Sodium-ion batteries (SIBs) with organic electrodes are an emerging research direction due to the sustainability of organic materials based on elements like C,H,O,and sodium ions.Currently,organic electrode materials ...Sodium-ion batteries (SIBs) with organic electrodes are an emerging research direction due to the sustainability of organic materials based on elements like C,H,O,and sodium ions.Currently,organic electrode materials for SIBs are mainly used as cathodes because of their relatively high redox potentials(>1 V).Organic electrodes with low redox potential that can be used as anode are rare.Herein,a novel organic anode material (tetrasodium 1,4,5,8-naphthalenetetracarboxylate,Na_(4)TDC) has been developed with low redox potential (<0.7 V) and excellent cyclic stability.Its three-sodium storage mechanism was demonstrated with various in-situ/ex-situ spectroscopy and theoretical calculations,showing a high capacity of 208 mAh/g and an average decay rate of merely 0.022%per cycle.Moreover,the Na_(4)TDC-hard carbon composite can further acquire improved capacity and cycling stability for 1200 cycles even with a high mass loading of up to 20 mg cm^(-2).By pairing with a thick Na_(3)V_(2)(PO_(4))_(3)cathode (20.6 mg cm^(-2)),the as-fabricated full cell exhibited high operating voltage (2.8 V),excellent rate performance and cycling stability with a high capacity retention of 88.7% after 200 cycles,well highlighting the Na_(4)TDC anode material for SIBs.展开更多
The urgent demand for clean energy solutions has intensified the search for advanced storage materials,with rechargeable alkali-ion batteries(AIBs)playing a pivotal role in electrochemical energy storage.Enhancing ele...The urgent demand for clean energy solutions has intensified the search for advanced storage materials,with rechargeable alkali-ion batteries(AIBs)playing a pivotal role in electrochemical energy storage.Enhancing electrode performance is critical to addressing the increasing need for high-energy and high-power AIBs.Next-generation anode materials face significant challenges,including limited energy storage capacities and complex reaction mechanisms that complicate structural modeling.Sn-based materials have emerged as promising candidates for AIBs due to their inherent advantages.Recent research has increasingly focused on the development of heterojunctions as a strategy to enhance the performance of Sn-based anode materials.Despite significant advances in this field,comprehensive reviews summarizing the latest developments are still sparse.This review provides a detailed overview of recent progress in Sn-based heterojunction-type anode materials.It begins with an explanation of the concept of heterojunctions,including their fabrication,characterization,and classification.Cutting-edge research on Sn-based heterojunction-type anodes for AIBs is highlighted.Finally,the review summarizes the latest advancements in heterojunction technology and discusses future directions for research and development in this area.展开更多
The scarcity and high cost of lithium resources drive the search for sustainable alternatives,positioning potassium-ion batteries(KIBs)as promising energy storage solutions due to the natural abundance and advantageou...The scarcity and high cost of lithium resources drive the search for sustainable alternatives,positioning potassium-ion batteries(KIBs)as promising energy storage solutions due to the natural abundance and advantageous electrochemical properties of the potassium.This study investigates the enhancement of KIB anodes through phase transformation and electronic structure engineering of monolayer 1T-MoS_(2),achieved via doping with highly electronegative non-metal elements:carbon(C),nitrogen(N),oxygen(O),and fluorine(F).Density functional theory(DFT)simulations reveal that electronegative atom doping enhances phase stability,structural robustness,and thermal resilience,which are key properties for highperformance KIB anodes.Among the doped configurations,F and N-doped 1T-MoS_(2)(MoS_(2-)F and MoS_(2)-N)exhibit superior electrochemical performance,showing optimal adsorption energies and significantly improved electronic conductivity,attributable to favorable charge redistribution and increased active potassium adsorption sites.Specifically,MoS_(2)-F and MoS_(2)-N achieve the highest specific capacities of339.65 and 339.17 mAh/g,respectively,while maintaining stability within an ideal open circuit voltage range,outperforming undoped MoS_(2).This work undersco res the potential of electronegative atom doping in 1T-MoS_(2)to enable sustainable,high-capacity energy storage solutions,offering key advancements in the electrochemical and structural properties of KIB anodes.展开更多
