As an efficient passive anti-icing method,the superhydrophobic surface can reduce icing process on metals in low temperatures.However,the usual organic low-surface-energy decorations are often prone to age especially ...As an efficient passive anti-icing method,the superhydrophobic surface can reduce icing process on metals in low temperatures.However,the usual organic low-surface-energy decorations are often prone to age especially in harsh environments,leading to a decrease or complete failure of the anti-icing performance.Here,we adopt a fabrication method of femtosecond laser element-doping microstructuring to achieve inor-ganic superhydrophobic aluminum alloys surfaces through simultaneously modifying the surface profile and compositions of aluminum alloys.The obtained bionic anthill tribe structure with the low thermal conductiv-ity,exhibits the superior delayed freezing time(803.3 s)and the low ice adhesion(16μN)in comparison to the fluorosilane modified and bare Al surfaces.Moreover,such an inherently superhydrophobic metal sur-face also shows the exceptional environmental durability in anti-icing performance,which confirms the ef-fectiveness of our superhydrophobic surface without the need for organic coatings.展开更多
Hydrogel-based flexible sensors are emerging as ideal candidates for wearable devices and soft robotics.However,most current hydrogels possess limited physicochemical properties,which hinder their practical applicatio...Hydrogel-based flexible sensors are emerging as ideal candidates for wearable devices and soft robotics.However,most current hydrogels possess limited physicochemical properties,which hinder their practical application in long-term and complex scenarios.Herein,inspired by the unique structure of the barnacle,we design multifunctional poly(DMAPA-co-PHEA)hydrogels(CP hydrogels)by employing multiple physical crosslinks in the presence of Ag nanoparticles and NaCl additives.Owing to the synergistic effect of cation-πinteractions,hydrophobic interactions,and ionic bonds,the CP hydrogels exhibit high stretchability(strain up to 1430%),strong adhesion(22.8 kPa),satisfactory antibacterial activity,stable anti-icing ability(<20 kPa after 20 icing-deicing cycles),and high electrical conductivity(18.5 mS/cm).Additionally,the CP hydrogels show fast and sensitive responsiveness and cycling stability and can attach directly to human skin to accurately detect both human motions and tiny physiological signals as a flexible wearable sensor.Collectively,this work significantly contributes a straightforward and efficient design strategy for the development of multifunctional hydrogels,broadening their application scenarios.展开更多
In low-temperature environments,the condensation and icing phenomena of water molecules on material sur-faces may adversely affect the functionality and durability of various products,so it is critical to improve the ...In low-temperature environments,the condensation and icing phenomena of water molecules on material sur-faces may adversely affect the functionality and durability of various products,so it is critical to improve the antiicing properties of material surfaces.In this study,the anti-icing mechanism of superhydrophobic coatings was analyzed based on the surface wettability theory,and SiO_(2)/PDMS/EP superhydrophobic coating was fabricated by the spraying method.The surface wettability,surface micro-morphology,and surface chemical composition of the coating was characterized,and the stability of the coating as well as the anti-icing properties were investi-gated.The results show that the SiO_(2)/PDMS/EP superhydrophobic coating sprayed on the Al-based surface has a contact angle of 163.3° and a sliding angle of 4°,and the coating maintains excellent superhydrophobicity at a low temperature of-15°.This coating can significantly delay the freezing time and temperature of droplets on its surface,reduce the shear force and natural deicing time required to remove surface ice,and exhibit excellent anti-icing performance.The excellent anti-icing durability of the coating was demonstrated by the icing-deicing cycle experiment.Subsequently,the anti-frosting performance was further investigated,and the results showed that it effectively slowed down the speed of frost formation.Therefore,the superhydrophobic coating fabricated in this study is suitable for a wide range of working conditions and has potential practicality.It also provides experimental guidance for the application of anti-icing coatings on Al surfaces.展开更多
In this study,femtosecond pulsed laser processing was applied to the magnesium alloy,followed by in situ growth of Mg-Al layered double hydroxides(LDHs),and finally modification with low surface energy materials to pr...In this study,femtosecond pulsed laser processing was applied to the magnesium alloy,followed by in situ growth of Mg-Al layered double hydroxides(LDHs),and finally modification with low surface energy materials to prepare a biomimetic of centipede-like superhydrophobic composite coating.The resulting biomimetic coating features a dual-scale structure,comprising a micron-scale laser-etched array and nano-scale LDH sheets,which together create a complex hierarchical architecture.The multistage bionic superhydrophobic coating exhibits exceptional corrosion resistance,with a reduction in corrosion current density by approximately five orders of magnitude compared to the bare magnesium alloy substrate.This remarkable corrosion resistance is attributed to the synergistic effects of the superhydrophobicity with a contact angle(CA)of 154.60°,the densification of the surface LDH nanosheets,and the NO_(3)^(-) exchange capacity.Additionally,compared to untreated AZ91D alloy,the biomimetic coating prolongs ice formation time by 250% at-40℃ and withstands multiple cycles of sandpaper abrasion and repeated tape peeling tests.Furthermore,it demonstrates excellent self-cleaning and anti-fouling properties,as confirmed by dye immersion and dust contamination tests.The construction of the multi-level bionic structured coating not only holds significant practical potential for metal protection but also provides valuable insights into the application of formed LDH materials in functional bionic coating engineering.展开更多
Icing detection is critically important for preventing safety accidents and economic losses,especially concerning ice formation from invalidated anti-icing fluids(water and ethylene glycol)under extreme conditions.Tra...Icing detection is critically important for preventing safety accidents and economic losses,especially concerning ice formation from invalidated anti-icing fluids(water and ethylene glycol)under extreme conditions.Traditional technologies like ultrasonics and capacitor-antenna face challenges with limited detection areas,lower accuracy,and susceptibility to electromagnetic interference.Here,we introduce a novel viscosity-ultrasensitive fluorescent probe 40,4‴-(2,2-diphenyle-thene-1,1-diyl)bis-(3,5-dicarboxylate)(TPE-2B4C)based on AIEgens for moni-toring ice formation of anti-icing fluids in low-temperature environments.TPE-2B4C,consisting of four sodium carboxylate groups and multiple freely rotating benzene rings,demonstrates outstanding solubility in anti-icing fluids and exhibits no fluorescent background signal even at low temperatures(<−20°C).Upon freezing,TPE-2B4C relocates from the water phase to higher viscosity ethylene glycol,causing restriction of benzene rings and a significantly increased green fluorescence signal.TPE-2B4C can successfully determine whether the anti-icing fluids are icing from−5 to−20°C with a high contrast ratio.Due to its simple setup,fast operation,and broad applicability,our new method is anticipated to be employed for rapid,real-time,and large-scale icing detection.展开更多
