellent adsorption properties and low production costs.Finally,the prospects and challenges of the application of renewable carbon-based materials in wastewater treatment are discussed,and the directions and development trends of future research are pointed out,which provide references and insights for further promoting the application of renewable carbon-based materials in wastewater treatment. 展开更多
关键词 Renewable carbon-based materials ARSENIC antimony adsorption mechanisms wastewater treatment
在线阅读 下载PDF
Fractionation of water-soluble organic matter(WSOM)with polyvinylpyrrolidone:A study on antimony associated with WSOM in contaminated soils
7
作者 Saeed Bagherifam Trevor C.Brown +2 位作者 Andrea Baglieri Binoy Sarkar Jörg Rinklebe 《Journal of Environmental Sciences》 2025年第11期303-313,共11页
Water-soluble organic matter(WSOM)significantly influences the transport of metals and organic contaminants in soils,yet the interaction specifics with antimony(Sb)remain largely unexplored.Antimony is of particular e... Water-soluble organic matter(WSOM)significantly influences the transport of metals and organic contaminants in soils,yet the interaction specifics with antimony(Sb)remain largely unexplored.Antimony is of particular environmental concern due to its toxic properties and harmful effects on ecosystems and human health.Employing a three-step fractionation method with polyvinylpyrrolidone(PVP),this study aimed to isolate and analyze humic acids(HA),PVP-non adsorbed fulvic acids(FAA),and PVP-adsorbed fulvic acids(FAB)from WSOM in soil spiked with Sb and incubated for 18 months.These fractions underwent chemical analysis for carbon(C),nitrogen(N),total organic carbon(TOC),and Sb,complemented by FTIR and 1H NMR spectroscopic characterization.The study revealed that HA wasmore aliphatic,with Sb predominantly associating with the fulvic acid(FA)fraction,accounting for 97%of Sb in extracts.Specifically,the FAA subfraction held substantial portions of total carbon(TC),total nitrogen(TN),total organic carbon(TOC),and Sb.Correlations between Sb concentrations and TN,TC,and TOC were significant.Extraction methods showed NaOH and Na_(4)P_(2)O_(7) outperformed HCl and deionised water in extracting TC,TN,and TOC,with higher Sb concentrations found in Na_(4)P_(2)O_(7) and NaOH extracts.This underscores the role of Fe/Al-SOM complexes in Sb soil availability.The results revealed that FAA subfraction accounted for 76%,64%and 94%of TN,TOC and Sb,respectively.Therefore,this research highlights the FAA fraction’s central role,predominantly comprising non-humic substances like amines,in the availability of C,N,and Sb in Sb-impacted soils.The findings offer insights for environmental management and remediation strategies. 展开更多
关键词 POLYVINYLPYRROLIDONE Water extractable organic matter Sodium pyrophosphate antimony Iron Dissolved organic carbon Fulvic acids FRACTIONATION
原文传递
In situ stabilization of antimony and arsenic in co-contaminated soil using organic matter-Fe/Mn(hydr)oxides colloids and their mineral phase transformation
8
作者 Junhao Zheng Lu Liu +8 位作者 Qi Li Pengwei Zhao Qi Liao Qingzhu Li Zhihui Yang Mengying Si Yang Ping Hao Xu Weichun Yang 《Journal of Environmental Sciences》 2025年第10期835-848,共14页
Natural organic matter(NOM)containing Fe/Mn(hydr)oxides effectively stabilizes antimony(Sb)and arsenic(As)in soils.However,the specific type of NOM that limits the mobility of Fe/Mn(hydr)oxides and howNOM-Fe/Mn colloi... Natural organic matter(NOM)containing Fe/Mn(hydr)oxides effectively stabilizes antimony(Sb)and arsenic(As)in soils.However,the specific type of NOM that limits the mobility of Fe/Mn(hydr)oxides and howNOM-Fe/Mn colloidal properties can bemodulated for better Sb and As stabilization remains unclear.This study suggests that the degree of stabilization of the colloidal structure formed between NOM and Fe/Mn(hydr)oxides is crucial for Sb and As stabilization.It was found that straw-derived(SD),compared to humic acid(HA)with a high content of carboxyl groups,forms more stable colloidal structures with Fe/Mn(hydr)oxides.HA-Fe/Mn colloids show greater mobility and less deposition than SD-Fe/Mn colloids.In soil remediation simulations,SD-Fe/Mn colloids more effectively stabilized Sb and As.After 35 days,SD-Fe/Mn achieved nearly complete