Rechargeable magnesium batteries(RMBs),as a low-cost,high-safety and high-energy storage technology,have attracted tremendous attention in large-scale energy storage applications.However,the key anode/electrolyte inte...Rechargeable magnesium batteries(RMBs),as a low-cost,high-safety and high-energy storage technology,have attracted tremendous attention in large-scale energy storage applications.However,the key anode/electrolyte interfacial issues,including surface passivation,uneven Mg plating/stripping,and pulverization after cycling still result in a large overpotential,short cycling life,poor power density,and possible safety hazards of cells,severely impeding the commercial development of RMBs.In this review,a concise overview of recently advanced strategies to address these anode/electroyte interfacial issues is systematically classified and summarized.The design of magnesiophilic substrates,construction of artificial SEI layers,and modification of electrolyte are important and effective strategies to improve the uniformity/kinetics of Mg plating/stripping and achieve the stable anode/electrolyte interface.The key opportunities and challenges in this field are advisedly put forward,and the insights into future directions for stabilizing Mg metal anodes and the anode/electrolyte interface are highlighted.This review provides important references fordeveloping the high-performance and high-safety RMBs.展开更多
Aqueous zinc-ion batteries(AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety,cost-effectiveness and environmental friendliness.However,issues such as dendrit...Aqueous zinc-ion batteries(AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety,cost-effectiveness and environmental friendliness.However,issues such as dendrite growth,hydrogen evolution reaction,and interfacial passivation occurring at the anode/electrolyte interface(AEI) have hindered their practical application.Constructing a stable AEI plays a key role in regulating zinc deposition and improving the cycle life of AZIBs.The fundamentals of AEI and the challenges faced by the Zn anode due to unstable interfaces are discussed.A comprehensive summary of electrolyte regulation strategies by electrolyte engineering to achieve a stable Zn anode is provided.The effectiveness evaluation techniques for stable AEI are also analyzed,including the interfacial chemistry and surface morphology evolution of the Zn anode.Finally,suggestions and perspectives for future research are offered about enabling a durable and stable AEI via electrolyte engineering,which may pave the way for developing high-performance AZIBs.展开更多
Solid-state Na metal batteries(SSNBs),known for the low cost,high safety,and high energy density,hold a significant position in the next generation of rechargeable batteries.However,the urgent challenge of poor interf...Solid-state Na metal batteries(SSNBs),known for the low cost,high safety,and high energy density,hold a significant position in the next generation of rechargeable batteries.However,the urgent challenge of poor interfacial contact in solid-state electrolytes has hindered the commercialization of SSNBs.Driven by the concept of intimate electrode-electrolyte interface design,this study employs a combination of sodium-potassium(NaK)alloy and carbon nanotubes to prepare a semi-solid NaK(NKC)anode.Unlike traditional Na anodes,the paintable paste-like NKC anode exhibits superior adhesion and interface compatibility with both current collectors and gel electrolytes,significantly enhancing the physical contact of the electrode-electrolyte interface.Additionally,the filling of SiO_(2) nanoparticles improves the wettability of NaK alloy on gel polymer electrolytes,further achieving a conformal interface contact.Consequently,the overpotential of the NKC symmetric cell is markedly lower than that of the Na symmetric cell when subjected to a long cycle of 300 hrs.The full cell coupled with Na_(3)V_(2)(PO_(4))_(2) cathodes had an initial discharge capacity of 106.8 mAh·g^(-1) with a capacity retention of 89.61%after 300 cycles,and a high discharge capacity of 88.1 mAh·g^(-1) even at a high rate of 10 C.The outstanding electrochemical performance highlights the promising application potential of the NKC electrode.展开更多
Lithium metal batteries(LMBs)are emerging as a promising energy storage solution owing to their high energy density and specific capacity.However,the non-uniform plating of lithium and the potential rupture of the sol...Lithium metal batteries(LMBs)are emerging as a promising energy storage solution owing to their high energy density and specific capacity.However,the non-uniform plating of lithium and the potential rupture of the solid-electrolyte interphase(SEI)during extended cycling use may result in dendrite growth,which can penetrate the separator and pose significant short-circuit risks.Forming a stable SEI is essential for the long-term operation of the batteries.Fluorine-rich SEI has garnered significant attention for its ability to effectively passivate electrodes,regulate lithium deposition,and inhibit electrolyte corrosion.Understanding the structural components and preparation methods of existing fluorinated SEI is crucial for optimizing lithium metal anode performance.This paper reviews the research on optimizing LiF passivation interfaces to protect lithium metal anodes.It focuses on four types of compositions in fluorinated SEI that work synergistically to enhance SEI performance.For instance,combining compounds with LiF can further enhance the mechanical strength and ionic conductivity of the SEI.Integrating metals with LiF significantly improves electrochemical performance at the SEI/anode interface,with a necessary focus on reducing electron tunneling risks.Additionally,incorporating polymers with LiF offers balanced improvements in interfacial toughness and ionic conductivity,though maintaining structural stability over long cycles remains a critical area for future research.Although alloys combined with LiF increase surface energy and lithium affinity,challenges such as dendrite growth and volume expansion persist.In summary,this paper emphasizes the crucial role of interfacial structures in LMBs and offers comprehensive guidance for future design and development efforts in battery technology.展开更多
FeS_(2)is a promising anode material for potassium-ion batteries(PIBs),with the advantages of low cost and high capacity.However,it still faces challenges of capacity fading and poor rate performance in potassium stor...FeS_(2)is a promising anode material for potassium-ion batteries(PIBs),with the advantages of low cost and high capacity.However,it still faces challenges of capacity fading and poor rate performance in potassium storage.Rational structural design is one way to overcome these drawbacks.In this work,MIL-88B-Fe-derived FeS_(2)nanoparticles/N-doped carbon nanofibers(M-FeS_(2)@CNFs)with expansion buffer capability are designed and synthesized for high-performance PIB anodes via electrospinning and subsequent sulfurization.The uniformly distributed cavity-type porous structure effectively mitigates the severe aggregation problem of FeS_(2)nanoparticles during cycling and buffers the volume change,further enhancing the potassium storage capacity.Meanwhile,the robust KF-rich solid electrolyte interphase induced by methyl trifluoroethylene carbonate(FEMC)additive improves the cycling stability of the M-FeS_(2)@CNF anode.In the electrolyte with 3 wt%FEMC,the M-FeS_(2)@CNF anode shows a reversible specific capacity of 592.7 mA h g^(-1)at 0.1 A g^(-1),an excellent rate capability of 327.1 mA h g^(-1)at 5 A g^(-1),and a retention rate 80.7%over 1000 cycles at 1 A g^(-1).More importantly,when assembled with a K_(1.84)Ni[Fe(CN)_(6)]_(0.88)·0.49H_(2)O cathode,the full battery manifests excellent cycle stability and high rate performance.This study demonstrates the significant importance of the synergistic effect of structural regulation and electrolyte optimization in achieving high cycling stability of PIBs.展开更多