Although superhydrophobic materials have attracted much research interest in anti-icing,some controversy still exists.In this research,we report a cost-effective method used to verify the contribution of area fraction...Although superhydrophobic materials have attracted much research interest in anti-icing,some controversy still exists.In this research,we report a cost-effective method used to verify the contribution of area fraction to ice adhesion strength.We tried to partially-embed siliea nanopnarticles into microscale fabrics of a commercial polyamide mesh.Then,the area fraction could be determined by altering the mesh size.Generally,the ice adhesion strength decreases as the area fraction decreases.An ice adhesion strength of~1.9 kPa and a delayed freezing time of~1048 s can be obtained.We attribute the low ice adhesion strength to the combination of superhydro-phobicity and stress concentration.The superhydrophobicity prohibits the water from penetrating into the voids of the meshes,and the small actual contact area leads to stress concentration which promotes interfacial crack propagation.Moreover,our superhydrophobic mesh simultaneously exhibis a micro-nano hierarchical structure and a partally-cmbedded structure.Therefore,the as-prepared superhydrophobic mesh retained the ieephobicity after 20 icingldeicing cycles,and maintained its superhydrophobicity even afier 60 sandpaper-abrasion cycles and a 220"C thermal treatment.展开更多
It has been proved that the construction of interconnected armour on superhydrophobic surface could significantly enhance the mechanical robustness.Here,a new kind of armour with frame/protrusion hybrid structure was ...It has been proved that the construction of interconnected armour on superhydrophobic surface could significantly enhance the mechanical robustness.Here,a new kind of armour with frame/protrusion hybrid structure was achieved by nanosecond laser technology.Then,this armoured superhydrophobic surface demonstrated excellent durability,which could withstand linear abrasion(~3 N press)800 cycles,water jet test(1.0 MPa pressure)40 times and 100℃treatment 18 days.Particularly,the armoured superhydrophobic sample shows outstanding anti-icing ability,which can speed up the supercooled water dropping(no adhesion within 2 h),increase the freezing delay time by~3 times and maintain low adhesion force(less than 35 kPa)after 30 icing/de-icing cycles.Further finite element analysis and theoretical modeling proved that the developed frame/protuberance hybrid structure could effectively enhance the durability.The relatively low surface accuracy in this study can significantly reduce processing cost,which provides a bright future for the practical application of armour superhydrophobic materials.展开更多
Superhydrophobic materials have shown tremendous potential in various fields.However,the adhesion,wetting,and pinning of low-surface-tension liquids greatly limit their multifunctional applications.Therefore,the creat...Superhydrophobic materials have shown tremendous potential in various fields.However,the adhesion,wetting,and pinning of low-surface-tension liquids greatly limit their multifunctional applications.Therefore,the creation of superamphiphobic coatings that combine superhydrophobic and superoleophobic properties through a simple preparation strategy is desirable.In this study,we successfully developed an organic-inorganic hybrid superamphiphobic coating on Q235 carbon steel using aluminum oxide nanopar-ticles,organosilanes,and waterborne epoxy resin via a versatile spray-coating technique.The coating ex-hibited high contact angles(>151°)and low sliding angles(<7°)for water and oil liquids,demonstrating excellent superamphiphobic characteristics.Electrochemical tests demonstrated significant improvements in charge transfer resistance and low-frequency modulus for the superamphiphobic coating.The corro-sion potential shifted positively by 590 mV,and the corrosion current density decreased by four orders of magnitude.Additionally,the coating endured 480 h of salt spray and 2400 h of outdoor atmospheric exposure,showcasing superior anti-corrosion capacity.Freezing tests of water droplets at-10℃and-15℃confirmed that the coating significantly prolonged the freezing time with reduced ice adhesion strength.We believe that the designed superamphiphobic coating with integrated functionalities of selfcleaning,anti-corrosion,anti-icing,and anti-liquid-adhesion can provide important solutions for extending the lifespan of materials in marine and industrial environments.展开更多
Pavement snow and icing are worldwide problems, but effective countermeasures are just beginning to be developed in China. The two most common snow and ice removal methods are mechanical clearance and chemical melting...Pavement snow and icing are worldwide problems, but effective countermeasures are just beginning to be developed in China. The two most common snow and ice removal methods are mechanical clearance and chemical melting, and the advantages and disadvantages of each approach are discussed here, including environmental and structural damage caused by corrosive snow melting agents. New developments in chemical melting agents and mechanical equipment are discussed, and an overview of alternative thermal melting systems is presented, including the use of geothermy and non-geothermal heating systems utilizing solar energy, electricity, conductive pavement materials, and infrared/microwave applications. Strategic recommendations are made for continued enhancement of public safety in snow and ice conditions.展开更多
This paper introduces an effective anti-icing strategy that uses passive anti-icing property and active de-icing functions concurrently.These dual capabilities can alleviate the icing problem more effectively than eit...This paper introduces an effective anti-icing strategy that uses passive anti-icing property and active de-icing functions concurrently.These dual capabilities can alleviate the icing problem more effectively than either a passive or active function alone.The developed material is a slippery liquid-repellent elastic conductor(SLEC);it is an organogel that is composed of multi-walled carbon nanotubes,oil,and polydimethylsiloxane.The SLEC maintains passive water-droplet sliding ability even on wet surfaces that frequently occur in cold conditions(e.g.,during condensation and defrosting),suppresses ice nucleation,and shows ice adhesion strength as low as^20 kPa.The SLEC releases heat when it is subject to electrical or photonic stimulation,and can therefore it can prevent ice formation and melt ice that has already formed on a surface.This material has sustainable liquid repellence by syneresis and replenishment;this ability ensures long-lasting anti-icing property,and results in exceptional durability.This durability is stable against mechanical damage.The superior dual anti-icing capabilities together with the sustainable and stable liquid repellence should generate synergistic effects,and yield a powerful anti-icing tool that can broaden the range of icing applications.展开更多
