Low Earth Orbit (LEO) satellites provide short round-trip delays and are becoming in- creasingly important. One of the challenges in LEO satellite networks is the development of specialized and efficient routing algor...Low Earth Orbit (LEO) satellites provide short round-trip delays and are becoming in- creasingly important. One of the challenges in LEO satellite networks is the development of specialized and efficient routing algorithms. To satisfy the QoS requirements of multimedia applications, satellite routing protocols should consider handovers and minimize their effect on the active connections. A distributed QoS routing scheme based on heuristic ant algorithm is proposed for satisfying delay bound and avoiding link congestion. Simulation results show that the call blocking probabilities of this al- gorithm are less than that of Shortest Path First (SPF) with different delay bound.展开更多
In design science, these two kinds of problems are mutually nested, however, the nesting could not blind us for the fact that their problem-solving and solution justification methods are different. The ant algorithms ...In design science, these two kinds of problems are mutually nested, however, the nesting could not blind us for the fact that their problem-solving and solution justification methods are different. The ant algorithms research field, builds on the idea that the study of the behavior of ant colonies or other social insects is interesting, because it provides models of distributed organization which could be utilized as a source of inspiration for the design of optimization and distributed control algorithms. In this paper, a relatively new type of hybridizing ant search algorithm is developed, and the results are compared against other algorithms. The intelligence of this heuristic approach is not portrayed by individual ants, but rather is expressed by the colony as a whole inspired by labor division and brood sorting. This solution obtained by this method will be evaluated against the one obtained by other traditional heuristics.展开更多
A novel multi-chip module(MCM) interconnect test generation scheme based on ant algorithm(AA) with mutation operator was presented.By combing the characteristics of MCM interconnect test generation,the pheromone updat...A novel multi-chip module(MCM) interconnect test generation scheme based on ant algorithm(AA) with mutation operator was presented.By combing the characteristics of MCM interconnect test generation,the pheromone updating rule and state transition rule of AA is designed.Using mutation operator,this scheme overcomes ordinary AA’s defects of slow convergence speed,easy to get stagnate,and low ability of full search.The international standard MCM benchmark circuit provided by the MCNC group was used to verify the approach.The results of simulation experiments,which compare to the results of standard ant algorithm,genetic algorithm(GA) and other deterministic interconnecting algorithms,show that the proposed scheme can achieve high fault coverage,compact test set and short CPU time,that it is a newer optimized method deserving research.展开更多
The knapsack problem is a well-known combinatorial optimization problem which has been proved to be NP-hard.This paper proposes a new algorithm called quantum-inspired ant algorithm(QAA)to solve the knapsack problem.Q...The knapsack problem is a well-known combinatorial optimization problem which has been proved to be NP-hard.This paper proposes a new algorithm called quantum-inspired ant algorithm(QAA)to solve the knapsack problem.QAA takes the advantage of the principles in quantum computing,such as qubit,quantum gate,and quantum superposition of states,to get more probabilistic-based status with small colonies.By updating the pheromone in the ant algorithm and rotating the quantum gate,the algorithm can finally reach the optimal solution.The detailed steps to use QAA are presented,and by solving series of test cases of classical knapsack problems,the effectiveness and generality of the new algorithm are validated.展开更多
Low earth orbit (LEO) satellite networkscan provide wider service coverage and lower latencythan traditional terrestrial networks, which haveattracted considerable attention. However, the unevendistribution of human p...Low earth orbit (LEO) satellite networkscan provide wider service coverage and lower latencythan traditional terrestrial networks, which haveattracted considerable attention. However, the unevendistribution of human population and data trafficon the ground incurs unbalanced traffic load inLEO satellite networks. To this end, we proposea load-balancing routing algorithm for LEO satellitenetworks based on ant colony optimization and reinforcementlearning. In the ant colony algorithm,we improve the pheromone update rule by introducingload-aware heuristic information, e.g., the currentnode transmission overhead, delay and load status, andreinforcement learning-based link quality evaluation.It enables the routing algorithm to select the lightlyloaded node as the next hop to balance the networkload. We simulate and verify the proposed algorithmusing the NS2 simulation platform, and the resultsshow that our algorithm improves the data delivery ratioand throughput while ensuring lower latency andtransmission overhead.展开更多
:In this paper, we propose a new artificial ant algorithm for solving constrained optimization problems in general case. Numerical examples show that it is effective and robust.
[Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored...[Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored-grain insects. [Method] Through the analysis of feature extraction in the image recognition of the stored-grain insects, the recognition accuracy of the cross-validation training model in support vector machine (SVM) algorithm was taken as an important factor of the evaluation principle of feature extraction of stored-grain insects. The ant colony optimization (ACO) algorithm was applied to the automatic feature extraction of stored-grain insects. [Result] The algorithm extracted the optimal feature subspace of seven features from the 17 morphological features, including area and perimeter. The ninety image samples of the stored-grain insects were automatically recognized by the optimized SVM classifier, and the recognition accuracy was over 95%. [Conclusion] The experiment shows that the application of ant colony optimization to the feature extraction of grain insects is practical and feasible.展开更多
Accurate battlefield collection plays a crucial role in the end of thewar. How to effectively improve the ability of accurate battlefield collection hasbecome a hot issue of research. However, the existing support for...Accurate battlefield collection plays a crucial role in the end of thewar. How to effectively improve the ability of accurate battlefield collection hasbecome a hot issue of research. However, the existing support force is limited. Tosolve the problem, an improved ant algorithm is applied to the path optimizationproblem of battlefield collection equipment. A model for solving the collectionpath optimization problem of battlefield collection vehicles was designed, andan example was used to simulate calculations. The final results show that thealgorithm is effective and practical,which improves the army’s ability to accuratelycollect equipment in the modern battlefield.展开更多
It is considered here for an improved ant algorithm to minimize the delivery time of VRP (Vehicle Routing Problem) in distribution center. Firstly VRP which objective is to minimize the delivery time is given, then ...It is considered here for an improved ant algorithm to minimize the delivery time of VRP (Vehicle Routing Problem) in distribution center. Firstly VRP which objective is to minimize the delivery time is given, then the optimal vehicle distributionroute-division approach of distribution center for given customer array is defined, and the ant colony algorithm for VRP with objective to minimize the delivery time is presented. The research of this paper is based on the information and application case of tobacco network in Hangzhou city. By investigating, we created two different system models. One is division of distribution route of distribution center, and the other is optimization of single vehicle route. The computational example tests and verifys the solution.展开更多
This paper aims at rescheduling of observing spacecraft imaging plans under uncertainties. Firstly, uncertainties in spacecraft observation scheduling are analyzed. Then, considering the uncertainties with fuzzy featu...This paper aims at rescheduling of observing spacecraft imaging plans under uncertainties. Firstly, uncertainties in spacecraft observation scheduling are analyzed. Then, considering the uncertainties with fuzzy features, this paper proposes a fuzzy neural network and a hybrid rescheduling policy to deal with them. It then establishes a mathematical model and manages to solve the rescheduling problem by proposing an ant colony algorithm, which introduces an adaptive control mechanism and takes advantage of the information in an existing schedule. Finally, the above method is applied to solve the rescheduling problem of a certain type of earth-observing satellite. The computation of the example shows that the approach is feasible and effective in dealing with uncertainties in spacecraft observation scheduling. The approach designed here can be useful in solving the problem that the original schedule is contaminated by disturbances.展开更多
The ant colony algorithm is a new class of population basic algorithm. The path planning is realized by the use of ant colony algorithm when the plane executes the low altitude penetration, which provides a new method...The ant colony algorithm is a new class of population basic algorithm. The path planning is realized by the use of ant colony algorithm when the plane executes the low altitude penetration, which provides a new method for the path planning. In the paper the traditional ant colony algorithm is improved, and measures of keeping optimization, adaptively selecting and adaptively adjusting are applied, by which better path at higher convergence speed can be found. Finally the algorithm is implemented with computer simulation and preferable results are obtained.展开更多