The replacement of non-aqueous organic electrolytes with solid-state electrolytes(SSEs)in solid-state lithium metal batteries(SLMBs)is considered a promising strategy to address the constraints of lithium-ion batterie...The replacement of non-aqueous organic electrolytes with solid-state electrolytes(SSEs)in solid-state lithium metal batteries(SLMBs)is considered a promising strategy to address the constraints of lithium-ion batteries,especially in terms of energy density and reliability.Nevertheless,few SLMBs can deliver the required cycling performance and long-term stability for practical use,primarily due to suboptimal interface properties.Given the diverse solidification pathways leading to different interface characteristics,it is crucial to pinpoint the source of interface deterioration and develop appropriate remedies.This review focuses on Li|SSE interface issues between lithium metal anode and SSE,discussing recent advancements in the understanding of(electro)chemistry,the impact of defects,and interface evolutions that vary among different SSE species.The state-ofthe-art strategies concerning modified SEI,artificial interlayer,surface architecture,and composite structure are summarized and delved into the internal relationships between interface characteristics and performance enhancements.The current challenges and opportunities in characterizing and modifying the Li|SSE interface are suggested as potential directions for achieving practical SLMBs.展开更多
Zinc perchlorate(Zn(ClO_(4))_(2))electrolytes have demonstrated favorable low-temperature performance in aqueous zinc-ion batteries(AZIBs).However,the Zn anode encounters serious dendrite formation and parasitic react...Zinc perchlorate(Zn(ClO_(4))_(2))electrolytes have demonstrated favorable low-temperature performance in aqueous zinc-ion batteries(AZIBs).However,the Zn anode encounters serious dendrite formation and parasitic reactions in zinc perchlorate electrolytes,which is caused by the fast corrosive kinetics at room temperature.Herein,a concentrated perchlorate-based electrolyte consisting of 4.0 M Zn(ClO_(4))_(2)and saturated NaClO_(4)solution is developed to achieve dendrite-free and stable AZIBs at room temperature.The ClO_(4)−participates in the primary solvation sheath of Zn^(2+),facilitating the in situ formation of Zn_(5)(OH)_(8)Cl_(2)·H_(2)O-rich solid electrolyte interphase(SEI)to suppress the corrosion effect of ClO_(4)^(−).The Zn anode protected by the SEI achieves stable Zn plating/stripping over 3000 h.Furthermore,the MnO_(2)||Zn full cells manifest a stable specific capacity of 200 mAh·g^(−1)at 28℃and 101 mAh·g^(−1)at−20℃.This work introduces a promising approach for boosting the room-temperature performance of perchlorate-based electrolytes for AZIBs.展开更多
Unstable Zn interface caused by rampant dendrite growth and parasitic side reactions always hinders the practical application of aqueous zinc metal batteries(AZMBs),Herein,tyrosine(Tyr)with high molecular polarity was...Unstable Zn interface caused by rampant dendrite growth and parasitic side reactions always hinders the practical application of aqueous zinc metal batteries(AZMBs),Herein,tyrosine(Tyr)with high molecular polarity was introduced into aqueous electrolyte to modulate the interfacial electrochemistry of Zn anode.In AZMBs,the positively charged side of Tyr can be well adsorbed on the surface of Zn anode to form a water-poor layer,and the exposed carboxylate side can be easily coordinated with Zn^(2+),favoring inducing uniform plating of Zn^(2+)and inhibiting the occurrence of water-induced side reactions.These in turn enable the achievement of highly stable Zn anode.Accordingly,the Zn anodes achieve outstanding cyclic stability(3000 h at 2 mA cm^(-2),2 mA h cm^(-2)and 1300 h at 5 mA cm^(-2),5 mA h cm^(-2)),high average Coulombic efficiency(99.4%over 3200 cycles),and high depth of discharge(80%for 500 h).Besides,the assembled Zn‖NaV_(3)O_(8)·1.5H_(2)O full cells deliver remarkable capacity retention and ultra-long lifetime(61.8%over 6650 cycles at 5 A g^(-1))and enhanced rate capability(169 mA h g^(-1)at 5 A g^(-1)).The work may promote the design and deep understanding of electrolyte additives with high molecular polarity for high-performance AZMBs.展开更多
Zinc-ion hybrid supercapacitors(ZHSs)are promising energy storage systems integrating high energy density and high-power density,whereas they are plagued by the poor electrochemical stability and inferior kinetics of ...Zinc-ion hybrid supercapacitors(ZHSs)are promising energy storage systems integrating high energy density and high-power density,whereas they are plagued by the poor electrochemical stability and inferior kinetics of zinc anodes.Herein,we report an electrolyte additive-assembled interconnecting molecules-zinc anode interface,realizing highly stable and fast-kinetics zinc anodes for ZHSs.The sulfobutyl groups-graftedβ-cyclodextrin(SC)supramolecules as a trace additive in ZnSO_(4)electrolytes not only adsorb on zinc anodes but also self-assemble into an interconnecting molecule interface benefiting from the mutual attraction between the electron-rich sulfobutyl group and the electron-poor cavity of the adjacent SC supramolecule.The interconnecting molecules-zinc anode interface provides abundant anion-trapping cavities and zincophilic groups to enhance Zn^(2+)transference number and homogenize Zn^(2+)deposition sites,and meanwhile,it accelerates the desolvation of hydrated Zn^(2+)to improve zinc deposition kinetics and inhibit active water molecules from inducing parasitic reactions at the zinc deposition interface,making zinc anodes present superior reversibility with 99.7%Coulombic efficiency,~30 times increase in operation lifetime and an outstanding cumulative capacity at large current densities.ZHSs with 20,000-cycle life and optimized rate capability are thereby achieved.This work provides an inspiring strategy for designing zinc anode interfaces to promote the development of ZHSs.展开更多
Aqueous zinc-ion batteries(AZIBs)have emerged as a promising next-generation energy storage solution due to their high energy density,abundant resources,low cost,and high safety.However,unstable zinc anode caused by s...Aqueous zinc-ion batteries(AZIBs)have emerged as a promising next-generation energy storage solution due to their high energy density,abundant resources,low cost,and high safety.However,unstable zinc anode caused by side reactions and dendritic growth always severely worsens the long-term operation of AZIBs.Herein,a novel 3-cyclobutene sulfone(CS)additive was employed in the aqueous electrolyte to achieve a highly reversible Zn anode.The CS additive can offer strong electronegativity and high binding energy for the coordination with Zn^(2+),which enables its entry into the solvent sheath structure of Zn^(2+)and eliminates the free H_(2)O molecules from the solvated{Zn^(2+)-SO_(4)^(2-)-(H_(2)O)_(5)}.Thus,the occurrence of side reactions and dendritic growth can be effectively inhibited.Accordingly,the Zn anode achieves long cycle-life(1400 h at 1 m A cm^(-2),1 m Ah cm^(-2),and 400 h at 5 m A cm^(-2),5 m Ah cm^(-2))and high average coulombic efficiency(99.5% over 500 cycles at 10 m A cm^(-2),1 m Ah cm^(-2)).Besides,the assembled Zn||NH_(4)V_(4)O_(10)full cell suggests enhanced cycling reversibility(123.8 m Ah g^(-1)over 500 cycles at 2 A g^(-1),84.9 m Ah g^(-1)over 800 cycles at 5 A g^(-1))and improved rate capability(139.1 m Ah g^(-1)at 5 A g^(-1)).This work may exhibit the creative design and deep understanding of sulfone-based electrolyte additives for the achievement of high-performance AZIBs.展开更多