Aluminum is widely used in transmission lines, and the accumulation of ice on aluminum conductor may inflict serious damage such as tower collapse and power failure. In this study, super-hydrophobic surface (SHS) on...Aluminum is widely used in transmission lines, and the accumulation of ice on aluminum conductor may inflict serious damage such as tower collapse and power failure. In this study, super-hydrophobic surface (SHS) on alurninurn conductor with rnicro-nanostructure was fabricated using the preferential etching principle of crystal defects. The surface rnicrostructure and wettability were investigated by scanning electron microscope and contact angle measurement, respectively. The icing progress was observed with a self-made icing experiment platform at different environment temperature. The results showed that, due to jumping and rolling down of coalesced droplets from SHS of aluminum conductor at low temperature, the formation of icing on SHS could be delayed. Dynamic icing experiment indicated that SHS on aluminum conductor could restrain the formation of icing in certain temperature range, but could not exert influence on the accumulation of icing. This study offers new insight into understanding the anti-icing performance of actual aluminum conductor.展开更多
While superhydrophobic coatings have shown promise as potential anti-icing coatings, the surface roughness of these coatings is prone to damage during repeated icing-deicing cycles. Herein, two kinds of superhydrophob...While superhydrophobic coatings have shown promise as potential anti-icing coatings, the surface roughness of these coatings is prone to damage during repeated icing-deicing cycles. Herein, two kinds of superhydrophobic anti-icing coatings are prepared from organic resin and micro-nano particles using two strategies, and their excellent anti-icing properties are also investigated. However, superhydrophobic surface Ⅰ(SF1), prepared by first strategy, cannot be used for extended periods of time due to irreversible damage to the surface roughness during the icing–deicing process. Finite element simulations and experimental studies are preformed to investigate the fatal issue of such roughness damage. In contrast,the anti-icing properties of superhydrophobic surface Ⅱ(SF2), prepared by second strategy, can easily regain through a simple sandpaper abrasion treatment even the surface roughness was damaged during the icing–deicing process. These exploratory results and SF2 preparation strategy provide a facile design of anti-icing coating, and the derived restorable anti-icing coating is expected to be useful for a wide application.展开更多
The harsh working environment affects the performance and usage life of Al and its alloys,thus limiting their application.In recent years,Slippery Liquid-infused Porous Surface(SLIPS)has attracted much attention due t...The harsh working environment affects the performance and usage life of Al and its alloys,thus limiting their application.In recent years,Slippery Liquid-infused Porous Surface(SLIPS)has attracted much attention due to excellent anti-corrosion,anti-fouling and anti-icing properties.This may be an effective way to improve the properties of Al and its alloys.Here,the SLIPS with petal-like structure was constructed on the Al alloy via simple hydrothermal reaction,Stearic Acid(STA)modification and lubricant injection.A variety of droplets(including oil-in-water emulsions)can slide on the SLIPS at a low angle,even the Sliding Angle(SA)of the water droplet is only 3°.Furthermore,the SLIPS exhibits outstanding mechanical and chemical properties.It can maintain fine oil-locking ability under high shearing force and keep slippery stability after immersion in acid/alkaline solutions.In addition,the SLIPS possesses excellent anti-corrosion,anti-fouling and anti-icing properties,which provides a new way to promote the application of Al and its alloys.Therefore,the SLIPS is expected to be an effective way to improve the properties of Al and its alloys,as well as play a role in anti-fouling and self-cleaning in construction,shipbuilding and automotive manufacturing industries,thereby expanding the practical application of Al and its alloys.展开更多
The multiple jets impingement heat transfer is widely applied in the wing anti-icing system.It is challenging to apply the similarity criterion to carry out the anti-icing experiments due to the complex flow and heat ...The multiple jets impingement heat transfer is widely applied in the wing anti-icing system.It is challenging to apply the similarity criterion to carry out the anti-icing experiments due to the complex flow and heat transfer behavior.In the present study,the full-scale slat model is used to carry out anti-icing experimental researches in a 2 m×3 m icing wind tunnel of China Aerodynamics Research and Development Center.The effects of icing parameters Liquid Water Content(LWC)and Median Volume Diameter(MVD)and hot air parameters(mass flow rate and temperature)on the thermal performance of an inner-liner anti-icing system with jets impingement heat transfer are studied.The effects of the experimental parameters are analyzed in detail by combining impingement and evaporation heat transfer mechanisms.The impingement hot air mass flow rate dramatically affects the heat transfer performance of the impingement stagnation region within the range of the experimental parameters.The temperature of impingement hot air and that of wing skin are approximately linear correlated.The experimental results show the effects of LWC and MVD on water film formation and runback ice accretion.The formation of water film is analyzed by an analytical method based on the wing skin temperature difference of dry and wet air conditions.展开更多