An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and s...An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and stagnation. The results of function optimization show that the algorithm has good searching ability and high convergence speed. The algorithm is employed to design a neuro-fuzzy controller for real-time control of an inverted pendulum. In order to avoid the combinatorial explosion of fuzzy rules due tσ multivariable inputs, a state variable synthesis scheme is employed to reduce the number of fuzzy rules greatly. The simulation results show that the designed controller can control the inverted pendulum successfully.展开更多
Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective funct...Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective function,and an air route network node(ARNN)optimization model was developed to circumvent the restrictions imposed by″three areas″,also known as prohibited areas,restricted areas,and dangerous areas(PRDs),by creating agrid environment.And finally the objective function was solved by means of an adaptive ant colony algorithm(AACA).The A593,A470,B221,and G204 air routes in the busy ZSHA flight information region,where the airspace includes areas with different levels of PRDs,were taken as an example.Based on current flight patterns,a layout optimization of the ARNN was computed using this model and algorithm and successfully avoided PRDs.The optimized result reduced the total length of routes by 2.14% and the total cost by 9.875%.展开更多
The ant system algorithm (ASA) has proved to be a novel meta-heuristic algorithm to solve many multivariable problems. In this paper, the earth coverage of satellite constellation is analyzed and a n + 1^ -fold cov...The ant system algorithm (ASA) has proved to be a novel meta-heuristic algorithm to solve many multivariable problems. In this paper, the earth coverage of satellite constellation is analyzed and a n + 1^ -fold coverage rate is put forward to evaluate the coverage performance of a satellite constellation. An optimization model of constellation parameters is established on the basis of the coverage performance. As a newly developed method, ASA can be applied to optimize the constellation parameters. In order to improve the ASA, a rule for adaptive number of ants is proposed, by which the search range is obviously enlarged and the convergence speed increased. Simulation results have shown that the ASA is more quick and efficient than other methodV211.71s.展开更多
A new and intelligent design method for PID controller with incomplete derivation is proposed based on the ant system algorithm ( ASA) . For a given control system with this kind of PID controller, a group of optimal ...A new and intelligent design method for PID controller with incomplete derivation is proposed based on the ant system algorithm ( ASA) . For a given control system with this kind of PID controller, a group of optimal PID controller parameters K p * , T i * , and T d * can be obtained by taking the overshoot, settling time, and steady-state error of the system's unit step response as the performance indexes and by use of our improved ant system algorithm. K p * , T i * , and T d * can be used in real-time control. This kind of controller is called the ASA-PID controller with incomplete derivation. To verify the performance of the ASA-PID controller, three different typical transfer functions were tested, and three existing typical tuning methods of PID controller parameters, including the Ziegler-Nichols method (ZN),the genetic algorithm (GA),and the simulated annealing (SA), were adopted for comparison. The simulation results showed that the ASA-PID controller can be used to control different objects and has better performance compared with the ZN-PID and GA-PID controllers, and comparable performance compared with the SA-PID controller.展开更多
Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is pr...Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is proposed in this paper to tackle continuous-space optimization problems, using a new objective-function-based heuristic pheromone assignment approach for pheromone update to filtrate solution candidates.Global optimal solutions can be reached more rapidly by self-adjusting the path searching behaviors of the ants according to objective values. The performance of the proposed algorithm is compared with a basic ant colony algorithm and a Square Quadratic Programming approach in solving two benchmark problems with multiple extremes. The results indicated that the efficiency and reliability of the proposed algorithm were greatly improved.展开更多