Aqueous zinc-ion batteries(AZIBs)have developed rapidly in recent years but still face several challenges,including zinc dendrites growth,hydrogen evolution reaction,passivation and corrosion.The pH of the electrolyte...Aqueous zinc-ion batteries(AZIBs)have developed rapidly in recent years but still face several challenges,including zinc dendrites growth,hydrogen evolution reaction,passivation and corrosion.The pH of the electrolyte plays a crucial role in these processes,significantly impacting the stability and reversibility of Zn^(2+)deposition.Therefore,pH-buffer tris(hydroxymethyl)amino methane(tris)is chosen as a versatile electrolyte additive to address these issues.Tris can buffer electrolyte pH at Zn/electrolyte interface by protonated/deprotonated nature of amino group,optimize the coordination environment of zinc solvate ions by its strong interaction with zinc ions,and simultaneously create an in-situ stable solid electrolyte interface membrane on the zinc anode surface.These synergistic effects effectively restrain dendrite formation and side reactions,resulting in a highly stable and reversible Zn anode,thereby enhancing the electrochemical performance of AZIBs.The Zn||Zn battery with 0.15 wt%tris additives maintains stable cycling for 1500 h at 4 mA·cm^(−2) and 1120 h at 10 mA·cm^(−2).Furthermore,the Coulombic efficiency reaches~99.2%at 4 mA·cm^(−2)@1 mAh·cm^(−2).The Zn||NVO full batteries also demonstrated a stable specific capacity and exceptional capacity retention.展开更多
H_(2)O-induced side reactions and dendrite growth occurring at the Zn anode-electrolyte interface(AEI)limit the electrochemical performances of aqueous zinc ion batteries.Herein,methionine(Met)is introduced as an elec...H_(2)O-induced side reactions and dendrite growth occurring at the Zn anode-electrolyte interface(AEI)limit the electrochemical performances of aqueous zinc ion batteries.Herein,methionine(Met)is introduced as an electrolyte additive to solve the above issues by three aspects:Firstly,Met is anchored on Zn anode by amino/methylthio groups to form a H_(2)O-poor AEI,thus increasing the overpotential of hydrogen evolution reaction(HER);secondly,Met serves as a pH buffer to neutralize the HER generated OH-,thereby preventing the formation of by-products(e.g.Zn_(4)SO_(4)(OH)_(6)·xH_(2)O);thirdly,Zn^(2+) could be captured by carboxyl group of the anchored Met through electrostatic interaction,which promotes the dense and flat Zn deposition.Consequently,the Zn||Zn symmetric cell obtains a long cycle life of 3200 h at 1.0 mA cm^(-2),1.0 mAh cm^(-2),and 1400 h at 5.0 mA cm^(-2),5.0 mAh cm^(-2).Moreover,Zn||VO_(2) full cell exhibits a capacity retention of 91.0%after operating for 7000 cycles at 5.0 A g^(-1).This study offers a novel strategy for modulating the interface microenvironment of AEI via integrating the molecular adsorption,pH buffer,and Zn^(2+) capture strategies to design advanced industrial-oriented batteries.展开更多
The practical application of aqueous zinc-ion batteries(AZIBs)is primarily constrained by issues such as corrosion,zinc dendrite formation,and the hydrogen evolution reaction occurring at the zinc metal anode.To overc...The practical application of aqueous zinc-ion batteries(AZIBs)is primarily constrained by issues such as corrosion,zinc dendrite formation,and the hydrogen evolution reaction occurring at the zinc metal anode.To overcome these challenges,strategies for optimizing the electrolyte are crucial for enhancing the stability of the zinc anode.Inspired by the role of hemoglobin in blood cells,which facilitates oxygen transport during human respiration,an innovative inorganic colloidal electrolyte has been developed:calcium silicate-ZnSO_(4)(denoted as CS-ZSO).This electrolyte operates in weak acidic environment and releases calcium ions,which participate in homotopic substitution with zinc ions,while the solvation environment of hydrated zinc ions in the electrolyte is regulated.The reduced energy barrier for the transfer of zinc ions and the energy barrier for the desolvation of hydrated ions imply faster ion transfer kinetics and accelerated desolvation processes,thus favoring the mass transfer process.Furthermore,the silicate colloidal particles act as lubricants,improving the transfer of zinc ions.Together,these factors contribute to the more uniform concentration of zinc ions at the electrode/electrolyte interface,effectively inhibiting zinc dendrite formation and reducing by-product accumulation.The Zn//CS-ZSO//Zn symmetric cell demonstrates stable operation for over 5000 h at 1 mA cm^(-2),representing 29-fold improvement compared to the Zn//ZSO//Zn symmetric cell,which lasts only 170 h.Additionally,the Zn//CS-ZSO//Cu asymmetric cell shows stable average Coulombic efficiency(CE)exceeding 99.6%over2400 cycles,significantly surpassing the performance of the ZSO electrolyte.This modification strategy for electrolytes not only addresses key limitations associated with zinc anodes but also provides valuable insights into stabilizing anodes for the advancement of high-performance aqueous zinc-ion energy storage systems.展开更多
Lithium metal has emerged as a highly promising anode material for enhancing the energy density of secondary batteries,attributed to its high theoretical specific capacity and low electrochemical potential.However,saf...Lithium metal has emerged as a highly promising anode material for enhancing the energy density of secondary batteries,attributed to its high theoretical specific capacity and low electrochemical potential.However,safety concerns related to lithium dendrite-induced short circuits and suboptimal electrochemical performance have impeded the commercial viability of lithium metal batteries.Current research efforts primarily focus on altering the solvated structure of Li+by modifying the current collector or introducing electrolyte additives to lower the nucleation barrier,expedite the desolvation process,and suppress the growth of lithium dendrites.Nevertheless,an integrated approach that combines the advantages of these two strategies remains elusive.In this study,we successfully employed metal-organic salt additives with lithophilic properties to accelerate the desolvation process,reduce the nucleation barrier of Li+,and modulate its solvated structure.This approach enhanced the inorganic compound content in the solid electrolyte interphase(SEI)on lithium foil surfaces,leading to stable Li+deposition and stripping.Specifically,Li||Cu cells demonstrated excellent cycle life and Coulombic efficiency(97.28%and 98.59%,respectively)at 0.5 m A/cm^(2)@0.5 m Ah/cm^(2)and 1 m A/cm^(2)@1 m Ah/cm^(2)for 410 and 240 cycles,respectively.Li||Li symmetrical cells showed no short circuit at 1 m A/cm^(2)@1 m Ah/cm^(2)for 1150 h,and Li||LFP full cells retained 68.9%of their capacity(104.6 m Ah/g)after 250 cycles at N/P(1.1:1.0)with a current density of 1C.展开更多
Silicon suboxide(SiO_(x),0<x<2)is an appealing anode material to replace traditional graphite owing to its much higher theoretical specific capacity enabling higher-energy-density lithium batteries.Nevertheless,...Silicon suboxide(SiO_(x),0<x<2)is an appealing anode material to replace traditional graphite owing to its much higher theoretical specific capacity enabling higher-energy-density lithium batteries.Nevertheless,the huge volume change and rapid capacity decay of SiO_(x)electrodes during cycling pose huge challenges to their large-scale practical applications.To eliminate this bottleneck,a dragonfly wing microstructure-inspired polymer electrolyte(denoted as PPM-PE)is developed based on in-situ polymerization of bicyclic phosphate ester-and urethane motif-containing monomer and methyl methacrylate in traditional liquid electrolyte.PPM-PE delivers excellent mechanical properties,highly correlated with the formation of a micro-phase separation structure similar with dragonfly wings.By virtue of superior mechanical properties and the in-situ solidified preparation method,PPM-PE can form a 3D polymer network buffer against stress within the electrode particles gap,enabling much suppressed electrode volume expansion and more stabilized solid electrolyte interface along with evidently decreased electrolyte decomposition.Resultantly,PPM-PE shows significant improvements in both cycling and rate performance in button and soft package batteries with SiO_(x)-based electrodes,compared with the liquid electrolyte counterpart.Such a dragonfly wing microstructure-inspired design philosophy of in-situ solidified polymer electrolytes helps facilitate the practical implementation of high-energy lithium batteries with SiO_(x)-based anodes.展开更多
