期刊文献+
共找到2,890篇文章
< 1 2 145 >
每页显示 20 50 100
Influence of oxidation heat on hard anodic film of aluminum alloy 被引量:5
1
作者 魏晓伟 陈朝英 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2707-2712,共6页
The special experimental device and sulfuric acid electrolyte were adopted to study the influence of anodic oxidation heat on hard anodic film for 2024 aluminum alloy. Compared with the oxidation heat transferred to t... The special experimental device and sulfuric acid electrolyte were adopted to study the influence of anodic oxidation heat on hard anodic film for 2024 aluminum alloy. Compared with the oxidation heat transferred to the electrolyte through anodic film, the heat transferred to the coolant through aluminum substrate is more beneficial to the growth of anodic film. The film forming speed, film thickness, density and hardness are significantly increased as the degree of undercooling of the coolant increases. The degree of undercooling of the coolant, which is necessary for the growth of anodic film, is related to the degree of undercooling of the electrolyte, thickness of aluminum substrate, thickness of anodic film, natural parameters of bubble covering and current density. The microstructure and performance of the oxidation film could be controlled by the temperature of the coolant. 展开更多
关键词 aluminum alloy 2024 aluminum alloy oxidation heat sulfuric acid electrolyte hard anodic oxidation anodic film
在线阅读 下载PDF
Deciphering the active species of anodically activated carbon-based electrocatalysts for oxygen evolution reaction
2
作者 Qianqing Xu Qu Jiang +1 位作者 Haoyue Zhang Fang Song 《Chinese Chemical Letters》 2025年第11期467-471,共5页
Metal-free electrocatalysts for the oxygen evolution reaction(OER)are gaining attention for their low cost,high conductivity,and moderate catalytic performance.While trace metal interference in assynthesized catalysts... Metal-free electrocatalysts for the oxygen evolution reaction(OER)are gaining attention for their low cost,high conductivity,and moderate catalytic performance.While trace metal interference in assynthesized catalysts has been ruled out,the impact of trace metal contamination during electrochemical activation remains unexplored.This study demonstrates that anodic pretreatment in alkaline electrolytes enhances the catalytic performance of carbon cloth.Specifically,carbon cloth activated in 8 mol/L Na OH achieves a current density of 10 m A/cm^(2)with an overpotential of only 338 m V,comparable to metalbased OER catalysts.Electrochemical and spectroscopic analyses show the deposition of Fe Ni O_(x)H_(y)oxyhydroxides(0.19±0.06μg/cm^(2))on specific sites of the carbon substrate during activation.These nanoparticles contribute significantly to the catalytic activity,with a synergistic effect between Fe Ni O_(x)H_(y)and the carbon substrate.The turnover frequency(TOF)for Fe correlates with the amount of C=O groups on the carbon substrate,providing evidence for an interfacial synergistic effect.This work emphasizes the importance of considering trace metal effects in metal-free catalyst evaluation and offers insights for the design of more efficient carbon-based hybrid OER catalysts. 展开更多
关键词 Metal-free electrocatalysts anodic activation ELECTROCATALYSIS Synergistic effect Oxygen evolution reaction Oxygen-containing groups
原文传递
Porous cathode enables continuous flow anodic oxidation for water purification:Performance and mechanisms
3
作者 Runsheng Xu Haotian Wu +3 位作者 Daoyuan Zu Kui Yang Xiangtong Kong Jinxing Ma 《Chinese Chemical Letters》 2025年第8期655-660,共6页
