This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical ...This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical satellite networks. Firstly, a cross-layer optimization model is built, which considers the Doppler wavelength shift, the transmission delay as well as wavelength-continuity constraint. Then an ant colony algorithm is utilized to solve the cross-layer optimization model, resulting in finding an optimal light path satisfying the above constraints for every connection request. The performance of CL-ACRWA is measured by the communication success probability, the convergence property and the transmission delay. Simulation results show that CL-ACRWA performs well in communication success probability and has good global search ability as well as fast convergence speed. Meanwhile, the transmission delay can meet the basic requirement of real-time transmission of business.展开更多
The ant system algorithm (ASA) has proved to be a novel meta-heuristic algorithm to solve many multivariable problems. In this paper, the earth coverage of satellite constellation is analyzed and a n + 1^ -fold cov...The ant system algorithm (ASA) has proved to be a novel meta-heuristic algorithm to solve many multivariable problems. In this paper, the earth coverage of satellite constellation is analyzed and a n + 1^ -fold coverage rate is put forward to evaluate the coverage performance of a satellite constellation. An optimization model of constellation parameters is established on the basis of the coverage performance. As a newly developed method, ASA can be applied to optimize the constellation parameters. In order to improve the ASA, a rule for adaptive number of ants is proposed, by which the search range is obviously enlarged and the convergence speed increased. Simulation results have shown that the ASA is more quick and efficient than other methodV211.71s.展开更多
The public transit system in Sanandaj has been under review and modification for the last several years. The goal is to reduce the traffic congestion and the share of private car usage in the city and increase the ver...The public transit system in Sanandaj has been under review and modification for the last several years. The goal is to reduce the traffic congestion and the share of private car usage in the city and increase the very low share of the public transit. The bus routes in Sanandaj are not connected. There is no connected transit network with the ability to transfer between the routes in locations outside of the downtown terminal. The routes mostly connect the downtown core directly to the peripheries without providing travel options for passengers between peripheries. Although there has been some improvement in the transit system, lack of service in many populated districts of Sanandaj and town nearby makes the transit system unpopular and unreliable. This research is an attempt to provide solutions for the transit network design (TND) problem in Sanandaj using the capabilities of GIS and artificial intelligence methods. GIS offers several tools that enable the decision-makers to investigate the spatial correlations between different features. One of the contributions of this research is developing a transit network design with utilizing a spectrum of GIS software modeling functionalities. The visual ability of GIS is used to generate TNDs. Many studies focus on artificial intelligence as the main method to generate the TNDs, but the focus of this research is to combine GIS and artificial intelligence capabilities in order to generate a multi-objective GIS-based procedure to construct different bus network designs and explore and evaluate them to find the suitable transit network alternative.展开更多
Due to the ever-increasing air traffic flow,the influence of aircraft noise around the airport has become significant.As most airlines are trying to decrease operation cost,stringent requirements for more simple and e...Due to the ever-increasing air traffic flow,the influence of aircraft noise around the airport has become significant.As most airlines are trying to decrease operation cost,stringent requirements for more simple and efficient departure trajectory are on a rise.Therefore,a departure trajectory design was established for performancebased navigation technology,and a multi-objective optimization model was developed,with constraints of safety and noise influence,as well as optimization targets of efficiency and simplicity.An improved ant colony algorithm was then proposed to solve the optimization problem.Finally,an experiment was conducted using the Lanzhou terminal airspace operation data,and the results showed that the designed departure trajectory was feasible and efficient in decreasing the aircraft noise influence.展开更多
In order to improve safety,economy efficiency and design automation degree of air route in terminal airspace,Three-dimensional(3D)planning of routes network is investigated.A waypoint probability search method is prop...In order to improve safety,economy efficiency and design automation degree of air route in terminal airspace,Three-dimensional(3D)planning of routes network is investigated.A waypoint probability search method is proposed to optimize individual flight path.Through updating horizontal pheromones by negative feedback factors,an antcolony algorithm of path searching in 3Dterminal airspace is implemented.The principle of optimization sequence of arrival and departure routes is analyzed.Each route is optimized successively,and the overall optimization of the whole route network is finally achieved.A case study shows that it takes about 63 sto optimize 8arrival and departure routes,and the operation efficiency can be significantly improved with desirable safety and economy.展开更多
In design optimization of crane metal structures, present approaches are based on simple models and mixed variables, which are difficult to use in practice and usually lead to failure of optimized results for rounding...In design optimization of crane metal structures, present approaches are based on simple models and mixed variables, which are difficult to use in practice and usually lead to failure of optimized results for rounding variables. Crane metal structure optimal design(CMSOD) belongs to a constrained nonlinear optimization problem with discrete variables. A novel algorithm combining ant colony algorithm with a mutation-based local search(ACAM) is developed and used for a real CMSOD for the first time. In the algorithm model, the encoded mode of continuous array elements is introduced. This not only avoids the need to round optimization design variables during mixed variable optimization, but also facilitates the construction of heuristic information, and the storage and update of the ant colony pheromone. Together with the proposed ACAM, a genetic algorithm(GA) and particle swarm optimization(PSO) are used to optimize the metal structure of a crane. The optimization results show that the convergence speed of ACAM is approximately 20% of that of the GA and around 11% of that of the PSO. The objective function value given by ACAM is 22.23% less than the practical design value, a reduction of 16.42% over the GA and 3.27% over the PSO. The developed ACAM is an effective intelligent method for CMSOD and superior to other methods.展开更多
基金supported by the National Natural Science Foundation of China(No.61675033,61575026,61675233)National High Technical Research and Development Program of China(No.2015AA015504)
文摘This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical satellite networks. Firstly, a cross-layer optimization model is built, which considers the Doppler wavelength shift, the transmission delay as well as wavelength-continuity constraint. Then an ant colony algorithm is utilized to solve the cross-layer optimization model, resulting in finding an optimal light path satisfying the above constraints for every connection request. The performance of CL-ACRWA is measured by the communication success probability, the convergence property and the transmission delay. Simulation results show that CL-ACRWA performs well in communication success probability and has good global search ability as well as fast convergence speed. Meanwhile, the transmission delay can meet the basic requirement of real-time transmission of business.