Silicon-based materials are considered as the next generation anode to replace graphite due to their low cost and ultra-high theoretical capacity.However,significant volume expansion and contraction occur during charg...Silicon-based materials are considered as the next generation anode to replace graphite due to their low cost and ultra-high theoretical capacity.However,significant volume expansion and contraction occur during charging and discharging processes,leading to the instability of electrode structure and susceptibility to peeling and damage,limiting its application.Constructing controllable molecular artificial solid electrolyte interphase(CMASEI)is an effective approach to address the commercialization of silicon-based anode materials[1].Improving the performance of silicon-based anodes through CMASEI is a multifaceted outcome.展开更多
The development of lithium-ion batteries with high-energy densities is substantially hampered by the graphite anode's low theoretical capacity(372 mAh g^(-1)).There is an urgent need to explore novel anode materia...The development of lithium-ion batteries with high-energy densities is substantially hampered by the graphite anode's low theoretical capacity(372 mAh g^(-1)).There is an urgent need to explore novel anode materials for lithium-ion batteries.Silicon(Si),the second-largest element outside of Earth,has an exceptionally high specific capacity(3579 mAh g^(-1)),regarded as an excellent choice for the anode material in high-capacity lithium-ion batteries.However,it is low intrinsic conductivity and volume amplification during service status,prevented it from developing further.These difficulties can be successfully overcome by incorporating carbon into pure Si systems to form a composite anode and constructing a buffer structure.This review looks at the diffusion mechanism,various silicon-based anode material configurations(including sandwich,core-shell,yolk-shell,and other 3D mesh/porous structures),as well as the appropriate binders and electrolytes.Finally,a summary and viewpoints are offered on the characteristics and structural layout of various structures,metal/non-metal doping,and the compatibility and application of various binders and electrolytes for silicon-based anodes.This review aims to provide valuable insights into the research and development of silicon-based carbon anodes for high-performance lithium-ion batteries,as well as their integration with binders and electrolyte.展开更多
Silicon is considered one of the most promising candidates for incorporation into carbon-based anodes in lithium-ion batteries(LIBs)due to its high specific capacity.However,the significant volume changes during charg...Silicon is considered one of the most promising candidates for incorporation into carbon-based anodes in lithium-ion batteries(LIBs)due to its high specific capacity.However,the significant volume changes during charge and discharge cycles lead to repeated reconstruction of the solid electrolyte interface(SEI)film and continuous loss of active lithium.Pre-lithiation method is regarded as a highly attractive approach for effectively compensating for active lithium loss during the charge and discharge cycles of LIBs.Constructing a stable SEI film is particularly crucial in the pre-lithiation process.In this study,we developed a direct contact pre-lithiation(DC-Pr)method to create a temperature-tailored robust SEI film interface on silicon-carbon(Si@C)electrodes.By investigating the morphology,structure,and composition of the SEI formed on Si@C electrodes at different pre-lithiation temperatures(50,25,0,and-25℃),we demonstrated that controlling the lithiation temperature to regulate the migration rate of lithium ions within the Si@C electrode yields a lithiated Si@C anode(25-Pr-Si@C)at 25℃ with a continuous,uniform SEI film(~3.65 nm)enriched with Li_(2)O-LiF,which exhibits synergistic effects.Importantly,the initial Coulombic efficiency(ICE)of 25-Pr-Si@C significantly improved from 85.4% in the unlithiated Si@C electrode(Blank-Si@C)to 106.1%.Additionally,the full cell configuration using a high areal loading of lithiated Si@C(~5.5 mA h cm^(-2))as the anode and NCM811 as the cathode(NCM811||25-Pr-Si@C)demonstrated superior cycling performance,maintaining 69.4% of capacity retention and achieving a Coulombic efficiency of over 99.7% after 150 cycles(0.5 C).Therefore,this simple and efficient experimental design provides a high-performance,controllable,and scalable pre-lithiation method for LIBs,paving the way for the commercialization of LIBs utilizing pre-lithiation techniques.展开更多
Aqueous zinc-iodine(Zn-I_(2))batteries show great potential as energy storage candidates due to their high-safety and low-cost,but confronts hydrogen evolution reaction(HER)and dendrite growth at anode side and polyio...Aqueous zinc-iodine(Zn-I_(2))batteries show great potential as energy storage candidates due to their high-safety and low-cost,but confronts hydrogen evolution reaction(HER)and dendrite growth at anode side and polyiodide shuttling at cathode side.Herein,"tennis racket"(TR)hydrogel electrolytes were prepared by the co-polymerization and co-blending of polyacrylamide(PAM),sodium lignosulfonate(SL),and sodium alginate(SA)to synchronously regulate cathode and anode of Zn-I_(2)batteries."Gridline structure"of TR can induce the uniform transportation of Zn^(2+)ions through the coordination effect to hinder HER and dendrite growth at anode side,as well as hit I_(3)^(-)ions as"tennis"via the strong repulsion force to avoid shuttle effect at cathode side.The synergistic effect of TR electrolyte endows Zn-Zn symmetric battery with high cycling stability over 4500 h and Zn-I_(2)cell with the stably cycling life of 15000 cycles at5 A g^(-1),outperforming the reported works.The practicability of TR electrolyte is verified by flexible Zn-I_(2)pouch battery.This work opens a route to synchronously regulate cathode and anode to enhance the electrochemical performance of Zn-I_(2)batteries.展开更多
Halide solid-state electrolytes(SSEs)have become a new research focus for all-solid-state batteries because of their significant safety advantages,high ionic conductivity,high-voltage stability,and good ductility.None...Halide solid-state electrolytes(SSEs)have become a new research focus for all-solid-state batteries because of their significant safety advantages,high ionic conductivity,high-voltage stability,and good ductility.Nonetheless,stability issues are a key barrier to their practical application.In past reports,the analysis of halide electrolyte stability and its enhancement methods lacked relevance,which limited the design and optimization of halide solid electrolytes.This review focus on stability issues from a chemical,electrochemical,and interfacial point of view,with particular emphasis on the interaction of halide SSEs with anode and cathode interfaces.By focusing on innovative strategies to address the stability issue,this paper aims to further deepen the understanding and development of halide all-solid-state batteries by proposing to focus research efforts on improving their stability in order to address their inherent challenges and match higher voltage cathodes,paving the way for their wider application in the next generation of energy storage technologies.展开更多
基金supported by the National Key R&D Program of China(No.2023YFB3809500)the National Natural Science Foundation of China(No.U23A20555,52202211)+3 种基金the Ninth Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)the Chongqing Technology Innovation and Application Development Project(No.CSTB2022TIAD-KPX0028)the Fundamental Research Funds for the Central Universities(2023CDJXY-018)the Venture&Innovation Support Program for Chongqing Overseas Returnees(cx2022119,cx2023087).