As a passive anti-icing strategy,properly designed superhydrophobic coatings can demonstrate outstanding performances.However,common preparation strategies for superhydrophobic coatings often lead to environmental pol...As a passive anti-icing strategy,properly designed superhydrophobic coatings can demonstrate outstanding performances.However,common preparation strategies for superhydrophobic coatings often lead to environmental pollution,high energy-consumption,high-cost and other undesirable issues.Besides,the durability of superhydrophobic coating also plagues its commercial application.In this paper,we introduced a facile and environment-friendly technique for fabricating abrasion-resistant superhydrophobic surfaces using thermoplastic polyurethane(TPU)and modified SiO_(2)particles(SH-SiO_(2)).Both materials are non-toxicity,low-cost,and commercial available.Our methodology has the following advantages:use of minimal amounts of formulation,take the most streamlined technical route,and no waste material.These advantages make it attractive for industrial applications,and its usage sustainability can be promised.In this study,the mechanical stability of the superhydrophobic surface was evaluated by linear wear test.It is found that the excellent wear resistance of the superhydrophobic coating benefits from the characteristics of raw materials,the preparation strategy,and the special structure.In anti-icing properties test,the TPU/SH-SiO_(2)coating exhibits the repellency to the cold droplets and the ability to extend the freezing time.The electrochemical corrosion measurement shows that the asprepared superhydrophobic surface has excellent corrosion resistance that can provide effective protection for the bare Q235 substrates.These results indicate that the TPU/SH-SiO_(2)coating possesses good abrasion resistance and has great potential in anti-corrosion and anti-icing applications.展开更多
Many flight and icing conditions should be considered in order to design an efficient ice protection system to prevent ice accretion on the aircraft surface. The anti-icing heat load is the basic knowledge for the des...Many flight and icing conditions should be considered in order to design an efficient ice protection system to prevent ice accretion on the aircraft surface. The anti-icing heat load is the basic knowledge for the design of a thermal anti-icing system. In order to help the design of the thermal anti-icing system and save the design time, a fast and efficiency method for prediction the anti-icing heat load is investigated. The computation fluid dynamics (CFD) solver and the Messinger model are applied to obtain the snapshots. Examples for the calculation of the anti-icing heat load using the proper orthogonal decomposition (POD) method are presented and compared with the CFD simulation results. It is shown that the heat loads predicted by POD method are in agreement with the CFD computation results. Moreover, it is obviously to see that the POD method is time-saving and can meet the requirement of real-time prediction.展开更多
In this work,the super-hydrophobic(SH)surface was prepared through chemical vapor deposition process by an argon atmospheric pressure plasma jet source with HMDSN(hexamethyldisilazane)as the polymerization precursor.P...In this work,the super-hydrophobic(SH)surface was prepared through chemical vapor deposition process by an argon atmospheric pressure plasma jet source with HMDSN(hexamethyldisilazane)as the polymerization precursor.Plasma synthesized organosilicon(SiOxCyHz)thin films with water contact angle over 160°and sliding angle below 5°,were able to be achieved.FTIR and XPS analysis indicates a large number of hydrocarbon compositions were polymerized in the thin films enduing the latter very-low surface free energy.SEM shows the SH films display micro-nanostructure and with high degree of averaged surface roughness 190 nm evaluated by AFM analysis.From experiments under controlled low-temperature and moisture conditions,the prepared SH surface exhibits good anti-icing effects.Significantly prolonging freezing time was achievable on the SH thin films for both static and sliding water droplets.This investigation demonstrates the anti-icing potentials of SH surface prepared through low-cost simple atmospheric-pressure plasma polymerization process.展开更多
The icing of transmission lines threatens the security of power system. This paper proposes a novel anti-icing method based on reducing voltage of the transmission lines. The line voltage can be reduced by regulating ...The icing of transmission lines threatens the security of power system. This paper proposes a novel anti-icing method based on reducing voltage of the transmission lines. The line voltage can be reduced by regulating the ratio of the transformers which install the both ends of the transmission lines. The line current can be increased and the power loss of the transmission lines can also be increased, which means the heat generated by power loss increases and the icing process of the transmission lines can be restrained. When the icing may occur in the atrocious weather, the anti-icing transformers installed the both ends of transmission line are put into operation. The ratios of transformers are regulated to the appropriate value. The current of transmission line can be increased to the value that is a little greater than the critical current, which can realize the purpose of anti-icing. At the same time, the conditions of normal running in the load side are kept invariably, which can ensure the security of power system. This method can be applicable to a wide range. It's an effective measure to prevent the icing of the transmission lines.展开更多
An anti-icing surface has been designed and prepared with an aluminum panel by creating an artificial lotus leaf which is highly hydrophobic. The hydrophobicity of a solid surface can be generated by decreasing its su...An anti-icing surface has been designed and prepared with an aluminum panel by creating an artificial lotus leaf which is highly hydrophobic. The hydrophobicity of a solid surface can be generated by decreasing its surface tension and increasing the roughness of the surface. On a highly hydrophobic surface, water has a high contact angle and it can easily rolls off, carrying surface dirt and debris with it. Super-cooled water or freezing rain can also run off this highly hydrophobic surface instead of forming ice on the surface, due to the reduction of the liquid-solid adhesion. This property can also help a surface to get rid of the ice after the water becomes frozen. In this study, a Cassie-Baxter rough surface was modeled, and an aluminum panel was physically and chemically modified based on the modeled structure. Good agreement was found between predicted values and experimental results for the contact and roll-off angles of water. Most importantly, by creating this highly hydrophobic aluminum rough surface, the anti-icing and de-icing properties of the modified surface were drastically improved compared to the control aluminum surface, and the cost will be reduced.展开更多
文摘As an efficient passive anti-icing method,the superhydrophobic surface can reduce icing process on metals in low temperatures.However,the usual organic low-surface-energy decorations are often prone to age especially in harsh environments,leading to a decrease or complete failure of the anti-icing performance.Here,we adopt a fabrication method of femtosecond laser element-doping microstructuring to achieve inor-ganic superhydrophobic aluminum alloys surfaces through simultaneously modifying the surface profile and compositions of aluminum alloys.The obtained bionic anthill tribe structure with the low thermal conductiv-ity,exhibits the superior delayed freezing time(803.3 s)and the low ice adhesion(16μN)in comparison to the fluorosilane modified and bare Al surfaces.Moreover,such an inherently superhydrophobic metal sur-face also shows the exceptional environmental durability in anti-icing performance,which confirms the ef-fectiveness of our superhydrophobic surface without the need for organic coatings.
