In this paper,we first give the general forms of skew commuting maps and skew anti-commuting maps by the Peirce decomposition on a unital ring with a nontrivial idempotent,respectively,and then,as applications,we obta...In this paper,we first give the general forms of skew commuting maps and skew anti-commuting maps by the Peirce decomposition on a unital ring with a nontrivial idempotent,respectively,and then,as applications,we obtain the concrete characterizations of all nonadditive skew(anti-)commuting maps on some operator algebras.展开更多
The concept of Hall words was first introduced by P. Hall in 1933 in his investigation on groups of prime power order. Then M. Hall in 1950 showed that the Hall words form a basis of a free Lie algebra by using direct...The concept of Hall words was first introduced by P. Hall in 1933 in his investigation on groups of prime power order. Then M. Hall in 1950 showed that the Hall words form a basis of a free Lie algebra by using direct construction, that is, first he started with a linear space spanned by Hall words, then defined the Lie product of Hall words and finally checked that the product yields the Lie identities. In this paper, we give a Grbner-Shirshov basis for a free Lie algebra. As an application, by using the Composition-Diamond lemma established by Shirshov in 1962 for free anti-commutative (non-associative) algebras, we provide another method different from that of M. Hall to construct a basis of a free Lie algebra.展开更多
Bokut, Chen and Huang proved that every countably generated L-algebra over a cou nt able field can be embedded into a simple t wo-generated L-algebra. In this paper, we prove that every countably generated L-algebra c...Bokut, Chen and Huang proved that every countably generated L-algebra over a cou nt able field can be embedded into a simple t wo-generated L-algebra. In this paper, we prove that every countably generated L-algebra can be embedded into a simple two-generated L-algebra. We also prove that every anti-commutative algebra can be embedded into a simple anti-commutative algebra, and that every countably generated anti-commutative algebra can be embedded into a simple two-generated anti-commutative algebra. Finally, we prove that every anti-commutative algebra can be embedded into its universal enveloping non-associative algebra.展开更多
基金supported by the National Natural Science Foundation of China (Nos.12171290,12301152)the Natural Science Foundation of Shanxi Province (No.202203021222018)。
文摘In this paper,we first give the general forms of skew commuting maps and skew anti-commuting maps by the Peirce decomposition on a unital ring with a nontrivial idempotent,respectively,and then,as applications,we obtain the concrete characterizations of all nonadditive skew(anti-)commuting maps on some operator algebras.
基金supported by the grant LSS (Grant No. 344.2008.1)the SB RAS Integration Grant (GrantNo. 2006.1.9) (Russia)+1 种基金National Natural Science Foundation of China (Grant No. 10771077)Natural Science Foundation of Guangdong Province (Grant No. 06025062)
文摘The concept of Hall words was first introduced by P. Hall in 1933 in his investigation on groups of prime power order. Then M. Hall in 1950 showed that the Hall words form a basis of a free Lie algebra by using direct construction, that is, first he started with a linear space spanned by Hall words, then defined the Lie product of Hall words and finally checked that the product yields the Lie identities. In this paper, we give a Grbner-Shirshov basis for a free Lie algebra. As an application, by using the Composition-Diamond lemma established by Shirshov in 1962 for free anti-commutative (non-associative) algebras, we provide another method different from that of M. Hall to construct a basis of a free Lie algebra.
文摘Bokut, Chen and Huang proved that every countably generated L-algebra over a cou nt able field can be embedded into a simple t wo-generated L-algebra. In this paper, we prove that every countably generated L-algebra can be embedded into a simple two-generated L-algebra. We also prove that every anti-commutative algebra can be embedded into a simple anti-commutative algebra, and that every countably generated anti-commutative algebra can be embedded into a simple two-generated anti-commutative algebra. Finally, we prove that every anti-commutative algebra can be embedded into its universal enveloping non-associative algebra.