文摘Rechargeable magnesium batteries(RMBs),as a low-cost,high-safety and high-energy storage technology,have attracted tremendous attention in large-scale energy storage applications.However,the key anode/electrolyte interfacial issues,including surface passivation,uneven Mg plating/stripping,and pulverization after cycling still result in a large overpotential,short cycling life,poor power density,and possible safety hazards of cells,severely impeding the commercial development of RMBs.In this review,a concise overview of recently advanced strategies to address these anode/electroyte interfacial issues is systematically classified and summarized.The design of magnesiophilic substrates,construction of artificial SEI layers,and modification of electrolyte are important and effective strategies to improve the uniformity/kinetics of Mg plating/stripping and achieve the stable anode/electrolyte interface.The key opportunities and challenges in this field are advisedly put forward,and the insights into future directions for stabilizing Mg metal anodes and the anode/electrolyte interface are highlighted.This review provides important references fordeveloping the high-performance and high-safety RMBs.
基金financially supported by the National Natural Science Foundation of China (No. 52377222)the Natural Science Foundation of Hunan Province, China (Nos. 2023JJ20064, 2023JJ40759)。
文摘Aqueous zinc-ion batteries(AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety,cost-effectiveness and environmental friendliness.However,issues such as dendrite growth,hydrogen evolution reaction,and interfacial passivation occurring at the anode/electrolyte interface(AEI) have hindered their practical application.Constructing a stable AEI plays a key role in regulating zinc deposition and improving the cycle life of AZIBs.The fundamentals of AEI and the challenges faced by the Zn anode due to unstable interfaces are discussed.A comprehensive summary of electrolyte regulation strategies by electrolyte engineering to achieve a stable Zn anode is provided.The effectiveness evaluation techniques for stable AEI are also analyzed,including the interfacial chemistry and surface morphology evolution of the Zn anode.Finally,suggestions and perspectives for future research are offered about enabling a durable and stable AEI via electrolyte engineering,which may pave the way for developing high-performance AZIBs.
基金National Natural Science Foundation of China (52073253)。
文摘Solid-state Na metal batteries(SSNBs),known for the low cost,high safety,and high energy density,hold a significant position in the next generation of rechargeable batteries.However,the urgent challenge of poor interfacial contact in solid-state electrolytes has hindered the commercialization of SSNBs.Driven by the concept of intimate electrode-electrolyte interface design,this study employs a combination of sodium-potassium(NaK)alloy and carbon nanotubes to prepare a semi-solid NaK(NKC)anode.Unlike traditional Na anodes,the paintable paste-like NKC anode exhibits superior adhesion and interface compatibility with both current collectors and gel electrolytes,significantly enhancing the physical contact of the electrode-electrolyte interface.Additionally,the filling of SiO_(2) nanoparticles improves the wettability of NaK alloy on gel polymer electrolytes,further achieving a conformal interface contact.Consequently,the overpotential of the NKC symmetric cell is markedly lower than that of the Na symmetric cell when subjected to a long cycle of 300 hrs.The full cell coupled with Na_(3)V_(2)(PO_(4))_(2) cathodes had an initial discharge capacity of 106.8 mAh·g^(-1) with a capacity retention of 89.61%after 300 cycles,and a high discharge capacity of 88.1 mAh·g^(-1) even at a high rate of 10 C.The outstanding electrochemical performance highlights the promising application potential of the NKC electrode.
基金support from the National Natural Science Foundation of China(No.U2333210)the Sichuan Science and Technology Program,China(No.21SYSX0011)。
文摘Lithium metal batteries(LMBs)are emerging as a promising energy storage solution owing to their high energy density and specific capacity.However,the non-uniform plating of lithium and the potential rupture of the solid-electrolyte interphase(SEI)during extended cycling use may result in dendrite growth,which can penetrate the separator and pose significant short-circuit risks.Forming a stable SEI is essential for the long-term operation of the batteries.Fluorine-rich SEI has garnered significant attention for its ability to effectively passivate electrodes,regulate lithium deposition,and inhibit electrolyte corrosion.Understanding the structural components and preparation methods of existing fluorinated SEI is crucial for optimizing lithium metal anode performance.This paper reviews the research on optimizing LiF passivation interfaces to protect lithium metal anodes.It focuses on four types of compositions in fluorinated SEI that work synergistically to enhance SEI performance.For instance,combining compounds with LiF can further enhance the mechanical strength and ionic conductivity of the SEI.Integrating metals with LiF significantly improves electrochemical performance at the SEI/anode interface,with a necessary focus on reducing electron tunneling risks.Additionally,incorporating polymers with LiF offers balanced improvements in interfacial toughness and ionic conductivity,though maintaining structural stability over long cycles remains a critical area for future research.Although alloys combined with LiF increase surface energy and lithium affinity,challenges such as dendrite growth and volume expansion persist.In summary,this paper emphasizes the crucial role of interfacial structures in LMBs and offers comprehensive guidance for future design and development efforts in battery technology.
基金supported by the National Natural Science Foundation of China(22179063,22479078,and 22409093)the Natural Science Foundation of Jiangsu Province of China(BK20240579)。
文摘FeS_(2)is a promising anode material for potassium-ion batteries(PIBs),with the advantages of low cost and high capacity.However,it still faces challenges of capacity fading and poor rate performance in potassium storage.Rational structural design is one way to overcome these drawbacks.In this work,MIL-88B-Fe-derived FeS_(2)nanoparticles/N-doped carbon nanofibers(M-FeS_(2)@CNFs)with expansion buffer capability are designed and synthesized for high-performance PIB anodes via electrospinning and subsequent sulfurization.The uniformly distributed cavity-type porous structure effectively mitigates the severe aggregation problem of FeS_(2)nanoparticles during cycling and buffers the volume change,further enhancing the potassium storage capacity.Meanwhile,the robust KF-rich solid electrolyte interphase induced by methyl trifluoroethylene carbonate(FEMC)additive improves the cycling stability of the M-FeS_(2)@CNF anode.In the electrolyte with 3 wt%FEMC,the M-FeS_(2)@CNF anode shows a reversible specific capacity of 592.7 mA h g^(-1)at 0.1 A g^(-1),an excellent rate capability of 327.1 mA h g^(-1)at 5 A g^(-1),and a retention rate 80.7%over 1000 cycles at 1 A g^(-1).More importantly,when assembled with a K_(1.84)Ni[Fe(CN)_(6)]_(0.88)·0.49H_(2)O cathode,the full battery manifests excellent cycle stability and high rate performance.This study demonstrates the significant importance of the synergistic effect of structural regulation and electrolyte optimization in achieving high cycling stability of PIBs.
基金Financial support from National Key R&D Program(2022YFB2404600)Natural Science Foundation of China(Key Project of 52131306)+1 种基金Project on Carbon Emission Peak and Neutrality of Jiangsu Province(BE2022031-4)the Big Data Computing Center of Southeast University are greatly appreciated.
文摘The replacement of non-aqueous organic electrolytes with solid-state electrolytes(SSEs)in solid-state lithium metal batteries(SLMBs)is considered a promising strategy to address the constraints of lithium-ion batteries,especially in terms of energy density and reliability.Nevertheless,few SLMBs can deliver the required cycling performance and long-term stability for practical use,primarily due to suboptimal interface properties.Given the diverse solidification pathways leading to different interface characteristics,it is crucial to pinpoint the source of interface deterioration and develop appropriate remedies.This review focuses on Li|SSE interface issues between lithium metal anode and SSE,discussing recent advancements in the understanding of(electro)chemistry,the impact of defects,and interface evolutions that vary among different SSE species.The state-ofthe-art strategies concerning modified SEI,artificial interlayer,surface architecture,and composite structure are summarized and delved into the internal relationships between interface characteristics and performance enhancements.The current challenges and opportunities in characterizing and modifying the Li|SSE interface are suggested as potential directions for achieving practical SLMBs.