基金financial support from the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515012218)Macao Science and Technology Development Fund(Nos.FDCT 0009/2020/AMJ,0027/2023/RIB1)+1 种基金National Natural Science Foundation of China(No.32301104)Fundamental Research Funds for the Central Universities,Sun Yat-sen University(No.23ptpy165).
文摘Hydrogel-based flexible sensors are emerging as ideal candidates for wearable devices and soft robotics.However,most current hydrogels possess limited physicochemical properties,which hinder their practical application in long-term and complex scenarios.Herein,inspired by the unique structure of the barnacle,we design multifunctional poly(DMAPA-co-PHEA)hydrogels(CP hydrogels)by employing multiple physical crosslinks in the presence of Ag nanoparticles and NaCl additives.Owing to the synergistic effect of cation-πinteractions,hydrophobic interactions,and ionic bonds,the CP hydrogels exhibit high stretchability(strain up to 1430%),strong adhesion(22.8 kPa),satisfactory antibacterial activity,stable anti-icing ability(<20 kPa after 20 icing-deicing cycles),and high electrical conductivity(18.5 mS/cm).Additionally,the CP hydrogels show fast and sensitive responsiveness and cycling stability and can attach directly to human skin to accurately detect both human motions and tiny physiological signals as a flexible wearable sensor.Collectively,this work significantly contributes a straightforward and efficient design strategy for the development of multifunctional hydrogels,broadening their application scenarios.
基金supported by the National Key R&D Program of China(2022YFB3403304)the National Natural Science Foundation of China(NSFC,Grant No.52275420,U23A20632)the Natural Science Foundation of Hunan Province[Grant No.2022JJ30136].
文摘In low-temperature environments,the condensation and icing phenomena of water molecules on material sur-faces may adversely affect the functionality and durability of various products,so it is critical to improve the antiicing properties of material surfaces.In this study,the anti-icing mechanism of superhydrophobic coatings was analyzed based on the surface wettability theory,and SiO_(2)/PDMS/EP superhydrophobic coating was fabricated by the spraying method.The surface wettability,surface micro-morphology,and surface chemical composition of the coating was characterized,and the stability of the coating as well as the anti-icing properties were investi-gated.The results show that the SiO_(2)/PDMS/EP superhydrophobic coating sprayed on the Al-based surface has a contact angle of 163.3° and a sliding angle of 4°,and the coating maintains excellent superhydrophobicity at a low temperature of-15°.This coating can significantly delay the freezing time and temperature of droplets on its surface,reduce the shear force and natural deicing time required to remove surface ice,and exhibit excellent anti-icing performance.The excellent anti-icing durability of the coating was demonstrated by the icing-deicing cycle experiment.Subsequently,the anti-frosting performance was further investigated,and the results showed that it effectively slowed down the speed of frost formation.Therefore,the superhydrophobic coating fabricated in this study is suitable for a wide range of working conditions and has potential practicality.It also provides experimental guidance for the application of anti-icing coatings on Al surfaces.
基金supported by the National Natural Science Foundation of China(No.52331004,U2106216)the Natural Science Foundation of Shandong Province(No.ZR2022ZD12)+2 种基金the Key R&D Program of Shandong Province,China(2023ZLGX05,2023CXGC010406)Key Program of Natural Science Foundation of Shandong Province of China(No.ZR2022ZD12,ZR2024ZD14)the Taishan Scholarship of Climbing Plan(No.tspd20230603)。
文摘In this study,femtosecond pulsed laser processing was applied to the magnesium alloy,followed by in situ growth of Mg-Al layered double hydroxides(LDHs),and finally modification with low surface energy materials to prepare a biomimetic of centipede-like superhydrophobic composite coating.The resulting biomimetic coating features a dual-scale structure,comprising a micron-scale laser-etched array and nano-scale LDH sheets,which together create a complex hierarchical architecture.The multistage bionic superhydrophobic coating exhibits exceptional corrosion resistance,with a reduction in corrosion current density by approximately five orders of magnitude compared to the bare magnesium alloy substrate.This remarkable corrosion resistance is attributed to the synergistic effects of the superhydrophobicity with a contact angle(CA)of 154.60°,the densification of the surface LDH nanosheets,and the NO_(3)^(-) exchange capacity.Additionally,compared to untreated AZ91D alloy,the biomimetic coating prolongs ice formation time by 250% at-40℃ and withstands multiple cycles of sandpaper abrasion and repeated tape peeling tests.Furthermore,it demonstrates excellent self-cleaning and anti-fouling properties,as confirmed by dye immersion and dust contamination tests.The construction of the multi-level bionic structured coating not only holds significant practical potential for metal protection but also provides valuable insights into the application of formed LDH materials in functional bionic coating engineering.
基金support from the National Natural Science Foundation of China(9235630033,22105069)Shanghai Pujiang Program(20PJ1402900)+2 种基金Shanghai Natural Science Foundation(21ZR1418400)Innovation Program of Shanghai Municipal Education Commission(2023FGS01)Natural Science Foundation of Jiangsu Province(BK20231225).