The information transmission path optimization(ITPO) can often a ect the e ciency and accuracy of remanufactur?ing service. However, there is a greater degree of uncertainty and complexity in information transmission ...The information transmission path optimization(ITPO) can often a ect the e ciency and accuracy of remanufactur?ing service. However, there is a greater degree of uncertainty and complexity in information transmission of remanu?facturing service system, which leads to a critical need for designing planning models to deal with this added uncer?tainty and complexity. In this paper, a three?dimensional(3D) model of remanufacturing service information network for information transmission is developed, which combines the physic coordinate and the transmitted properties of all the devices in the remanufacturing service system. In order to solve the basic ITPO in the 3D model, an improved 3D ant colony algorithm(Improved AC) was put forward. Moreover, to further improve the operation e ciency of the algorithm, an improved ant colony?genetic algorithm(AC?GA) that combines the improved AC and genetic algorithm was developed. In addition, by taking the transmission of remanufacturing service demand information of certain roller as example, the e ectiveness of AC?GA algorithm was analyzed and compared with that of improved AC, and the results demonstrated that AC?GA algorithm was superior to AC algorithm in aspects of information transmission delay, information transmission cost, and rate of information loss.展开更多
Aimed at the problems of a traditional ant colony algorithm,such as the path search direction and field of view,an inability to find the shortest path,a propensity toward deadlock and an unsmooth path,an ant colony al...Aimed at the problems of a traditional ant colony algorithm,such as the path search direction and field of view,an inability to find the shortest path,a propensity toward deadlock and an unsmooth path,an ant colony algorithm for use in a new environment is proposed.First,the feature points of an obstacle are extracted to preprocess the grid map environment,which can avoid entering a trap and solve the deadlock problem.Second,these feature points are used as pathfinding access nodes to reduce the node access,with more moving directions to be selected,and the locations of the feature points to be selected determine the range of the pathfinding field of view.Then,based on the feature points,an unequal distribution of pheromones and a two-way parallel path search are used to improve the construction efficiency of the solution,an improved heuristic function is used to enhance the guiding role of the path search,and the pheromone volatilization coefficient is dynamically adjusted to avoid a premature convergence of the algorithm.Third,a Bezier curve is used to smooth the shortest path obtained.Finally,using grid maps with a different complexity and different scales,a simulation comparing the results of the proposed algorithm with those of traditional and other improved ant colony algorithms verifies its feasibility and superiority.展开更多
基金Supported by the National Natural Science Foundation of China (No.60372013).
文摘Low Earth Orbit (LEO) satellites provide short round-trip delays and are becoming in- creasingly important. One of the challenges in LEO satellite networks is the development of specialized and efficient routing algorithms. To satisfy the QoS requirements of multimedia applications, satellite routing protocols should consider handovers and minimize their effect on the active connections. A distributed QoS routing scheme based on heuristic ant algorithm is proposed for satisfying delay bound and avoiding link congestion. Simulation results show that the call blocking probabilities of this al- gorithm are less than that of Shortest Path First (SPF) with different delay bound.
文摘In design science, these two kinds of problems are mutually nested, however, the nesting could not blind us for the fact that their problem-solving and solution justification methods are different. The ant algorithms research field, builds on the idea that the study of the behavior of ant colonies or other social insects is interesting, because it provides models of distributed organization which could be utilized as a source of inspiration for the design of optimization and distributed control algorithms. In this paper, a relatively new type of hybridizing ant search algorithm is developed, and the results are compared against other algorithms. The intelligence of this heuristic approach is not portrayed by individual ants, but rather is expressed by the colony as a whole inspired by labor division and brood sorting. This solution obtained by this method will be evaluated against the one obtained by other traditional heuristics.
文摘A novel multi-chip module(MCM) interconnect test generation scheme based on ant algorithm(AA) with mutation operator was presented.By combing the characteristics of MCM interconnect test generation,the pheromone updating rule and state transition rule of AA is designed.Using mutation operator,this scheme overcomes ordinary AA’s defects of slow convergence speed,easy to get stagnate,and low ability of full search.The international standard MCM benchmark circuit provided by the MCNC group was used to verify the approach.The results of simulation experiments,which compare to the results of standard ant algorithm,genetic algorithm(GA) and other deterministic interconnecting algorithms,show that the proposed scheme can achieve high fault coverage,compact test set and short CPU time,that it is a newer optimized method deserving research.