基金supported by Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(No.2021JJLH0069)the Project of Sanya Yazhou Bay Science and Technology City(No.SCKJ-JYRC-2023-55)Hainan Provincial Natural Science Foundation of China(No.522CXTD516).
文摘Zinc perchlorate(Zn(ClO_(4))_(2))electrolytes have demonstrated favorable low-temperature performance in aqueous zinc-ion batteries(AZIBs).However,the Zn anode encounters serious dendrite formation and parasitic reactions in zinc perchlorate electrolytes,which is caused by the fast corrosive kinetics at room temperature.Herein,a concentrated perchlorate-based electrolyte consisting of 4.0 M Zn(ClO_(4))_(2)and saturated NaClO_(4)solution is developed to achieve dendrite-free and stable AZIBs at room temperature.The ClO_(4)−participates in the primary solvation sheath of Zn^(2+),facilitating the in situ formation of Zn_(5)(OH)_(8)Cl_(2)·H_(2)O-rich solid electrolyte interphase(SEI)to suppress the corrosion effect of ClO_(4)^(−).The Zn anode protected by the SEI achieves stable Zn plating/stripping over 3000 h.Furthermore,the MnO_(2)||Zn full cells manifest a stable specific capacity of 200 mAh·g^(−1)at 28℃and 101 mAh·g^(−1)at−20℃.This work introduces a promising approach for boosting the room-temperature performance of perchlorate-based electrolytes for AZIBs.
基金the financial support from the Foshan Talents Special Foundation(BKBS202003).
文摘Unstable Zn interface caused by rampant dendrite growth and parasitic side reactions always hinders the practical application of aqueous zinc metal batteries(AZMBs),Herein,tyrosine(Tyr)with high molecular polarity was introduced into aqueous electrolyte to modulate the interfacial electrochemistry of Zn anode.In AZMBs,the positively charged side of Tyr can be well adsorbed on the surface of Zn anode to form a water-poor layer,and the exposed carboxylate side can be easily coordinated with Zn^(2+),favoring inducing uniform plating of Zn^(2+)and inhibiting the occurrence of water-induced side reactions.These in turn enable the achievement of highly stable Zn anode.Accordingly,the Zn anodes achieve outstanding cyclic stability(3000 h at 2 mA cm^(-2),2 mA h cm^(-2)and 1300 h at 5 mA cm^(-2),5 mA h cm^(-2)),high average Coulombic efficiency(99.4%over 3200 cycles),and high depth of discharge(80%for 500 h).Besides,the assembled Zn‖NaV_(3)O_(8)·1.5H_(2)O full cells deliver remarkable capacity retention and ultra-long lifetime(61.8%over 6650 cycles at 5 A g^(-1))and enhanced rate capability(169 mA h g^(-1)at 5 A g^(-1)).The work may promote the design and deep understanding of electrolyte additives with high molecular polarity for high-performance AZMBs.
基金the National Key R&D Program of China(2022YFB2404500)Guangdong Basic and Applied Basic Research Foundation(2023A1515110347+2 种基金2023A1515012087)Funding by Science and Technology Projects in Guangzhou(2024A04J3267)the Fundamental Research Funds for the Central Universities(21624411).
文摘Zinc-ion hybrid supercapacitors(ZHSs)are promising energy storage systems integrating high energy density and high-power density,whereas they are plagued by the poor electrochemical stability and inferior kinetics of zinc anodes.Herein,we report an electrolyte additive-assembled interconnecting molecules-zinc anode interface,realizing highly stable and fast-kinetics zinc anodes for ZHSs.The sulfobutyl groups-graftedβ-cyclodextrin(SC)supramolecules as a trace additive in ZnSO_(4)electrolytes not only adsorb on zinc anodes but also self-assemble into an interconnecting molecule interface benefiting from the mutual attraction between the electron-rich sulfobutyl group and the electron-poor cavity of the adjacent SC supramolecule.The interconnecting molecules-zinc anode interface provides abundant anion-trapping cavities and zincophilic groups to enhance Zn^(2+)transference number and homogenize Zn^(2+)deposition sites,and meanwhile,it accelerates the desolvation of hydrated Zn^(2+)to improve zinc deposition kinetics and inhibit active water molecules from inducing parasitic reactions at the zinc deposition interface,making zinc anodes present superior reversibility with 99.7%Coulombic efficiency,~30 times increase in operation lifetime and an outstanding cumulative capacity at large current densities.ZHSs with 20,000-cycle life and optimized rate capability are thereby achieved.This work provides an inspiring strategy for designing zinc anode interfaces to promote the development of ZHSs.
基金the financial support from the Foshan Talents Special Foundation(BKBS202003)。
文摘Aqueous zinc-ion batteries(AZIBs)have emerged as a promising next-generation energy storage solution due to their high energy density,abundant resources,low cost,and high safety.However,unstable zinc anode caused by side reactions and dendritic growth always severely worsens the long-term operation of AZIBs.Herein,a novel 3-cyclobutene sulfone(CS)additive was employed in the aqueous electrolyte to achieve a highly reversible Zn anode.The CS additive can offer strong electronegativity and high binding energy for the coordination with Zn^(2+),which enables its entry into the solvent sheath structure of Zn^(2+)and eliminates the free H_(2)O molecules from the solvated{Zn^(2+)-SO_(4)^(2-)-(H_(2)O)_(5)}.Thus,the occurrence of side reactions and dendritic growth can be effectively inhibited.Accordingly,the Zn anode achieves long cycle-life(1400 h at 1 m A cm^(-2),1 m Ah cm^(-2),and 400 h at 5 m A cm^(-2),5 m Ah cm^(-2))and high average coulombic efficiency(99.5% over 500 cycles at 10 m A cm^(-2),1 m Ah cm^(-2)).Besides,the assembled Zn||NH_(4)V_(4)O_(10)full cell suggests enhanced cycling reversibility(123.8 m Ah g^(-1)over 500 cycles at 2 A g^(-1),84.9 m Ah g^(-1)over 800 cycles at 5 A g^(-1))and improved rate capability(139.1 m Ah g^(-1)at 5 A g^(-1)).This work may exhibit the creative design and deep understanding of sulfone-based electrolyte additives for the achievement of high-performance AZIBs.
基金supported by the Fund of Xuzhou Science and Technology Key R&D Program(Social Development)Project(No.KC22289)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX22_2783).
文摘Aqueous zinc-ion batteries(AZIBs)have developed rapidly in recent years but still face several challenges,including zinc dendrites growth,hydrogen evolution reaction,passivation and corrosion.The pH of the electrolyte plays a crucial role in these processes,significantly impacting the stability and reversibility of Zn^(2+)deposition.Therefore,pH-buffer tris(hydroxymethyl)amino methane(tris)is chosen as a versatile electrolyte additive to address these issues.Tris can buffer electrolyte pH at Zn/electrolyte interface by protonated/deprotonated nature of amino group,optimize the coordination environment of zinc solvate ions by its strong interaction with zinc ions,and simultaneously create an in-situ stable solid electrolyte interface membrane on the zinc anode surface.These synergistic effects effectively restrain dendrite formation and side reactions,resulting in a highly stable and reversible Zn anode,thereby enhancing the electrochemical performance of AZIBs.The Zn||Zn battery with 0.15 wt%tris additives maintains stable cycling for 1500 h at 4 mA·cm^(−2) and 1120 h at 10 mA·cm^(−2).Furthermore,the Coulombic efficiency reaches~99.2%at 4 mA·cm^(−2)@1 mAh·cm^(−2).The Zn||NVO full batteries also demonstrated a stable specific capacity and exceptional capacity retention.