文摘Icing detection is critically important for preventing safety accidents and economic losses,especially concerning ice formation from invalidated anti-icing fluids(water and ethylene glycol)under extreme conditions.Traditional technologies like ultrasonics and capacitor-antenna face challenges with limited detection areas,lower accuracy,and susceptibility to electromagnetic interference.Here,we introduce a novel viscosity-ultrasensitive fluorescent probe 40,4‴-(2,2-diphenyle-thene-1,1-diyl)bis-(3,5-dicarboxylate)(TPE-2B4C)based on AIEgens for moni-toring ice formation of anti-icing fluids in low-temperature environments.TPE-2B4C,consisting of four sodium carboxylate groups and multiple freely rotating benzene rings,demonstrates outstanding solubility in anti-icing fluids and exhibits no fluorescent background signal even at low temperatures(<−20°C).Upon freezing,TPE-2B4C relocates from the water phase to higher viscosity ethylene glycol,causing restriction of benzene rings and a significantly increased green fluorescence signal.TPE-2B4C can successfully determine whether the anti-icing fluids are icing from−5 to−20°C with a high contrast ratio.Due to its simple setup,fast operation,and broad applicability,our new method is anticipated to be employed for rapid,real-time,and large-scale icing detection.
基金supported by National Nature Science Foundation of China(51977079,51607067)Youth Elite Scientists Sponsorship Program by Chinese Society for Electrical Engineering(CSEE-YESS-2017002)the Fundamental Research Funds for the Central Universities(2020MS115,2017MS149).
文摘Although superhydrophobic materials have attracted much research interest in anti-icing,some controversy still exists.In this research,we report a cost-effective method used to verify the contribution of area fraction to ice adhesion strength.We tried to partially-embed siliea nanopnarticles into microscale fabrics of a commercial polyamide mesh.Then,the area fraction could be determined by altering the mesh size.Generally,the ice adhesion strength decreases as the area fraction decreases.An ice adhesion strength of~1.9 kPa and a delayed freezing time of~1048 s can be obtained.We attribute the low ice adhesion strength to the combination of superhydro-phobicity and stress concentration.The superhydrophobicity prohibits the water from penetrating into the voids of the meshes,and the small actual contact area leads to stress concentration which promotes interfacial crack propagation.Moreover,our superhydrophobic mesh simultaneously exhibis a micro-nano hierarchical structure and a partally-cmbedded structure.Therefore,the as-prepared superhydrophobic mesh retained the ieephobicity after 20 icingldeicing cycles,and maintained its superhydrophobicity even afier 60 sandpaper-abrasion cycles and a 220"C thermal treatment.
基金supported by Beijing Nature Science Foundation(3232054)National Nature Science Foundation of China(51977079)+4 种基金Key Laboratory of Icing and Anti/De-icing of CARDC(Grant No.IADL 20210401)the Central Guidance on Local Science and Technology Development Fund of Hebei Province(226Z1204G)the Top Young Innovative Talents of Colleges and Universities of Higher Learning Institutions of Hebei(BJ2021095)Youth Elite Scientists Sponsorship Program by Chinese Society for Electrical Engineering(CSEE-YESS-2017002)the Fundamental Research Funds for the Central Universities(2020MS115).
文摘It has been proved that the construction of interconnected armour on superhydrophobic surface could significantly enhance the mechanical robustness.Here,a new kind of armour with frame/protrusion hybrid structure was achieved by nanosecond laser technology.Then,this armoured superhydrophobic surface demonstrated excellent durability,which could withstand linear abrasion(~3 N press)800 cycles,water jet test(1.0 MPa pressure)40 times and 100℃treatment 18 days.Particularly,the armoured superhydrophobic sample shows outstanding anti-icing ability,which can speed up the supercooled water dropping(no adhesion within 2 h),increase the freezing delay time by~3 times and maintain low adhesion force(less than 35 kPa)after 30 icing/de-icing cycles.Further finite element analysis and theoretical modeling proved that the developed frame/protuberance hybrid structure could effectively enhance the durability.The relatively low surface accuracy in this study can significantly reduce processing cost,which provides a bright future for the practical application of armour superhydrophobic materials.
基金the financial support of the Shandong Provincial Natural Science Foundation(Nos.ZR2022YQ35 and ZR2021LFG004)the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2021207).
文摘Superhydrophobic materials have shown tremendous potential in various fields.However,the adhesion,wetting,and pinning of low-surface-tension liquids greatly limit their multifunctional applications.Therefore,the creation of superamphiphobic coatings that combine superhydrophobic and superoleophobic properties through a simple preparation strategy is desirable.In this study,we successfully developed an organic-inorganic hybrid superamphiphobic coating on Q235 carbon steel using aluminum oxide nanopar-ticles,organosilanes,and waterborne epoxy resin via a versatile spray-coating technique.The coating ex-hibited high contact angles(>151°)and low sliding angles(<7°)for water and oil liquids,demonstrating excellent superamphiphobic characteristics.Electrochemical tests demonstrated significant improvements in charge transfer resistance and low-frequency modulus for the superamphiphobic coating.The corro-sion potential shifted positively by 590 mV,and the corrosion current density decreased by four orders of magnitude.Additionally,the coating endured 480 h of salt spray and 2400 h of outdoor atmospheric exposure,showcasing superior anti-corrosion capacity.Freezing tests of water droplets at-10℃and-15℃confirmed that the coating significantly prolonged the freezing time with reduced ice adhesion strength.We believe that the designed superamphiphobic coating with integrated functionalities of selfcleaning,anti-corrosion,anti-icing,and anti-liquid-adhesion can provide important solutions for extending the lifespan of materials in marine and industrial environments.