文摘The ant system algorithm (ASA) has proved to be a novel meta-heuristic algorithm to solve many multivariable problems. In this paper, the earth coverage of satellite constellation is analyzed and a n + 1^ -fold coverage rate is put forward to evaluate the coverage performance of a satellite constellation. An optimization model of constellation parameters is established on the basis of the coverage performance. As a newly developed method, ASA can be applied to optimize the constellation parameters. In order to improve the ASA, a rule for adaptive number of ants is proposed, by which the search range is obviously enlarged and the convergence speed increased. Simulation results have shown that the ASA is more quick and efficient than other methodV211.71s.
文摘The public transit system in Sanandaj has been under review and modification for the last several years. The goal is to reduce the traffic congestion and the share of private car usage in the city and increase the very low share of the public transit. The bus routes in Sanandaj are not connected. There is no connected transit network with the ability to transfer between the routes in locations outside of the downtown terminal. The routes mostly connect the downtown core directly to the peripheries without providing travel options for passengers between peripheries. Although there has been some improvement in the transit system, lack of service in many populated districts of Sanandaj and town nearby makes the transit system unpopular and unreliable. This research is an attempt to provide solutions for the transit network design (TND) problem in Sanandaj using the capabilities of GIS and artificial intelligence methods. GIS offers several tools that enable the decision-makers to investigate the spatial correlations between different features. One of the contributions of this research is developing a transit network design with utilizing a spectrum of GIS software modeling functionalities. The visual ability of GIS is used to generate TNDs. Many studies focus on artificial intelligence as the main method to generate the TNDs, but the focus of this research is to combine GIS and artificial intelligence capabilities in order to generate a multi-objective GIS-based procedure to construct different bus network designs and explore and evaluate them to find the suitable transit network alternative.
文摘Due to the ever-increasing air traffic flow,the influence of aircraft noise around the airport has become significant.As most airlines are trying to decrease operation cost,stringent requirements for more simple and efficient departure trajectory are on a rise.Therefore,a departure trajectory design was established for performancebased navigation technology,and a multi-objective optimization model was developed,with constraints of safety and noise influence,as well as optimization targets of efficiency and simplicity.An improved ant colony algorithm was then proposed to solve the optimization problem.Finally,an experiment was conducted using the Lanzhou terminal airspace operation data,and the results showed that the designed departure trajectory was feasible and efficient in decreasing the aircraft noise influence.
基金supported by the National Natural Science Foundation of China(No.61039001)the State Technology Supporting Plan(No.2011BAH24B08)the Fundamental Research Funds for the Central Universities (No.ZXH2011A002)
文摘In order to improve safety,economy efficiency and design automation degree of air route in terminal airspace,Three-dimensional(3D)planning of routes network is investigated.A waypoint probability search method is proposed to optimize individual flight path.Through updating horizontal pheromones by negative feedback factors,an antcolony algorithm of path searching in 3Dterminal airspace is implemented.The principle of optimization sequence of arrival and departure routes is analyzed.Each route is optimized successively,and the overall optimization of the whole route network is finally achieved.A case study shows that it takes about 63 sto optimize 8arrival and departure routes,and the operation efficiency can be significantly improved with desirable safety and economy.
基金Supported by National Natural Science Foundation of China(Grant No.51275329)the Youth Fund Program of Taiyuan University of Science and Technology,China(Grant No.20113014)
文摘In design optimization of crane metal structures, present approaches are based on simple models and mixed variables, which are difficult to use in practice and usually lead to failure of optimized results for rounding variables. Crane metal structure optimal design(CMSOD) belongs to a constrained nonlinear optimization problem with discrete variables. A novel algorithm combining ant colony algorithm with a mutation-based local search(ACAM) is developed and used for a real CMSOD for the first time. In the algorithm model, the encoded mode of continuous array elements is introduced. This not only avoids the need to round optimization design variables during mixed variable optimization, but also facilitates the construction of heuristic information, and the storage and update of the ant colony pheromone. Together with the proposed ACAM, a genetic algorithm(GA) and particle swarm optimization(PSO) are used to optimize the metal structure of a crane. The optimization results show that the convergence speed of ACAM is approximately 20% of that of the GA and around 11% of that of the PSO. The objective function value given by ACAM is 22.23% less than the practical design value, a reduction of 16.42% over the GA and 3.27% over the PSO. The developed ACAM is an effective intelligent method for CMSOD and superior to other methods.