Flow anodic oxidation system has demonstrated to be a promising and environmental benign water treatment technology because of its advantages of high contaminant removal efficiency and low energy consumption.However,t... Flow anodic oxidation system has demonstrated to be a promising and environmental benign water treatment technology because of its advantages of high contaminant removal efficiency and low energy consumption.However,traditional setup needs an external unit for flow anode material separation and recovery,which inevitably increases the capital cost and hinders its continuous operation.Herein,a specific porous cathode is introduced to achieve continuous water purification with high contaminant removal in a flow anodic oxidation system.The efuent concentration of carbamazepine(CBZ),a common and model contaminant widely detected in natural water environment,was reduced by 99%.The linear sweep voltammetry(LSV)and quenching tests demonstrated that HO·was the dominant reactive species.While the removal of contaminants was inhibited in practical surface water,largely related to the quenching by dissolved organic matter and bicarbonate,the flow anodic oxidation process was competent in alleviating the ecotoxicity following oxidation.Our study constructs a modular device for cost-effective continuous water purification and provides insight into the mechanisms of flow andic oxidation. 展开更多
关键词 Water purification Flow anodic oxidation Porous cathode Magneli phase titanium suboxide CARBAMAZEPINE
原文传递
Effect of Different Heat Treatments on Surface Microstructures and Anodic Oxide Film Structures of Al-5.6Mg Alloy Sheets 被引量:1
4
作者 Jiang Zhongyu Xu Guangming 《稀有金属材料与工程》 北大核心 2025年第9期2205-2210,共6页
The effect of different intermediate annealing heat treatments on the surface microstructures and anodic oxide film structures of rolled Al-5.6Mg sheets was studied.The results show that when the continuous annealing ... The effect of different intermediate annealing heat treatments on the surface microstructures and anodic oxide film structures of rolled Al-5.6Mg sheets was studied.The results show that when the continuous annealing is used to control microstructures of the sheets instead of the static state annealing in the intermediate annealing process,the surface grain size of the sheets can be reduced by about 65.7%,and the size of the Mg precipitation phase(Mg_(2)Al_(3))can be reduced by about 67%.Under the combined influence of grain size,precipitation phase,and texture,the highest glossiness can be obtained,which is attributed to continuous intermediate annealing and stabilization annealing at low temperature.The uniform grain and precipitation structures is beneficial to reducing the inhomogeneous dissolution of the oxide film and to obtain the anodic oxide film with uniform thickness and high glossiness. 展开更多
关键词 heat treatment ANODIZING Al-Mg alloy MICROSTRUCTURES
原文传递
Achieving ultrahigh anodic-efficiency and energy-density Mg–air battery via the discharge product film design of bulk Mg anode 被引量:1
5
作者 Jialuo Huang Zuxiang Sun +4 位作者 Jianxin Tan Can Sun Xingpeng Liao Tao Ying Fuyong Cao 《Journal of Magnesium and Alloys》 2025年第6期2565-2580,共16页
This study exhibits a design of the discharge product film of a bulk AZ63-Ce-La-Ca(AZ63X)anode for Mg-air battery.An ideal discharge product film for Mg anode is that it could inhibit the anodic hydrogen evolution but... This study exhibits a design of the discharge product film of a bulk AZ63-Ce-La-Ca(AZ63X)anode for Mg-air battery.An ideal discharge product film for Mg anode is that it could inhibit the anodic hydrogen evolution but does not hinder the transfer of the electrons at the interface.Fortunately,the addition of Ce,La,and Ca into AZ63 alloy achieves this goal.The Mg-air battery with AZ63X anode in 3.5%Na Cl has an ultrahigh anodic efficiency of 85.7±1.7%and energy-density of 2431±53 mWh g^(-1)with the unique discharge product film,surpassing the values of most reported Mg-air batteries.Furthermore,the alloying elements reduce the anode delamination effect significantly by transforming the block Mg_(17)Al_(12)phase into the connected Mg_(17)Al_(12)structure and fine rod Al_(2)RE and Al_(2)Ca. 展开更多
关键词 Mg-air battery Discharge product film ANODE Discharge performance Hydrogen evolution
在线阅读 下载PDF
Effects of boric acid on microstructure and corrosion resistance of boric/sulfuric acid anodic film on 7050 aluminum alloy 被引量:14
6
作者 杜楠 王帅星 +1 位作者 赵晴 邵志松 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第7期1655-1660,共6页