基金supported by the National Natural Science Foundation of China(22479031,22162004)the Natural Science Foundation of Guangxi(2022JJD120011).
文摘H_(2)O-induced side reactions and dendrite growth occurring at the Zn anode-electrolyte interface(AEI)limit the electrochemical performances of aqueous zinc ion batteries.Herein,methionine(Met)is introduced as an electrolyte additive to solve the above issues by three aspects:Firstly,Met is anchored on Zn anode by amino/methylthio groups to form a H_(2)O-poor AEI,thus increasing the overpotential of hydrogen evolution reaction(HER);secondly,Met serves as a pH buffer to neutralize the HER generated OH-,thereby preventing the formation of by-products(e.g.Zn_(4)SO_(4)(OH)_(6)·xH_(2)O);thirdly,Zn^(2+) could be captured by carboxyl group of the anchored Met through electrostatic interaction,which promotes the dense and flat Zn deposition.Consequently,the Zn||Zn symmetric cell obtains a long cycle life of 3200 h at 1.0 mA cm^(-2),1.0 mAh cm^(-2),and 1400 h at 5.0 mA cm^(-2),5.0 mAh cm^(-2).Moreover,Zn||VO_(2) full cell exhibits a capacity retention of 91.0%after operating for 7000 cycles at 5.0 A g^(-1).This study offers a novel strategy for modulating the interface microenvironment of AEI via integrating the molecular adsorption,pH buffer,and Zn^(2+) capture strategies to design advanced industrial-oriented batteries.
基金the Doctoral Research Start-up Fund of Hubei University of Science and Technology(BK202504)the Natural Science Foundation of Liaoning Province(2023-MS-115)。
文摘The practical application of aqueous zinc-ion batteries(AZIBs)is primarily constrained by issues such as corrosion,zinc dendrite formation,and the hydrogen evolution reaction occurring at the zinc metal anode.To overcome these challenges,strategies for optimizing the electrolyte are crucial for enhancing the stability of the zinc anode.Inspired by the role of hemoglobin in blood cells,which facilitates oxygen transport during human respiration,an innovative inorganic colloidal electrolyte has been developed:calcium silicate-ZnSO_(4)(denoted as CS-ZSO).This electrolyte operates in weak acidic environment and releases calcium ions,which participate in homotopic substitution with zinc ions,while the solvation environment of hydrated zinc ions in the electrolyte is regulated.The reduced energy barrier for the transfer of zinc ions and the energy barrier for the desolvation of hydrated ions imply faster ion transfer kinetics and accelerated desolvation processes,thus favoring the mass transfer process.Furthermore,the silicate colloidal particles act as lubricants,improving the transfer of zinc ions.Together,these factors contribute to the more uniform concentration of zinc ions at the electrode/electrolyte interface,effectively inhibiting zinc dendrite formation and reducing by-product accumulation.The Zn//CS-ZSO//Zn symmetric cell demonstrates stable operation for over 5000 h at 1 mA cm^(-2),representing 29-fold improvement compared to the Zn//ZSO//Zn symmetric cell,which lasts only 170 h.Additionally,the Zn//CS-ZSO//Cu asymmetric cell shows stable average Coulombic efficiency(CE)exceeding 99.6%over2400 cycles,significantly surpassing the performance of the ZSO electrolyte.This modification strategy for electrolytes not only addresses key limitations associated with zinc anodes but also provides valuable insights into stabilizing anodes for the advancement of high-performance aqueous zinc-ion energy storage systems.
基金supported by Yunnan Natural Science Foundation Project(No.202202AG050003)Yunnan Fundamental Research Projects(Nos.202101BE070001-018 and 202201AT070070)+1 种基金the National Youth Talent Support Program of Yunnan Province China(No.YNQR-QNRC-2020-011)Yunnan Engineering Research Center Innovation Ability Construction and Enhancement Projects(No.2023-XMDJ-00617107)。
文摘Lithium metal has emerged as a highly promising anode material for enhancing the energy density of secondary batteries,attributed to its high theoretical specific capacity and low electrochemical potential.However,safety concerns related to lithium dendrite-induced short circuits and suboptimal electrochemical performance have impeded the commercial viability of lithium metal batteries.Current research efforts primarily focus on altering the solvated structure of Li+by modifying the current collector or introducing electrolyte additives to lower the nucleation barrier,expedite the desolvation process,and suppress the growth of lithium dendrites.Nevertheless,an integrated approach that combines the advantages of these two strategies remains elusive.In this study,we successfully employed metal-organic salt additives with lithophilic properties to accelerate the desolvation process,reduce the nucleation barrier of Li+,and modulate its solvated structure.This approach enhanced the inorganic compound content in the solid electrolyte interphase(SEI)on lithium foil surfaces,leading to stable Li+deposition and stripping.Specifically,Li||Cu cells demonstrated excellent cycle life and Coulombic efficiency(97.28%and 98.59%,respectively)at 0.5 m A/cm^(2)@0.5 m Ah/cm^(2)and 1 m A/cm^(2)@1 m Ah/cm^(2)for 410 and 240 cycles,respectively.Li||Li symmetrical cells showed no short circuit at 1 m A/cm^(2)@1 m Ah/cm^(2)for 1150 h,and Li||LFP full cells retained 68.9%of their capacity(104.6 m Ah/g)after 250 cycles at N/P(1.1:1.0)with a current density of 1C.
基金financially supported by the National Key R&D Program of China(2023YFC2812700)the Key Scientific and Technological Innovation Project of Shandong(2022CXGC020301)+6 种基金the National Natural Science Foundation of China(22279153,U22A2044,22479154,52303287)the Taishan Scholars of Shandong Province(No.ts201511063)the Shandong Energy Institute(Grant No.SEI I202108)the Postdoctoral Fellowship Program of CPSF(E31Z3F04)China Postdoctoral Science Foundation(2024 M753350)the Natural Science Foundation of Shandong Province(ZR2023QB208)Qingdao Natural Science Foundation(23-2-1-77-zyyd-jch)。
文摘Silicon suboxide(SiO_(x),0<x<2)is an appealing anode material to replace traditional graphite owing to its much higher theoretical specific capacity enabling higher-energy-density lithium batteries.Nevertheless,the huge volume change and rapid capacity decay of SiO_(x)electrodes during cycling pose huge challenges to their large-scale practical applications.To eliminate this bottleneck,a dragonfly wing microstructure-inspired polymer electrolyte(denoted as PPM-PE)is developed based on in-situ polymerization of bicyclic phosphate ester-and urethane motif-containing monomer and methyl methacrylate in traditional liquid electrolyte.PPM-PE delivers excellent mechanical properties,highly correlated with the formation of a micro-phase separation structure similar with dragonfly wings.By virtue of superior mechanical properties and the in-situ solidified preparation method,PPM-PE can form a 3D polymer network buffer against stress within the electrode particles gap,enabling much suppressed electrode volume expansion and more stabilized solid electrolyte interface along with evidently decreased electrolyte decomposition.Resultantly,PPM-PE shows significant improvements in both cycling and rate performance in button and soft package batteries with SiO_(x)-based electrodes,compared with the liquid electrolyte counterpart.Such a dragonfly wing microstructure-inspired design philosophy of in-situ solidified polymer electrolytes helps facilitate the practical implementation of high-energy lithium batteries with SiO_(x)-based anodes.