stabilization(100%)of water-soluble and decarbonate-extracted bioavailable fractions at depths of 1-12 cm,with high rates for other fractions as well.Even at depths of 23-34 cm,SD-Fe/Mn outperformed HA-Fe/Mn,showing higher stabilization rates for Sb and As by 12.6%and 20.4%,respectively.Morphological analysis suggests that the stabilization of Sb and As by SD-Fe/Mn primarily involves adsorption onto or incorporation within the Fe/Mn(hydr)oxides.This study offers guidance for optimizing NOM-Fe/Mn for in situ stabilization of Sb and As,enhances the understanding of different types of NOM that affect the behavior of Sb and As soil contamination,and presents new perspectives for developing effective in situ remediation materials. 展开更多
关键词 NOM-Fe/Mn colloid Straw organic matter Humic acid antimony ARSENIC
原文传递
Flexible and impact-resistant antimony selenide photodetectors enabled by pulsed-laser deposition and their application in imaging beyond human vision
9
作者 Yuhang Ma Huanrong Liang +8 位作者 Xinyi Guan Yu Chen Zhaoqiang Zheng Chun Du Churong Ma Wenjing Huang Yichao Zou Jiandong Yao Guowei Yang 《Journal of Materials Science & Technology》 2025年第22期49-58,共10页
Wearable photodetectors have come under the limelight of optoelectronic technologies on account of multiple advantages spanning light weight,easy-portability,excellent bendability,outstanding conformability,etc.Among ... Wearable photodetectors have come under the limelight of optoelectronic technologies on account of multiple advantages spanning light weight,easy-portability,excellent bendability,outstanding conformability,etc.Among diverse candidate materials,low-dimensional van der Waals materials(LDvdWMs)have emerged to be preeminent owing to the dangling-bond-free surface,exceptional carrier mobility,nanoscale dimensionality,and excellent light-harvesting capability.However,to date,the majority of flexible LDvdWM photodetectors have been fabricated through exfoliation-,transfer-,or solution-processing methods,which are plagued by limitations such as low production yield,inadequate photosensitivity,and sluggish response rate.Thus far,constructing LDvdWM photodetectors in situ on flexible substrates remains quite challenging due to the irreconcilable contradiction between the weak robustness of flexible polymer substrates against high temperature and the large thermal budget required for crystallization.This study develops scalable preparation of Sb_(2)Se_(3)nanofilm directly on flexible polyimide substrates by exploiting pulsed-laser deposition(PLD),where highly energetic species can be generated to enable overcoming the reaction barrier for crystallization at a relatively low temperature.The corresponding Sb_(2)Se_(3)photodetectors have exhibited high responsivity of 1.15 A/W,exceptional external quantum efficiency of 269%,and impressive specific detectivity reaching 2.4×10^(11)Jones,coupled with swift switching characteristics.Importantly,excellent durability to repeated bending treatments has been confirmed by the consistent photoresponse over 500 convex/concave bending cycles.Furthermore,the device has showcased strong robustness against extrinsic impinging.In the end,by using Sb_(2)Se_(3)photodetectors as sensing components,wide-band imaging beyond human vision and heart rate monitoring have been realized.This study has underscored the high efficacy of PLD for reconciling the long-standing contradiction between the weak robustness of flexible polymer substrates against high temperature and the substantial thermal energy required for crystallization,opening new opportunities towards next-generation wearable optoelectronic industry. 展开更多
关键词 Pulsed-laser deposition antimony selenide Flexible photodetectors Wide-band imaging Heart rate monitoring
原文传递
A step towards understanding plastic complexity:Antimony speciation in consumer plastics and synthetic textiles revealed by XAS
10
作者 Camelia N.Borca Thomas Huthwelker Montserrat Filella 《Journal of Environmental Sciences》 2025年第7期109-117,共9页