The microstructure and corrosion resistance of different boric/sulfuric acid anodic(BSAA) films on 7050 aluminum alloy were studied by atomic force microscopy(AFM),electrochemical impedance spectroscopy(EIS) and... The microstructure and corrosion resistance of different boric/sulfuric acid anodic(BSAA) films on 7050 aluminum alloy were studied by atomic force microscopy(AFM),electrochemical impedance spectroscopy(EIS) and scanning Kelvin probe(SKP).The results show that boric acid does not change the structure of barrier layer of anodic film,but will significantly affect the structure of porous layer,consequently affect the corrosion resistance of anodic film.As the content of boric acid in electrolyte increases from 0 to 8 g/L,the resistance of porous layer(Rp) of BSAA film increases,the capacitance of porous layer(CPEp) decreases,the surface potential moves positively,the pore size lessens,and the corrosion resistance improves.However,the Rp,CPEp and surface potential will change towards opposite direction when the content of boric acid is over 8 g/L. 展开更多
关键词 aluminum alloy anodic film corrosion resistance boric acid
在线阅读 下载PDF
Influence of adipic acid on anodic film formation and corrosion resistance of 2024 aluminum alloy 被引量:4
7
作者 李英东 张优 +1 位作者 李松梅 赵丕植 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第2期492-500,共9页
The influence of adipic acid on the formation and corrosion resistance of anodic oxide film fabricated on 2024 aluminum alloy was investigated. The morphology was investigated by scanning electron microscopy (SEM) a... The influence of adipic acid on the formation and corrosion resistance of anodic oxide film fabricated on 2024 aluminum alloy was investigated. The morphology was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. The corrosion resistance was evaluated by electrochemical impedance spectroscopy (EIS). The results showed that the adipic acid was absorbed at the electrolyte/anodic layer interface during anodizing. The corrosion rate of anodic film decreased and the film thickness increased. The film was uniform and compact especially at the film/substrate interface. After sealing procedure, anodic film formed with the addition of adipic acid exhibited improved dielectric property and corrosion resistance in aggressive environment. 展开更多
关键词 aluminum alloy anodic oxidation adipic acid ADSORPTION CORROSION
在线阅读 下载PDF
Applying Double Electric Fields to Avoid Deteriorating Movable Sensitive Parts in MEMS During Anodic Bonding 被引量:1
8
作者 杨道虹 徐晨 沈光地 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2004年第10期1249-1252,共4页
Anodic bonding between silicon and glass with dou bl e electric fields is presented.By this means,the damage caused by the electric f ield to the movable part during bonding can be avoided and the experiment result s ... Anodic bonding between silicon and glass with dou bl e electric fields is presented.By this means,the damage caused by the electric f ield to the movable part during bonding can be avoided and the experiment result s show that. 展开更多
关键词 micro-electronic machine system anodic bondin g double electric fields
在线阅读 下载PDF
Phenol degradation by anodic oxidation on boron-doped diamond electrode combining TiO_2 Photocatalysis
9
作者 戎非 顾林娟 +2 位作者 邱烨静 付德刚 吴巍 《Journal of Southeast University(English Edition)》 EI CAS 2010年第3期421-425,共5页
Boron-doped diamond (BDD) electrocatalysis is combined with photocatalysis using titanium dioxide (TiO2) as a catalyst to improve pollutant-oxidation efficiency. Phenol solution is chosen as model wastewater. Diff... Boron-doped diamond (BDD) electrocatalysis is combined with photocatalysis using titanium dioxide (TiO2) as a catalyst to improve pollutant-oxidation efficiency. Phenol solution is chosen as model wastewater. Different methods involving BDD and/or TiO2 during the degradation processes are compared. Parameters such as the currency density and initial concentration are varied in order to determine their effects on the oxidation process. Moreover, the degradation kinetics of phenol is experimentally studied. The results reveal the superiority of series combination of BDD and TiO2, especially the treatment process of electrocatalysis and succedent photocatalysis, and the optimum working currency density for electrocatalysis is 25.48 mA/cm2. The removal rate decreases with the increase in the initial phenol concentration and the degradation reaction follows quasi-first-order kinetics equation. 展开更多