The discovery of novel materials with compelling properties is more accessible with the help of advanced computational algorithms.Recent experimental synthesis of the biphenylene network(C_(6))motivated us to discover...The discovery of novel materials with compelling properties is more accessible with the help of advanced computational algorithms.Recent experimental synthesis of the biphenylene network(C_(6))motivated us to discover new BN-doped biphenylene networks(C_(4)BN,C_(2)B_(2)N_(2),and B_(4)N_(4))and their applications in Li(K)-ion batteries using an evolutionary algorithm and the first-principles calculations.The thermodynamic,thermal,and mechanical stability calculations and decomposition energy suggest the experimental synthesis of predicted biphenylene networks.Adding BN in the biphenylene networks shows a transition from metal to semimetal to semiconductor.The BN biphenylene network shows an HSE06 band gap of 3.06 eV,smaller than h-BN.The C_(4)BN and C_(2)B_(2)N_(2)biphenylene networks offer Li(K)adsorption energy of-0.56 eV(-0.81 eV)and-0.14 eV(-0.28 eV),respectively,with a low diffusion barrier of 178 meV(58 meV)and 251 meV(79 meV),and a large diffusion constant of 8.50×10^(-5)cm^(2)=s(8.78×10^(-3)cm^(2)=s)and 5.33×10^(-6)cm^(2)=s(4.12×10^(-3)cm^(2)=s),respectively.The calculated Li(K)theoretical capacity of C_(4)BN and C_(2)B_(2)N_(2)biphenylene networks is 940.21 mA h g^(-1)(899.01 mA h g^(-1))and 768.08 mA h g^(-1)(808.47 mA h g^(-1)),with a low open circuit voltage of 0.34 V(0.23 V),and 0.17 V(0.13 V),resulting in very high energy density of 2576.18 mW h g^(-1)(2445.31 mW h g^(-1))and 2181.35 mW h g^(-1)(2263.72 mW h g^(-1)),respectively.Only a slight volume change of 1.6%confirms the robustness of BN-doped carbon-based biphenylene networks.Our findings present novel 2D BN-doped biphenylene networks and a pathway toward their applications in metal-ion batteries.展开更多
High-performance lithium-ion batteries and sodium-ion batteries have been developed utilizing a hybrid anode material composed of zinc sulfide/sulfurized polyacrylonitrile.The in situ-generated zinc sulfide nanopartic...High-performance lithium-ion batteries and sodium-ion batteries have been developed utilizing a hybrid anode material composed of zinc sulfide/sulfurized polyacrylonitrile.The in situ-generated zinc sulfide nanoparticles serve as catalytic agents,significantly enhancing conductivity,shortening diffusion paths,and accelerating reaction kinetics.Simultaneously,the sulfurized polyacrylonitrile fibers form a three-dimensional matrix that not only provides a continuous network for rapid electron transfer but also prevents zinc sulfide nanoparticle aggregation and mitigates volume changes during charge-discharge cycles.Moreover,the heterointerface structure at the junction of zinc sulfide nanoparticles and the sulfurized polyacrylonitrile matrix increases the availability of active sites and facilitates both ion adsorption and electron transfer.As an anode material for lithium-ion batteries,the zinc sulfide/sulfurized polyacrylonitrile hybrid demonstrates a high reversible capacity of 1178 mAh g^(-1)after 100 cycles at a current density of 0.2 A g^(-1),maintaining a capacity of 788 mAh g^(-1)after 200 cycles at 1 A g^(-1).It also exhibits excellent sodium storage capabilities,retaining a capacity of 625 mAh g^(-1)after 150 cycles at 0.2 A g^(-1).Furthermore,ex-situ X-ray photoelectron spectroscopy,X-ray diffraction,7Li solid-state magic angle spinning nuclear magnetic resonance,and in situ Raman are employed to investigate the reaction mechanisms of the zinc sulfide/sulfurized polyacrylonitrile hybrid anode,providing valuable insights that pave the way for the advancement of hybrid anode materials in lithium-ion batteries and sodium-ion batteries.展开更多