We identified the antimony species present in a wide variety of plastic samples by X ray absorption spectroscopy(XAS)at the Sb L_(3)-edge.The samples contained different concentrations of antimony(Sb),ranging from PET... We identified the antimony species present in a wide variety of plastic samples by X ray absorption spectroscopy(XAS)at the Sb L_(3)-edge.The samples contained different concentrations of antimony(Sb),ranging from PET bottles in which Sb compounds are used as catalysts,with concentrations around 300 mg/kg,to electrical equipment in which the element is used as a flame retardant,with concentrations of several tens of thousands of mg/kg.Although the shape of the spectra at the L_(3)-edge is quite similar for all Sb reference materials,we were able to identify antimony glycolate or acetate in PET bottles,bound organic Sb in c-PET trays and senarmontite in electrical materials as themain Sb components.In samples with high Ca content(e.g.,electrical objects,some c-PET food trays and textiles)the Ca Ka emission line interferes with the Sb La line by introducing a high background which reduces the signal-to-noise ratio in the Sb XAS spectrum,resulting in noisy and distorted spectra.The element-resolved map on a PET bottle sample revealed both Sb and Ca hot spots of around 10-20 microns in size,with no correlation. 展开更多
关键词 antimony PLASTICS Sb L_(3)-edge Senarmontite Synthetic textiles
原文传递
Antimony nanoparticles encapsulated in three-dimensional porous carbon frameworks for high-performance rechargeable batteries
11
作者 An-Qi Chen Si-Guang Guo +5 位作者 Yu Liu Ling Long Zhuo Li Biao Gao Paul K.Chu Kai-Fu Huo 《Rare Metals》 2025年第5期3026-3036,共11页
Antimony(Sb)is regarded as a potential candidate for next-generation anode materials for rechargeable batteries because it has a high theoretical specific capacity,excellent conductivity and appropriate reaction poten... Antimony(Sb)is regarded as a potential candidate for next-generation anode materials for rechargeable batteries because it has a high theoretical specific capacity,excellent conductivity and appropriate reaction potential.However,Sb-based anodes suffer from severe volume expansion of>135%during the lithiation-delithiation process.Hence,we construct a novel Sb@C composite encapsulating the Sb nanoparticles into highly conductive three-dimensional porous carbon frameworks via the one-step magnesiothermic reduction(MR).The porous carbon provides buffer spaces to accommodate the volume expansion of Sb.Meanwhile,the three-dimensional(3D)interconnected carbon frameworks shorten the ion/electron transport pathway and inhibit the overgrowth of unstable solid-electrolyte interfaces(SEIs).Consequently,the 3D Sb@C composite displays remarkable electrochemical performance,including a high average Coulombic efficiency(CE)of>99%,high initial capability of 989 mAh·g^(-1),excellent cycling stability for over 1000 cycles at a high current density of 5 A·g^(-1).Furthermore,employing a similar approach,this 3D Sb@C design paradigm holds promise for broader applications across fast-charging and ultralong-life battery systems beyond Li+.This work aims to advance practical applications for Sb-based anodes in next-generation batteries. 展开更多
关键词 Rechargeable battery antimony anode Porous carbon framework Magnesiothermic reduction Cycle life
原文传递
Priority sources identification and risks assessment of heavy metal(loid)s in agricultural soils of a typical antimony mining watershed
12
作者 Lianhua Liu You Li +4 位作者 Xiang Gu Roberto Xavier Supe Tulcan Lingling Yan Chunye Lin Junting Pan 《Journal of Environmental Sciences》 2025年第1期153-164,共12页
Heavy metal(loid)(HM)pollution in agricultural soils has become an environmental concern in antimony(Sb)mining areas.However,priority pollution sources identification and deep understanding of environmental risks of H... Heavy metal(loid)(HM)pollution in agricultural soils has become an environmental concern in antimony(Sb)mining areas.However,priority pollution sources identification and deep understanding of environmental risks of HMs face great challenges due to multiple and complex pollution sources coexist.Herein,an integrated approach was conducted to distinguish pollution sources and assess human health risk(HHR)and ecological risk(ER)in a typical Sb mining watershed in Southern China.This approach combines absolute principal component score-multiple linear regression(APCS-MLR)and positivematrix factorization(PMF)models with ER and HHR assessments.Four pollution sources were distinguished for both models,and APCS-MLR