基金supported by the Nanxun Scholars Program for Young Scholars of ZJWEU(No.RC2023021315)the start-up funding for Scientific Research for High-level Talents(No.88106324004)the National Natural Science Foundation of China(No.62304070).
文摘Silicon-based materials are considered as the next generation anode to replace graphite due to their low cost and ultra-high theoretical capacity.However,significant volume expansion and contraction occur during charging and discharging processes,leading to the instability of electrode structure and susceptibility to peeling and damage,limiting its application.Constructing controllable molecular artificial solid electrolyte interphase(CMASEI)is an effective approach to address the commercialization of silicon-based anode materials[1].Improving the performance of silicon-based anodes through CMASEI is a multifaceted outcome.
基金supported by National Natural Science Foundation of China(No.22205182)National Science Fund for Distinguished Young Scholars(No.52025034)+2 种基金China Postdoctoral Science Foundation(Nos.2022M722594/2024T171170)Guangdong Basic and Applied Basic Research Foundation(No.2024A1515011516)financially supported by Innovation Team of Shaanxi Sanqin Scholars。
文摘The development of lithium-ion batteries with high-energy densities is substantially hampered by the graphite anode's low theoretical capacity(372 mAh g^(-1)).There is an urgent need to explore novel anode materials for lithium-ion batteries.Silicon(Si),the second-largest element outside of Earth,has an exceptionally high specific capacity(3579 mAh g^(-1)),regarded as an excellent choice for the anode material in high-capacity lithium-ion batteries.However,it is low intrinsic conductivity and volume amplification during service status,prevented it from developing further.These difficulties can be successfully overcome by incorporating carbon into pure Si systems to form a composite anode and constructing a buffer structure.This review looks at the diffusion mechanism,various silicon-based anode material configurations(including sandwich,core-shell,yolk-shell,and other 3D mesh/porous structures),as well as the appropriate binders and electrolytes.Finally,a summary and viewpoints are offered on the characteristics and structural layout of various structures,metal/non-metal doping,and the compatibility and application of various binders and electrolytes for silicon-based anodes.This review aims to provide valuable insights into the research and development of silicon-based carbon anodes for high-performance lithium-ion batteries,as well as their integration with binders and electrolyte.
基金the financial support from the Shanghai Oriental Talent Program(QNDS2024007)On-Campus Scene Verification Project of Tongji University(kh0170020242359)+4 种基金Shanghai Research Institute of China Shenhua Coal-to-Liquids Chemical Co.,Ltd.the National Natural Science Foundation of China(52307249)National Science Foundation of Shanghai Province(23ZR1465900)Fundamental Research Funds for the Central Universities at Tongji University(PA2022000668,22120220426)Nanchang Automotive Institute of Intelligence&New Energy of Tongji University(TPDTC202211-02)。
文摘Silicon is considered one of the most promising candidates for incorporation into carbon-based anodes in lithium-ion batteries(LIBs)due to its high specific capacity.However,the significant volume changes during charge and discharge cycles lead to repeated reconstruction of the solid electrolyte interface(SEI)film and continuous loss of active lithium.Pre-lithiation method is regarded as a highly attractive approach for effectively compensating for active lithium loss during the charge and discharge cycles of LIBs.Constructing a stable SEI film is particularly crucial in the pre-lithiation process.In this study,we developed a direct contact pre-lithiation(DC-Pr)method to create a temperature-tailored robust SEI film interface on silicon-carbon(Si@C)electrodes.By investigating the morphology,structure,and composition of the SEI formed on Si@C electrodes at different pre-lithiation temperatures(50,25,0,and-25℃),we demonstrated that controlling the lithiation temperature to regulate the migration rate of lithium ions within the Si@C electrode yields a lithiated Si@C anode(25-Pr-Si@C)at 25℃ with a continuous,uniform SEI film(~3.65 nm)enriched with Li_(2)O-LiF,which exhibits synergistic effects.Importantly,the initial Coulombic efficiency(ICE)of 25-Pr-Si@C significantly improved from 85.4% in the unlithiated Si@C electrode(Blank-Si@C)to 106.1%.Additionally,the full cell configuration using a high areal loading of lithiated Si@C(~5.5 mA h cm^(-2))as the anode and NCM811 as the cathode(NCM811||25-Pr-Si@C)demonstrated superior cycling performance,maintaining 69.4% of capacity retention and achieving a Coulombic efficiency of over 99.7% after 150 cycles(0.5 C).Therefore,this simple and efficient experimental design provides a high-performance,controllable,and scalable pre-lithiation method for LIBs,paving the way for the commercialization of LIBs utilizing pre-lithiation techniques.
基金financially supported by the Energy Revolution S&T Program of Yulin Innovation Institute of Clean Energy(E411060316)the NSFC-CONICFT Joint Project(51961125207)+1 种基金the Special Fund(2024)of Basic Scientific Research Project at Undergraduate University in Liaoning Province(LJ212410152056)the Foundation(GZKF202301)of State Key Laboratory of Biobased Material and Green Papermaking,Qilu University of Technology,Shandong Academy of Sciences。
文摘Aqueous zinc-iodine(Zn-I_(2))batteries show great potential as energy storage candidates due to their high-safety and low-cost,but confronts hydrogen evolution reaction(HER)and dendrite growth at anode side and polyiodide shuttling at cathode side.Herein,"tennis racket"(TR)hydrogel electrolytes were prepared by the co-polymerization and co-blending of polyacrylamide(PAM),sodium lignosulfonate(SL),and sodium alginate(SA)to synchronously regulate cathode and anode of Zn-I_(2)batteries."Gridline structure"of TR can induce the uniform transportation of Zn^(2+)ions through the coordination effect to hinder HER and dendrite growth at anode side,as well as hit I_(3)^(-)ions as"tennis"via the strong repulsion force to avoid shuttle effect at cathode side.The synergistic effect of TR electrolyte endows Zn-Zn symmetric battery with high cycling stability over 4500 h and Zn-I_(2)cell with the stably cycling life of 15000 cycles at5 A g^(-1),outperforming the reported works.The practicability of TR electrolyte is verified by flexible Zn-I_(2)pouch battery.This work opens a route to synchronously regulate cathode and anode to enhance the electrochemical performance of Zn-I_(2)batteries.
基金supported by the National Natural Science Foundation of China(nos.22309027 and 52374301)the Shijiazhuang Basic Research Project(nos.241790667A and 241790907A)+3 种基金the Fundamental Research Funds for the Central Universities(no.N2523050)the Natural Science Foundation of Hebei Province(no.E2024501010)the Performance subsidy fund for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province(no.22567627H)the 2024 Hebei Provincial Postgraduate Student Innovation Ability Training Funding Project(no.CXZZSS2025162)。
文摘Halide solid-state electrolytes(SSEs)have become a new research focus for all-solid-state batteries because of their significant safety advantages,high ionic conductivity,high-voltage stability,and good ductility.Nonetheless,stability issues are a key barrier to their practical application.In past reports,the analysis of halide electrolyte stability and its enhancement methods lacked relevance,which limited the design and optimization of halide solid electrolytes.This review focus on stability issues from a chemical,electrochemical,and interfacial point of view,with particular emphasis on the interaction of halide SSEs with anode and cathode interfaces.By focusing on innovative strategies to address the stability issue,this paper aims to further deepen the understanding and development of halide all-solid-state batteries by proposing to focus research efforts on improving their stability in order to address their inherent challenges and match higher voltage cathodes,paving the way for their wider application in the next generation of energy storage technologies.