关键词 boron-doped diamond (BDD) anodic oxidation titanium dioxide PHENOL
在线阅读 下载PDF
Anodic dissolution behavior of zirconium in Bu_4~nNBr-containing isopropanol solution
10
作者 杨喜云 黄海强 杨声海 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第10期2738-2745,共8页
Anodic dissolutionbehaviorof zirconium inBu^n 4NBr-contaningisopropanol solution was investigated using cyclic voltammetry, linear sweep voltammetry and chronoamperometry, complemented with a scanning electron microsc... Anodic dissolutionbehaviorof zirconium inBu^n 4NBr-contaningisopropanol solution was investigated using cyclic voltammetry, linear sweep voltammetry and chronoamperometry, complemented with a scanning electron microscope (SEM).The voltammograms did not exhibit active dissolutionuntil the breakdown of passive layer induced by aggressive bromide anions.SEM images confirmed the existence of pits on zirconium surface.The depth and breadth of pits were intensified with increasing potential. The pitting potentialshifted negatively as either temperature orBu^n 4NBr concentration was increased, while it increased with increasing scan rate.The corrosion current density increased with increasing temperature. The apparent activation energyof anodic dissolutionofzirconiumwas 21.88kJ/mol. The chronoamperometry revealed that increasingBu^n 4NBrconcentration shortened the incubation time for passivity breakdown and accelerated the pit nucleation and growth. The experimental results were helpfulto obtain the optimum conditions for electrosynthesis of zirconium isopropoxide. 展开更多
关键词 ZIRCONIUM anodic dissolution pitting corrosion ISOPROPANOL tetrabutylammonium bromide
在线阅读 下载PDF
Growth and corrosion behaviors of thin anodic alumina membrane on AA5083 Al-Mg alloy in incalescent medium 被引量:2
11
作者 王加余 李澄 +2 位作者 郑顺丽 尹成勇 王艳慧 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第9期3023-3030,共8页
A self-ordered porous film was fabricated on aluminum alloy in a ternary boric-sulfuric-oxalic acid electrolyte system. By means of voltage–time response, the oxidation process as well as the growth efficiency was st... A self-ordered porous film was fabricated on aluminum alloy in a ternary boric-sulfuric-oxalic acid electrolyte system. By means of voltage–time response, the oxidation process as well as the growth efficiency was studied. Field emission scanning electron microscopy(FE-SEM) was adopted to reveal the morphological and microstructural features of as-fabricated oxide layers. The corrosion protection properties of the films were investigated by electrochemical impedance spectroscopy and potentiodynamic polarization measurements. The results showed that increasing the concentration of the double ionic layer located at the oxide interface could accelerate the film growth rate. The anodic oxidative layer with thickness of 8-9 μm and pore diameter of 10-14 nm maintains the pattern and topography of workpieces, compared with the overall closed film with hierarchical structure. Both samples exhibited much lower corrosion current density after boil water sealing. Meanwhile, a superior stability could be achieved through raising the ambient temperature. 展开更多
关键词 5083 aluminum alloy ANODIZING film growth efficiency corrosion behavior
在线阅读 下载PDF
Effect of the microstructure of Al 7050-T7451 on anodic oxide formation in sulfuric acid 被引量:17
12
作者 Jian-hua Liu Ming Li Song-mei Li Min Huang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第4期432-438,共7页
The effect of the microstructure of an Al 7050-T7451 substrate on the anodic oxide formation in sulfuric acid was studied in this article. The microstructure of the substrate was assessed by optical microscope (OM) ... The effect of the microstructure of an Al 7050-T7451 substrate on the anodic oxide formation in sulfuric acid was studied in this article. The microstructure of the substrate was assessed by optical microscope (OM) and transmission electron microscope (TEM). The surface and cross-section morphologies of the oxide films were examined by scanning electron microscope (SEM). The chemical composition of intermetallic particles