model was more accurate and plausible.Predominant HM concentration source was natural source(39.1%),followed by industrial and agricultural activities(23.0%),unknown sources(21.5%)and Sb mining and smelting activities(16.4%).Although natural source contributed the most to HM concentrations,it did not pose a significant ER.Industrial and agricultural activities predominantly contributed to ER,and attention should be paid to Cd and Sb.Sb mining and smelting activities were primary anthropogenic sources of HHR,particularly Sb and As contaminations.Considering ER and HHR assessments,Sb mining and smelting,and industrial and agricultural activities are critical sources,causing serious ecological and health threats.This study showed the advantages of multiple receptor model application in obtaining reliable source identification and providing better source-oriented risk assessments.HM pollution management,such as regulating mining and smelting and implementing soil remediation in polluted agricultural soils,is strongly recommended for protecting ecosystems and humans. 展开更多
关键词 antimony Heavy metal(loid) Risk assessment Pollution sources Mining and smelting
原文传递
Lead-free organic antimony halide with dual-band intrinsic white light emission for warm WLED directly
13
作者 Hua Tong Haibo Li +1 位作者 Wei Liu Gangfeng Ouyang 《Chinese Journal of Structural Chemistry》 2025年第10期17-22,共6页
Organic metal halides with white-light emissions have shown significant application prospects in the fields of solid-state lighting and displays, but their structural design and synthesis remain a major challenge. Her... Organic metal halides with white-light emissions have shown significant application prospects in the fields of solid-state lighting and displays, but their structural design and synthesis remain a major challenge. Here, the material design concept of functional units has been applied to prepare a zero-dimensional (oD) organic anti-mony halide (1-BMP)_(5)(SbCl_(5))_(2)SbCl_(4) with two luminescent centers from the inorganic units and the organic units, emitting red emission about 670 nm and cyan emission about 508 nm respectively, combined to form white light. Based on the photoluminescence (PL), the time-resolved PL analysis and density functional theory (DFT) calculation, it is shown that the red and cyan emission comes from STEs related to inorganic units [SbCl_(5)]^(2-) and the fluorescence of organic cations 1-BMP^(+), respectively. This work provides new methods and ideas for the development of low-cost and eco-friendly white emission phosphors for single-component solid-state WLEDs. 展开更多
关键词 Organic antimony halides White light emission Self-trapped excitons(STEs) WLED
原文传递
Recovery of antimony from antimony-bearing dusts through reduction roasting process under CO–CO_2 mixture gas atmosphere after firstly oxidation roasted 被引量:7
14
作者 ZHONG Da-peng LI Lei TAN Cheng 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第8期1904-1913,共10页
This paper mainly investigated the antimony recovery from antimony-bearing dusts through reduction roasting process after the dust firstly oxidation roasted.CO–CO2 mixture gas was used as reducing agent,and the antim... This paper mainly investigated the antimony recovery from antimony-bearing dusts through reduction roasting process after the dust firstly oxidation roasted.CO–CO2 mixture gas was used as reducing agent,and the antimony-containing phase was reduced into Sb4O6,volatilized into smoke,and finally recovered through the cooling cylinder.The antimony recovery rate increased from 66.00 wt%to 73.81 wt%in temperature range of 650 to 800°C,and decreased with temperature increased further to 900°C due to the reduction of Sb4O6 to the nonvolatile Sb.Similarly,the CO partial pressure also played a double role in this test.Under optimized conditions of roasting temperature of 800°C,CO partial pressure of 7.5 vol%and roasting time of 120 min,98.40 wt%of arsenic removal rate and 80.40 wt%antimony recovery rate could be obtained.In addition,the“As2O3”product could be used for preparing ferric arsenate which realized the harmless treatment of it. 展开更多
关键词 antimony-bearing dust separation of arsenic and antimony antimony recovery reduction roasting waste utilization
在线阅读 下载PDF