基金supported by the National Natural Science Foundation of China(70871081)the Shanghai Leading Academic Discipline Project(S30504).
文摘The knapsack problem is a well-known combinatorial optimization problem which has been proved to be NP-hard.This paper proposes a new algorithm called quantum-inspired ant algorithm(QAA)to solve the knapsack problem.QAA takes the advantage of the principles in quantum computing,such as qubit,quantum gate,and quantum superposition of states,to get more probabilistic-based status with small colonies.By updating the pheromone in the ant algorithm and rotating the quantum gate,the algorithm can finally reach the optimal solution.The detailed steps to use QAA are presented,and by solving series of test cases of classical knapsack problems,the effectiveness and generality of the new algorithm are validated.
基金supported in part by the National Natural Science Foundation of China(Grant No.62273107,61702127,62272113)Science and Technology Program of Guangzhou(Grant No.201804010461).
文摘Low earth orbit (LEO) satellite networkscan provide wider service coverage and lower latencythan traditional terrestrial networks, which haveattracted considerable attention. However, the unevendistribution of human population and data trafficon the ground incurs unbalanced traffic load inLEO satellite networks. To this end, we proposea load-balancing routing algorithm for LEO satellitenetworks based on ant colony optimization and reinforcementlearning. In the ant colony algorithm,we improve the pheromone update rule by introducingload-aware heuristic information, e.g., the currentnode transmission overhead, delay and load status, andreinforcement learning-based link quality evaluation.It enables the routing algorithm to select the lightlyloaded node as the next hop to balance the networkload. We simulate and verify the proposed algorithmusing the NS2 simulation platform, and the resultsshow that our algorithm improves the data delivery ratioand throughput while ensuring lower latency andtransmission overhead.
基金The projectis supported by Shanghai Education Development Foundation
文摘:In this paper, we propose a new artificial ant algorithm for solving constrained optimization problems in general case. Numerical examples show that it is effective and robust.
基金Supported by the National Natural Science Foundation of China(31101085)the Program for Young Core Teachers of Colleges in Henan(2011GGJS-094)the Scientific Research Project for the High Level Talents,North China University of Water Conservancy and Hydroelectric Power~~
文摘[Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored-grain insects. [Method] Through the analysis of feature extraction in the image recognition of the stored-grain insects, the recognition accuracy of the cross-validation training model in support vector machine (SVM) algorithm was taken as an important factor of the evaluation principle of feature extraction of stored-grain insects. The ant colony optimization (ACO) algorithm was applied to the automatic feature extraction of stored-grain insects. [Result] The algorithm extracted the optimal feature subspace of seven features from the 17 morphological features, including area and perimeter. The ninety image samples of the stored-grain insects were automatically recognized by the optimized SVM classifier, and the recognition accuracy was over 95%. [Conclusion] The experiment shows that the application of ant colony optimization to the feature extraction of grain insects is practical and feasible.
文摘Accurate battlefield collection plays a crucial role in the end of thewar. How to effectively improve the ability of accurate battlefield collection hasbecome a hot issue of research. However, the existing support force is limited. Tosolve the problem, an improved ant algorithm is applied to the path optimizationproblem of battlefield collection equipment. A model for solving the collectionpath optimization problem of battlefield collection vehicles was designed, andan example was used to simulate calculations. The final results show that thealgorithm is effective and practical,which improves the army’s ability to accuratelycollect equipment in the modern battlefield.