in the alloys and films was investigated using energy dispersive spectroscope (EDS). The roles of intermetallic phases and grain or subgrain boundaries on the oxide film formation were researched using the potentiodynamic and potentiostatic polarization technique in sulfuric acid solution. The results show that the transition of coarse intermetallic particles or grain (subgrain) boundaries at the surface of Al alloys can be characterized by potentiodynamic polarization curves. The surface and cross-section micrographs of the anodic layer seem to preserve the microstructure of the substrate. Large cavities in the anodic films are caused by the preferential dissolution of coarse AItCuMg particles and the entrance of Cu-rich remnants into the electrolyte during anodizing. The Al7Cu2Fe particles tend to be occluded in the oxide layer or lose from the oxide surface because of peripheral trenching. Small pores in the films are induced by the dissolution of precipitates in grain or subgrain boundaries. The film surface of recrystallized grain bodies is smooth and homogeneous. 展开更多
关键词 aluminum alloys anodic oxide intermetallic particles grain boundaries
在线阅读 下载PDF
Water-promoted One-step Anodic Acetoxylation of Benzene to Phenyl Acetate with High Selectivity
13
作者 裴娟 秦松 +1 位作者 李桂英 胡常伟 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第2期244-248,I0004,共6页
One-step anodic acetoxylation of benzene to phenyl acetate was studied in acetic acid-water solution using a one-compartment electrochemical cell in galvanostatic mode. Compared to the anhydrous system, the addition o... One-step anodic acetoxylation of benzene to phenyl acetate was studied in acetic acid-water solution using a one-compartment electrochemical cell in galvanostatic mode. Compared to the anhydrous system, the addition of water improved the current efficiency for the electrosynthesis of phenyl acetate. The maximum efficiency reached 4.8% with the selectivity of 96% to phenyl acetate when the electrolysis was carried out under the optimal conditions. The investigation also indicated that the concentration of phenyl acetate increased linearly in 12 h and reached 1.07 g/L with the selectivity of 95%. Cyclic voltammetry experiments showed that the adsorption of benzene at Pt anode enhanced by the addition of water was critical to the formation of phenyl acetate. An activated benzene mechanism was proposed for the anodic acytoxylation, and the analysis of gas products demonstrated that Kolbe reaction was the main side reaction. 展开更多
关键词 anodic acetoxylation BENZENE Acetic acid aqueous solution Phenyl acetate Mechanism
在线阅读 下载PDF
Effect of intermetallic phases on the anodic oxidation and corrosion of 5A06 aluminum alloy 被引量:9
14
作者 Song-mei Li Ying-dong Li +2 位作者 You Zhang Jian-hua Liu Mei Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第2期167-174,共8页
Intermetallic phases were found to influence the anodic oxidation and corrosion behavior of 5A06 aluminum alloy. Scattered in- termetallic particles were examined by scanning electron microscopy (SEM) and energy dis... Intermetallic phases were found to influence the anodic oxidation and corrosion behavior of 5A06 aluminum alloy. Scattered in- termetallic particles were examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) after pretreatment. The anodic film was investigated by transmission electron microscopy (TEM), and its corrosion resistance was analyzed by electrochemical impedance spectroscopy (EIS) and Tafel polarization in NaC1 solution. The results show that the size of A1-Fe-Mg-Mn particles gradually decreases with the iron content. During anodizing, these intermetallic particles are gradually dissolved, leading to the complex porosity in the anodic film beneath the particles. After anodizing, the residual particles are mainly silicon-containing phases, which are embedded in the an- odic film. Electrochemical measurements indicate that the porous anodic film layer is easily penetrated, and the barrier plays a dominant role in the overall protection. Meanwhile, self-healing behavior is observed during the long immersion time. 展开更多
关键词 aluminum alloys intermetallic particles anodic oxidation CORROSION protective films