Effects of Antimony Stress on Photosynthetic Characteristics of Vegetable Leaves 被引量:2
15
作者 廖炜 杨小琴 +2 位作者 曾斌 林文力 杨水芝 《Agricultural Science & Technology》 CAS 2013年第12期1759-1763,共5页
[Objective] This study aimed to investigate the effects of different concen- trations of antimony and modifier calcium magnesium phosphate on photosynthetic characteristics of edible amaranth, flowering Chinese cabbag... [Objective] This study aimed to investigate the effects of different concen- trations of antimony and modifier calcium magnesium phosphate on photosynthetic characteristics of edible amaranth, flowering Chinese cabbage, spinach and flowering Chinese cabbage. [Method] By outdoor potting simulation experiment, soil matrixes containing 10.00, 20.00, 50.00, 70.00 and 100.00 mg/kg antimony (Sb3+) were pre- pared; soil without antimony was used as control (CK). Each pot was loaded with 0.10 kg/kg vegetable special fertilizer, mixed evenly, and divided into two shares: one share was supplemented with 1.75 g/kg modifier calcium magnesium phosphate and mixed evenly; the other share contained no calcium magnesium phosphate. Af- ter the generation of three true leaves, seedlings with uniform growth were trans- planted into the prepared soil matrixes, eights seedlings per pot. Vegetable seedlings were watered regularly to maintain 70% of field capacity. After 45 d, veg- etable plants were harvested and washed clean with distilled water for measurement of indicators of photosynthetic characteristics. [Result] With the increase of antimony concentration, relative chlorophyll content (SPAD value) and net photosynthetic rate of four vegetable species increased first and then declined, while stomatal conduc- tance of vegetable leaves was linearly reduced. [Conclusion] Appropriately adding modifier calcium magnesium phosphate can effectively improve the photosynthetic characteristics of four vegetable species and reduce the toxic effects of heavy metal antimony on vegetables. 展开更多
关键词 Stress physiology antimony stress Modifier Photosynthetic characteristics
在线阅读 下载PDF
Synthesis and Crystal Structure of t he Complex of Antimony Trichloride and Dioxane 被引量:1
16
作者 臧祥生 陈娅如 +2 位作者 栾绍嵘 钟国清 郭应臣 《无机化学学报》 SCIE CAS CSCD 北大核心 2001年第6期901-904,共4页
New solid complex of the antimony trichloride and dioxane was obtained th rough a reaction of the dioxane and the absolute methanol solution of the antimony trichloride.The formula of the complex is[SbCl_(3)·{(CH... New solid complex of the antimony trichloride and dioxane was obtained th rough a reaction of the dioxane and the absolute methanol solution of the antimony trichloride.The formula of the complex is[SbCl_(3)·{(CH_(2))_(4)O_(2)}_(1.5)].The crystal structure of the comple x belongs to cubic system,space group I-43d,a=17.1417(5)?,Z=16.The trivalent antimony ion not only bonds directly to three chlorine anions,but also is co ordinated by three oxygen atoms of th e dioxane molecules.Two oxygen atoms in a dioxane molecule wi ll coordinate to different antimony ions,respectively. 展开更多
关键词 dioxane complex of antimony trichloride synthesis crystal structure
在线阅读 下载PDF
Separation of arsenic from arsenic-antimony-bearing dust through selective oxidation-sulfidation roasting with CuS 被引量:13
17
作者 Da-peng ZHONG Lei LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第1期223-235,共13页
The feasibility of a new method for separating arsenic from arsenic-antimony-bearing dusts using Cu S was put forward,in which Sb was transformed into Sb2O4 and Sb2S3 that stayed in the roasted calcine while As was vo... The feasibility of a new method for separating arsenic from arsenic-antimony-bearing dusts using Cu S was put forward,in which Sb was transformed into Sb2O4 and Sb2S3 that stayed in the roasted calcine while As was volatilized in the form of As4O6.The factors such as roasting temperature and Cu S addition amount were studied using XRD,EPMA and SEM-EDS.Cu S has an active effect on the separation of arsenic due to the destruction of(Sb,As)2 O3 structures in the original dust and the simultaneous release of As in the form of As4O6.At a roasting temperature of 400°C and Cu S addition amount of 130%,the volatilization rates of arsenic and antimony reach 97.80 wt.%and 8.29 wt.%,respectively.Further,the high As volatile matter can be used to prepare ferric arsenate after it is oxidized,with this treatment rendering the vapor harmlessness. 展开更多