文摘It is considered here for an improved ant algorithm to minimize the delivery time of VRP (Vehicle Routing Problem) in distribution center. Firstly VRP which objective is to minimize the delivery time is given, then the optimal vehicle distributionroute-division approach of distribution center for given customer array is defined, and the ant colony algorithm for VRP with objective to minimize the delivery time is presented. The research of this paper is based on the information and application case of tobacco network in Hangzhou city. By investigating, we created two different system models. One is division of distribution route of distribution center, and the other is optimization of single vehicle route. The computational example tests and verifys the solution.
基金supported by the National Natural Science Foundation of China (No. 61203151)the National Basic Research Program of China (973 Program) (No. 2012CB720003)+2 种基金the Postdoctoral Science Foundation of China (20100471044)the Fundamental Research Funds for the Central Universities of China (No. HIT.NSRIF.2013038)the Key Laboratory Opening Funding of China (No. HIT.KLOF.2009071)
文摘This paper aims at rescheduling of observing spacecraft imaging plans under uncertainties. Firstly, uncertainties in spacecraft observation scheduling are analyzed. Then, considering the uncertainties with fuzzy features, this paper proposes a fuzzy neural network and a hybrid rescheduling policy to deal with them. It then establishes a mathematical model and manages to solve the rescheduling problem by proposing an ant colony algorithm, which introduces an adaptive control mechanism and takes advantage of the information in an existing schedule. Finally, the above method is applied to solve the rescheduling problem of a certain type of earth-observing satellite. The computation of the example shows that the approach is feasible and effective in dealing with uncertainties in spacecraft observation scheduling. The approach designed here can be useful in solving the problem that the original schedule is contaminated by disturbances.
文摘The ant colony algorithm is a new class of population basic algorithm. The path planning is realized by the use of ant colony algorithm when the plane executes the low altitude penetration, which provides a new method for the path planning. In the paper the traditional ant colony algorithm is improved, and measures of keeping optimization, adaptively selecting and adaptively adjusting are applied, by which better path at higher convergence speed can be found. Finally the algorithm is implemented with computer simulation and preferable results are obtained.
文摘An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and stagnation. The results of function optimization show that the algorithm has good searching ability and high convergence speed. The algorithm is employed to design a neuro-fuzzy controller for real-time control of an inverted pendulum. In order to avoid the combinatorial explosion of fuzzy rules due tσ multivariable inputs, a state variable synthesis scheme is employed to reduce the number of fuzzy rules greatly. The simulation results show that the designed controller can control the inverted pendulum successfully.
基金supported by the the Youth Science and Technology Innovation Fund (Science)(Nos.NS2014070, NS2014070)
文摘Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective function,and an air route network node(ARNN)optimization model was developed to circumvent the restrictions imposed by″three areas″,also known as prohibited areas,restricted areas,and dangerous areas(PRDs),by creating agrid environment.And finally the objective function was solved by means of an adaptive ant colony algorithm(AACA).The A593,A470,B221,and G204 air routes in the busy ZSHA flight information region,where the airspace includes areas with different levels of PRDs,were taken as an example.Based on current flight patterns,a layout optimization of the ARNN was computed using this model and algorithm and successfully avoided PRDs.The optimized result reduced the total length of routes by 2.14% and the total cost by 9.875%.
文摘The ant system algorithm (ASA) has proved to be a novel meta-heuristic algorithm to solve many multivariable problems. In this paper, the earth coverage of satellite constellation is analyzed and a n + 1^ -fold coverage rate is put forward to evaluate the coverage performance of a satellite constellation. An optimization model of constellation parameters is established on the basis of the coverage performance. As a newly developed method, ASA can be applied to optimize the constellation parameters. In order to improve the ASA, a rule for adaptive number of ants is proposed, by which the search range is obviously enlarged and the convergence speed increased. Simulation results have shown that the ASA is more quick and efficient than other methodV211.71s.
基金This work was supported by the National Natural Science Foundation of China (No. 50275150)the Foundation of Robotics Laboratory, Chinese Academy of Sciences( No. RL200002).