在线阅读 下载PDF
Photocatalytic activity of porous TiO_2 films prepared by anodic oxidation 被引量:8
15
作者 WANG Wei TAO Jie WANG Tao WANG Ling 《Rare Metals》 SCIE EI CAS CSCD 2007年第2期136-141,共6页
Anatase titanium dioxide is an active photocatalyst, however, it is difficult to be immobilized on the substrate. The crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidat... Anatase titanium dioxide is an active photocatalyst, however, it is difficult to be immobilized on the substrate. The crystalline TiO2 porous film was prepared directly on the surface of pure titanium by anodic oxidation. The film was then used for photocatalysis via the methyl orange degradation method. The effects of anodization voltage, pH value, TiO2 film area and degradation time on the photocatalyst were investigated respectively by UV-visible spectrum. It was indicated that the TiO2 film prepared by anodic oxidation at 140 V had the best photocatalysis capability and the degradation of methyl orange was accelerated with acid addition. 展开更多
关键词 TITANIUM porous films anodic oxidation PHOTOCATALYSIS methyl orange
在线阅读 下载PDF
Nickel-free sealing technology for anodic oxidation film of aluminum alloy at room temperature 被引量:9
16
作者 Xue-Long Hao Ning Zhao +2 位作者 Hong-Hai Jin Wen Ma Dong-Hui Zhang 《Rare Metals》 SCIE EI CAS CSCD 2021年第4期968-974,共7页
Different additives were added into the potassium fluorozirconate solution to prepare different nickelfree sealing reagents,with which the anodic oxidation film of aluminum alloy was sealed at room temperature.The pho... Different additives were added into the potassium fluorozirconate solution to prepare different nickelfree sealing reagents,with which the anodic oxidation film of aluminum alloy was sealed at room temperature.The phosphor chromic acid weight loss method was used to evaluate the sealing effects.Using electron scanning microscopy(SEM),the surface and cross-sectional micromorphologies of the anodic oxidation films sealed by different fluorozirconate sealants were observed.The position and state of zirconium element distribution in the film hole were investigated by the further quantitative and distribution analysis of Zr element.This study provides an experimental evidence for the theoretical studies of fluorozirconate-sealed anodic oxidation films.It is shown that the fluorozirconate has good sealing effects and has a wide prospect for sealing the aluminum alloy samples.Its products were highly corrosion resistant,and were filled in the openings of the micropores in the oxide film. 展开更多
关键词 Aluminum alloy anodic oxidation film Nickel-free sealing FLUOROZIRCONATE
原文传递
MEASUREMENT OF ANODIC OVERVOLTAGE BY AMODIFIED CURRENT INTERRUPTION METHOD IN CRYOLITE-ALUMINA MELTS 被引量:7
17
作者 Yang, Jianhong Lai, Yanqing +3 位作者 Xiao, Jin Li, Jie Liu, Yexiang Thonstad, J. 《中国有色金属学会会刊:英文版》 EI CSCD 1999年第1期123-129,共7页
1INTRODUCTIONIntheelectrolyticproductionofaluminium,thecelconsistsofacarbonanodeandanaluminiummetalcathode.T... 1INTRODUCTIONIntheelectrolyticproductionofaluminium,thecelconsistsofacarbonanodeandanaluminiummetalcathode.Thedominantpotent... 展开更多
关键词 anodic OVERVOLTAGE CURRENT INTERRUPTION METHOD aluminium electrolysis
在线阅读 下载PDF
Synergistic Corrosion Inhibition Effect of Molybdate and Phosphate Ions for Anodic Oxidation Film Formed on 2024 Aluminum Alloy 被引量:5
18
作者 王文博 DONG Peng +2 位作者 WANG Haiyun 程杰 刘胜利 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第2期426-432,共7页
In order to effectively improve the corrosion resistance of aluminum alloys, anodic oxidation technique was used to generate the oxide film. We investigated the influences of two inorganic corrosion inhibitors(ammoniu... In order to effectively improve the corrosion resistance of aluminum alloys, anodic oxidation technique was used to generate the oxide film. We investigated the influences of two inorganic corrosion inhibitors(ammonium dihydrogen phosphate and sodium molybdate) on the corrosion resistance of anodic oxidation films on 2024 aluminum alloy, and studied the synergistic effect of two corrosion inhibitors. The corrosion resistance of anodic oxidation film in 3.5 wt% NaCl solution was evaluated by electrochemical impedance spectroscopy(EIS) and potentiodynamic polarization curves. Results show that, after adding the single ammonium dihydrogen phosphate or sodium molybdate of 0.01 M to oxalic acid electrolyte, inhibition efficiencies of the anodized samples are 10% and 47%, respectively. However, in the presence of two inhibitors with the same concentration of 0.01 M, inhibition efficiency can be as high as 92%. Therefore, we observed the significantly synergistic corrosion inhibition effect of molybdate and phosphate ions for anodic oxidation film formed on 2024 aluminum alloy. 