关键词 arsenic-antimony-bearing dusts separation of arsenic and antimony Cu S phase transformation waste utilization
在线阅读 下载PDF
Mineralogical characterization and pretreatment for antimony extraction by ozone of antimony-bearing refractory gold concentrates 被引量:4
18
作者 Xue-yi GUO Yun-tao XIN +1 位作者 Hao WANG Qing-hua TIAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第8期1889-1896,共8页
The mineralogical characterization of antimony-bearing refractory gold concentrates and the antimony extraction by ozonein HCl solution were investigated.The mineralogical study shows that there exist stibnite(Sb2S3),... The mineralogical characterization of antimony-bearing refractory gold concentrates and the antimony extraction by ozonein HCl solution were investigated.The mineralogical study shows that there exist stibnite(Sb2S3),arsenopyrite(FeAsS),pyrite(FeS2)and quartz in the concentrates,and the gold is mainly(67.42%)encapsulated in sulfides.The antimony extraction by ozone inhydrochloric acid was employed and the influences of temperature,liquid/solid ratio,HCl concentration and stirring speed on theextraction of antimony were investigated.High antimony extraction(93.75%)is achieved under the optimized conditions.After thepretreatment by ozone,the antimony is recovered efficiently and the gold is enriched in the leaching residue. 展开更多
关键词 antimony-bearing refractory gold concentrates OZONE PRETREATMENT mineralogical characterization antimony extraction
在线阅读 下载PDF
POLYMORPH CONTROL OF ANTIMONY WHITE(Sb_2O_3)PREPARED BY HYDROMETALLURGY METHOD 被引量:4
19
作者 Zhang Duomo Xiao Songwen +4 位作者 Cho Tongrae Liu Zhihong Ge Rongde Chen Huiguang Guo Xueyi 《中国有色金属学会会刊:英文版》 CSCD 1997年第4期119-123,共5页
The effects of reaction solvent, the properties of Sb 4O 5Cl 2 material and the ligand additives on the reaction rate and polymorph of antimony white(Sb 2O 3) in the reaction of Sb 4O 5Cl 2 transforming into S... The effects of reaction solvent, the properties of Sb 4O 5Cl 2 material and the ligand additives on the reaction rate and polymorph of antimony white(Sb 2O 3) in the reaction of Sb 4O 5Cl 2 transforming into Sb 2O 3 have been investigated by XRD and IR method. It is revealed that the reaction solvent and the properties of Sb 4O 5Cl 2 are the key factors affecting the reaction rate. The polymorph of antimony trioxides is determined by the reaction mechanism, i.e. the coordination state of the antimony activated complex. Adding a little ligand such as EDTA is the most economical and effective method of synthesizing cubic antimony white(Sb 2O 3)in hydrometallurgical transformation process. 展开更多
关键词 antimony white POLYMORPH antimony activated complex structure selecting catalyst
在线阅读 下载PDF
Determination of trace amount of antimony (Ⅲ) by adsorption voltammetry on carbon paste electrode
20
作者 郭会时 肖鹏峰 +2 位作者 聂立波 李益恒 何农跃 《Journal of Southeast University(English Edition)》 EI CAS 2004年第2期221-225,共5页
A sensitive method is described for the determination of trace antimony based on the antimony-bromopyrogallol red (BPR) adsorption at a carbon paste electrode (CPE). Three steps were involved in the overall analysis: ... A sensitive method is described for the determination of trace antimony based on the antimony-bromopyrogallol red (BPR) adsorption at a carbon paste electrode (CPE). Three steps were involved in the overall analysis: preconcentration,reduction and stripping. Optimal conditions were found to be an electrode containing 25% paraffin oil and 75% high purity graphite powder as working electrode;a 0.10 mol/L HCl solution containing 40 μmol/L BPR as accumulation medium;a 0.20 mol/L HCl solution as reduction and stripping electrolyte;accumulation time,150 s;reduction potential and time,-0.50 V,60 s;scan range from -0.50 to 0.20 V. Interferences by other ions were studied as well. The detection limit was found to be 0.5 nmol/L for 150 s preconcentration. The linear range was from 1.0 nmol/L to 0.50 μmol/L. Application of the proposed method to the determination of antimony in water and human hair samples gave good results. 展开更多
关键词 antimony bromopyrogallol red carbon paste electrode adsorptive voltammetry
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部