基金supported by the National Natural Science Fund of China(No.41121061)the National Key Basic Research and Development Program(No.2012CB026102)the Fund of the "Hundred People Plan" of CAS(to WenBing Yu)
文摘Pavement snow and icing are worldwide problems, but effective countermeasures are just beginning to be developed in China. The two most common snow and ice removal methods are mechanical clearance and chemical melting, and the advantages and disadvantages of each approach are discussed here, including environmental and structural damage caused by corrosive snow melting agents. New developments in chemical melting agents and mechanical equipment are discussed, and an overview of alternative thermal melting systems is presented, including the use of geothermy and non-geothermal heating systems utilizing solar energy, electricity, conductive pavement materials, and infrared/microwave applications. Strategic recommendations are made for continued enhancement of public safety in snow and ice conditions.
文摘This paper introduces an effective anti-icing strategy that uses passive anti-icing property and active de-icing functions concurrently.These dual capabilities can alleviate the icing problem more effectively than either a passive or active function alone.The developed material is a slippery liquid-repellent elastic conductor(SLEC);it is an organogel that is composed of multi-walled carbon nanotubes,oil,and polydimethylsiloxane.The SLEC maintains passive water-droplet sliding ability even on wet surfaces that frequently occur in cold conditions(e.g.,during condensation and defrosting),suppresses ice nucleation,and shows ice adhesion strength as low as^20 kPa.The SLEC releases heat when it is subject to electrical or photonic stimulation,and can therefore it can prevent ice formation and melt ice that has already formed on a surface.This material has sustainable liquid repellence by syneresis and replenishment;this ability ensures long-lasting anti-icing property,and results in exceptional durability.This durability is stable against mechanical damage.The superior dual anti-icing capabilities together with the sustainable and stable liquid repellence should generate synergistic effects,and yield a powerful anti-icing tool that can broaden the range of icing applications.
基金supported by the National Natural Science Foundation of China (No.51272208)
文摘Aluminum is widely used in transmission lines, and the accumulation of ice on aluminum conductor may inflict serious damage such as tower collapse and power failure. In this study, super-hydrophobic surface (SHS) on alurninurn conductor with rnicro-nanostructure was fabricated using the preferential etching principle of crystal defects. The surface rnicrostructure and wettability were investigated by scanning electron microscope and contact angle measurement, respectively. The icing progress was observed with a self-made icing experiment platform at different environment temperature. The results showed that, due to jumping and rolling down of coalesced droplets from SHS of aluminum conductor at low temperature, the formation of icing on SHS could be delayed. Dynamic icing experiment indicated that SHS on aluminum conductor could restrain the formation of icing in certain temperature range, but could not exert influence on the accumulation of icing. This study offers new insight into understanding the anti-icing performance of actual aluminum conductor.
基金supported by the National Natural Science Foundation of China(No.32171693)the Fundamental Research Funds for the Central Universities(No.2572021CG02)the Fundamental Research Funds for the Central Universities(No.2572017AB16).
文摘While superhydrophobic coatings have shown promise as potential anti-icing coatings, the surface roughness of these coatings is prone to damage during repeated icing-deicing cycles. Herein, two kinds of superhydrophobic anti-icing coatings are prepared from organic resin and micro-nano particles using two strategies, and their excellent anti-icing properties are also investigated. However, superhydrophobic surface Ⅰ(SF1), prepared by first strategy, cannot be used for extended periods of time due to irreversible damage to the surface roughness during the icing–deicing process. Finite element simulations and experimental studies are preformed to investigate the fatal issue of such roughness damage. In contrast,the anti-icing properties of superhydrophobic surface Ⅱ(SF2), prepared by second strategy, can easily regain through a simple sandpaper abrasion treatment even the surface roughness was damaged during the icing–deicing process. These exploratory results and SF2 preparation strategy provide a facile design of anti-icing coating, and the derived restorable anti-icing coating is expected to be useful for a wide application.
基金supported by the National Natural Science Foundation of China(no.51735013 and 51905520)the Pre‐Research Program in National 14th Five‐Year Plan(grant number 61409230614).
文摘The harsh working environment affects the performance and usage life of Al and its alloys,thus limiting their application.In recent years,Slippery Liquid-infused Porous Surface(SLIPS)has attracted much attention due to excellent anti-corrosion,anti-fouling and anti-icing properties.This may be an effective way to improve the properties of Al and its alloys.Here,the SLIPS with petal-like structure was constructed on the Al alloy via simple hydrothermal reaction,Stearic Acid(STA)modification and lubricant injection.A variety of droplets(including oil-in-water emulsions)can slide on the SLIPS at a low angle,even the Sliding Angle(SA)of the water droplet is only 3°.Furthermore,the SLIPS exhibits outstanding mechanical and chemical properties.It can maintain fine oil-locking ability under high shearing force and keep slippery stability after immersion in acid/alkaline solutions.In addition,the SLIPS possesses excellent anti-corrosion,anti-fouling and anti-icing properties,which provides a new way to promote the application of Al and its alloys.Therefore,the SLIPS is expected to be an effective way to improve the properties of Al and its alloys,as well as play a role in anti-fouling and self-cleaning in construction,shipbuilding and automotive manufacturing industries,thereby expanding the practical application of Al and its alloys.
基金co-supported by the National Numerical Wind Tunnel Project(No.NNW2018-ZT2B04)the “973”Program of China(No.2015CB755800)。
文摘The multiple jets impingement heat transfer is widely applied in the wing anti-icing system.It is challenging to apply the similarity criterion to carry out the anti-icing experiments due to the complex flow and heat transfer behavior.In the present study,the full-scale slat model is used to carry out anti-icing experimental researches in a 2 m×3 m icing wind tunnel of China Aerodynamics Research and Development Center.The effects of icing parameters Liquid Water Content(LWC)and Median Volume Diameter(MVD)and hot air parameters(mass flow rate and temperature)on the thermal performance of an inner-liner anti-icing system with jets impingement heat transfer are studied.The effects of the experimental parameters are analyzed in detail by combining impingement and evaporation heat transfer mechanisms.The impingement hot air mass flow rate dramatically affects the heat transfer performance of the impingement stagnation region within the range of the experimental parameters.The temperature of impingement hot air and that of wing skin are approximately linear correlated.The experimental results show the effects of LWC and MVD on water film formation and runback ice accretion.The formation of water film is analyzed by an analytical method based on the wing skin temperature difference of dry and wet air conditions.