展开更多
关键词 anodic oxidation technique CORROSION AMMONIUM DIHYDROGEN PHOSPHATE sodium MOLYBDATE SYNERGISTIC effect
原文传递
A strategy for enhancing anaerobic digestion of waste activated sludge: Driving anodic oxidation by adding nitrate into microbial electrolysis cell 被引量:4
19
作者 Hong Peng Zhiqiang Zhao +3 位作者 Hong Xiao Yafei Yang Huimin Zhao Yaobin Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第7期34-42,共9页
Cathodic reduction of CO_2 and anodic oxidation of organic matters are crucial to methaneproducing microbial electrolysis cell(MEC) applied in anaerobic digestion of waste activated sludge. However, cathodic CO_2 redu... Cathodic reduction of CO_2 and anodic oxidation of organic matters are crucial to methaneproducing microbial electrolysis cell(MEC) applied in anaerobic digestion of waste activated sludge. However, cathodic CO_2 reduction is usually restrained by slow metabolism rates of H_2-utilizing methanogens and low electron-capturing capacity of CO_2, which consequently slows down the anodic oxidation that participates to sludge disintegration. Herein, a strategy with adding nitrate as electron acceptor to foster electronic transfer between the anode and cathode was proposed to improve anodic oxidation. Results showed that the average efficiency of anodic oxidation in the nitrate-added MEC increased by 55.9%. Accordingly,volatile suspended solid removal efficiency in the nitrate-added MEC was 21.9% higher than that of control MEC. Although the initial cumulative methane production in the nitrateadded MEC was lower than that of control MEC, the cumulative methane production in 24 days was 8.9% higher. Fourier transform infrared spectroscopy analysis indicated that anodic oxidation of MEC with nitrate accelerated the disintegration of sludge flocs and cell walls. Calculation on current signal further revealed that anodic oxidation driven by cathodic nitrate reduction was the main mechanism responsible for the improved sludge digestion. 展开更多
关键词 Waste ACTIVATED SLUDGE MICROBIAL ELECTROLYSIS cell NITRATE anodic oxidation SLUDGE reduction
原文传递
Chemical dissolution resistance of anodic oxide layers formed on aluminum 被引量:5
20
作者 W.BENSALAH M.FEKI +1 位作者 M.WERY H.F.AYEDI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第7期1673-1679,共7页
Chemically resistant anodic oxide layers were formed on pure aluminum substrates in oxalic acid-sulphuric acid bath.Acid dissolution tests of the obtained anodic layers were achieved in accordance with the ASTM B 680-... Chemically resistant anodic oxide layers were formed on pure aluminum substrates in oxalic acid-sulphuric acid bath.Acid dissolution tests of the obtained anodic layers were achieved in accordance with the ASTM B 680-80 specifications:35mL/L 85% H3PO4+20g/L CrO3 at 38℃.Influence of oxalic acid concentration,bath temperature and anodic current density on dissolution rate and coating ratio was examined,when the sulphuric acid concentration was maintained at 160g/L.It was found that chemically resistant and compact oxide layers were produced under low operational temperature (5℃) and high current densities (3A/dm^2).A beneficial effect was observed concerning the addition of oxalic acid (18g/L).The morphology and the composition of the anodic oxide layer were examined by scanning electron microscopy (SEM),atomic force microscopy (AFM) and glow-discharge optical emission spectroscopy (GDOES). 展开更多
关键词 ALUMINUM anodic oxide layer oxalic acid-sulphuric anodization dissolution rate coating ratio
在线阅读 下载PDF
上一页 1 2 145 下一页 到第
使用帮助 返回顶部