文摘A new and intelligent design method for PID controller with incomplete derivation is proposed based on the ant system algorithm ( ASA) . For a given control system with this kind of PID controller, a group of optimal PID controller parameters K p * , T i * , and T d * can be obtained by taking the overshoot, settling time, and steady-state error of the system's unit step response as the performance indexes and by use of our improved ant system algorithm. K p * , T i * , and T d * can be used in real-time control. This kind of controller is called the ASA-PID controller with incomplete derivation. To verify the performance of the ASA-PID controller, three different typical transfer functions were tested, and three existing typical tuning methods of PID controller parameters, including the Ziegler-Nichols method (ZN),the genetic algorithm (GA),and the simulated annealing (SA), were adopted for comparison. The simulation results showed that the ASA-PID controller can be used to control different objects and has better performance compared with the ZN-PID and GA-PID controllers, and comparable performance compared with the SA-PID controller.
文摘Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is proposed in this paper to tackle continuous-space optimization problems, using a new objective-function-based heuristic pheromone assignment approach for pheromone update to filtrate solution candidates.Global optimal solutions can be reached more rapidly by self-adjusting the path searching behaviors of the ants according to objective values. The performance of the proposed algorithm is compared with a basic ant colony algorithm and a Square Quadratic Programming approach in solving two benchmark problems with multiple extremes. The results indicated that the efficiency and reliability of the proposed algorithm were greatly improved.
基金National Natural Science Foundation of China(Grant Nos.51805385,71471143)Hubei Provincial Natural Science Foundation of China(Grant No.2018CFB265)Center for Service Science and Engineering of Wuhan University of Science and Technology(Grant No.CSSE2017KA04)
文摘The information transmission path optimization(ITPO) can often a ect the e ciency and accuracy of remanufactur?ing service. However, there is a greater degree of uncertainty and complexity in information transmission of remanu?facturing service system, which leads to a critical need for designing planning models to deal with this added uncer?tainty and complexity. In this paper, a three?dimensional(3D) model of remanufacturing service information network for information transmission is developed, which combines the physic coordinate and the transmitted properties of all the devices in the remanufacturing service system. In order to solve the basic ITPO in the 3D model, an improved 3D ant colony algorithm(Improved AC) was put forward. Moreover, to further improve the operation e ciency of the algorithm, an improved ant colony?genetic algorithm(AC?GA) that combines the improved AC and genetic algorithm was developed. In addition, by taking the transmission of remanufacturing service demand information of certain roller as example, the e ectiveness of AC?GA algorithm was analyzed and compared with that of improved AC, and the results demonstrated that AC?GA algorithm was superior to AC algorithm in aspects of information transmission delay, information transmission cost, and rate of information loss.
基金the National Natural Science Founda-tion(Nos.62063019 and 61763026)the Gansu Nat-ural Science Foundation Project(No.20JR10RA152)the Gansu Provincial Department of Educa-tion:Excellent Graduate“Innovation Star”Project(No.2021CXZX-507)。
文摘Aimed at the problems of a traditional ant colony algorithm,such as the path search direction and field of view,an inability to find the shortest path,a propensity toward deadlock and an unsmooth path,an ant colony algorithm for use in a new environment is proposed.First,the feature points of an obstacle are extracted to preprocess the grid map environment,which can avoid entering a trap and solve the deadlock problem.Second,these feature points are used as pathfinding access nodes to reduce the node access,with more moving directions to be selected,and the locations of the feature points to be selected determine the range of the pathfinding field of view.Then,based on the feature points,an unequal distribution of pheromones and a two-way parallel path search are used to improve the construction efficiency of the solution,an improved heuristic function is used to enhance the guiding role of the path search,and the pheromone volatilization coefficient is dynamically adjusted to avoid a premature convergence of the algorithm.Third,a Bezier curve is used to smooth the shortest path obtained.Finally,using grid maps with a different complexity and different scales,a simulation comparing the results of the proposed algorithm with those of traditional and other improved ant colony algorithms verifies its feasibility and superiority.