基金Financial support from the National Natural Science Foundation of China(No.21676216)Special project of Shaanxi Provincial Education Department,China(20JC034)+1 种基金Basic research program of Natural Science in Shaanxi Province,China(2019JLP-03)Innovation project of college students in Shaanxi Province,China(S202010697054)are gratefully acknowledged.
文摘As a passive anti-icing strategy,properly designed superhydrophobic coatings can demonstrate outstanding performances.However,common preparation strategies for superhydrophobic coatings often lead to environmental pollution,high energy-consumption,high-cost and other undesirable issues.Besides,the durability of superhydrophobic coating also plagues its commercial application.In this paper,we introduced a facile and environment-friendly technique for fabricating abrasion-resistant superhydrophobic surfaces using thermoplastic polyurethane(TPU)and modified SiO_(2)particles(SH-SiO_(2)).Both materials are non-toxicity,low-cost,and commercial available.Our methodology has the following advantages:use of minimal amounts of formulation,take the most streamlined technical route,and no waste material.These advantages make it attractive for industrial applications,and its usage sustainability can be promised.In this study,the mechanical stability of the superhydrophobic surface was evaluated by linear wear test.It is found that the excellent wear resistance of the superhydrophobic coating benefits from the characteristics of raw materials,the preparation strategy,and the special structure.In anti-icing properties test,the TPU/SH-SiO_(2)coating exhibits the repellency to the cold droplets and the ability to extend the freezing time.The electrochemical corrosion measurement shows that the asprepared superhydrophobic surface has excellent corrosion resistance that can provide effective protection for the bare Q235 substrates.These results indicate that the TPU/SH-SiO_(2)coating possesses good abrasion resistance and has great potential in anti-corrosion and anti-icing applications.
文摘Many flight and icing conditions should be considered in order to design an efficient ice protection system to prevent ice accretion on the aircraft surface. The anti-icing heat load is the basic knowledge for the design of a thermal anti-icing system. In order to help the design of the thermal anti-icing system and save the design time, a fast and efficiency method for prediction the anti-icing heat load is investigated. The computation fluid dynamics (CFD) solver and the Messinger model are applied to obtain the snapshots. Examples for the calculation of the anti-icing heat load using the proper orthogonal decomposition (POD) method are presented and compared with the CFD simulation results. It is shown that the heat loads predicted by POD method are in agreement with the CFD computation results. Moreover, it is obviously to see that the POD method is time-saving and can meet the requirement of real-time prediction.
基金partly supported by the State Key Laboratory of Advanced Electromagnetic Engineering and Technology(No.AEET 2018KF003)National Natural Science Foundation of China(Nos.51637002,11405144)+3 种基金the Fundamental Research Funds for the Central Universities(Nos.2018CDXYTW0031,20720150022)the Construction Committee of Chongqing(No.2018-1-3-6)the International Science&Technology Cooperation Program of China(No.2015DFR70390)the Natural Science Foundation of Hunan Province(No.2018JJ3587)
文摘In this work,the super-hydrophobic(SH)surface was prepared through chemical vapor deposition process by an argon atmospheric pressure plasma jet source with HMDSN(hexamethyldisilazane)as the polymerization precursor.Plasma synthesized organosilicon(SiOxCyHz)thin films with water contact angle over 160°and sliding angle below 5°,were able to be achieved.FTIR and XPS analysis indicates a large number of hydrocarbon compositions were polymerized in the thin films enduing the latter very-low surface free energy.SEM shows the SH films display micro-nanostructure and with high degree of averaged surface roughness 190 nm evaluated by AFM analysis.From experiments under controlled low-temperature and moisture conditions,the prepared SH surface exhibits good anti-icing effects.Significantly prolonging freezing time was achievable on the SH thin films for both static and sliding water droplets.This investigation demonstrates the anti-icing potentials of SH surface prepared through low-cost simple atmospheric-pressure plasma polymerization process.
文摘The icing of transmission lines threatens the security of power system. This paper proposes a novel anti-icing method based on reducing voltage of the transmission lines. The line voltage can be reduced by regulating the ratio of the transformers which install the both ends of the transmission lines. The line current can be increased and the power loss of the transmission lines can also be increased, which means the heat generated by power loss increases and the icing process of the transmission lines can be restrained. When the icing may occur in the atrocious weather, the anti-icing transformers installed the both ends of transmission line are put into operation. The ratios of transformers are regulated to the appropriate value. The current of transmission line can be increased to the value that is a little greater than the critical current, which can realize the purpose of anti-icing. At the same time, the conditions of normal running in the load side are kept invariably, which can ensure the security of power system. This method can be applicable to a wide range. It's an effective measure to prevent the icing of the transmission lines.
文摘An anti-icing surface has been designed and prepared with an aluminum panel by creating an artificial lotus leaf which is highly hydrophobic. The hydrophobicity of a solid surface can be generated by decreasing its surface tension and increasing the roughness of the surface. On a highly hydrophobic surface, water has a high contact angle and it can easily rolls off, carrying surface dirt and debris with it. Super-cooled water or freezing rain can also run off this highly hydrophobic surface instead of forming ice on the surface, due to the reduction of the liquid-solid adhesion. This property can also help a surface to get rid of the ice after the water becomes frozen. In this study, a Cassie-Baxter rough surface was modeled, and an aluminum panel was physically and chemically modified based on the modeled structure. Good agreement was found between predicted values and experimental results for the contact and roll-off angles of water. Most importantly, by creating this highly hydrophobic aluminum rough surface, the anti-icing and de-icing properties of the modified surface were drastically improved compared to the control aluminum surface, and the cost will be reduced.