Conversion-alloying anode materials are competitive candidates for high-energy-density sodium-ion batteries(SIBs).However,the sluggish dynamics and severe volume expansion during Na insertion/extraction become the key...Conversion-alloying anode materials are competitive candidates for high-energy-density sodium-ion batteries(SIBs).However,the sluggish dynamics and severe volume expansion during Na insertion/extraction become the key bottlenecks hindering their application in SIBs.Herein,SnTe nanoparticles are anchored on reduced graphene oxide(rGO)and encapsulated by nitrogen-doped carbon(NC)to construct SnTe@rGO@NC composite as anode for SIBs,where hierarchical confinement effect can provide a buffer area to accommodate huge volume expansion as well as enhance electronic conductivity and Na-ion transfer kinetics behavior,confirmed by density functional theory(DFT)calculation and experimental study.Meanwhile,structural stability and interfacial charge transfer of the composite can be further improved by the strong chemical bonds of C-Sn and C-Te.High-angle annular dark field scanning transmission electron microscopy visually at atomic scale declares that SnTe@rGO@NC proceeds conversion-alloying dual-mechanism for Na-ion storage employing Sn as redox center(4SnTe+23Na^(+)+23e^(-)→Na_(15)Sn_(4)+4Na_(2)Te).Thus,SnTe@rGO@NC architecture displays a high reversible specific capacity of 261.5 mAh·g^(-1)at 50 mA·g^(-1),superior rate capability and excellent cycling stability with long-term lifespan over 1000 cycles at 200 mA·g^(-1).The multi-physicochemical encapsulation strategy sheds light on the development of a high-performance conversion-alloying anode for SIBs.展开更多
Tin dioxide(SnO_(2))with a high theoretical specific capacity of 1494 mAh g^(-1)is a promising candidate anode material for lithium storage.However,the shortcomings of serious volume expansion and low conductivity lim...Tin dioxide(SnO_(2))with a high theoretical specific capacity of 1494 mAh g^(-1)is a promising candidate anode material for lithium storage.However,the shortcomings of serious volume expansion and low conductivity limit its wide application.Herein,coaxial nano-multilayered C/SnO_(2)/TiO_(2)composites were fabricated via layerby-layer self-assembly of TiO_(2)and SnO_(2)-gel layers on the natural cellulose filter paper,followed by thermal treatment under a nitrogen atmosphere.Through engineering design of the assembly process,the optimal C/SinO_(2)/TiO_(2)composite features five alternating SnO_(2)and TiO_(2)nanolayers,with TiO_(2)as the outside shell(denoted as C/TSTST).This unique structure endows the C/TSTST with excellent structural stability and electrochemical kinetics,making it a high-performance anode for lithium-ion batteries(LIBs).The C/TSTST composite delivers a high reversible capacity of 676 mAh g^(-1)at 0.1 A g^(-1)after 200 cycles and retains a capacity of 504 mAh g^(-1)at 1.0 A g^(-1),which can be recovered to 781 mAh g^(-1)at 0.1 A g^(-1)The significantly enhanced electrochemical performance is attributed to the hierarchical hybrid structure,where the carbon core combined with coaxial TiO_(2)nanolayers serves as a structural scaffold,ameliorating volume change of SnO_(2)while creating abundant interfacial defects for enhanced lithium storage and rapid charge transport.These findings are further demonstrated by the density functional theory(DFT)calculations.This work provides an efficient strategy for designing coaxial nano-multilayered transition metal oxide-related electrode materials,offering new insights into high-performance LIBs anodes.展开更多
A facile way was used to synthesize Cu2O/reduced graphene oxide (rGO) composites with octahedron-like morphology in aqueous solution without any surfactant. TEM images of the obtained Cu2O/rGOs reveal that the Cu2O ...A facile way was used to synthesize Cu2O/reduced graphene oxide (rGO) composites with octahedron-like morphology in aqueous solution without any surfactant. TEM images of the obtained Cu2O/rGOs reveal that the Cu2O particles and rGO distribute hierarchically and the primary Cu2O particles are encapsulated well in the graphene nanosheets. The electrochemical performance of Cu2O/rGOs is enhanced compared with bare Cu2O when they are employed as anode materials for lithium ion batteries. The Cu2O/rGO composites maintain a reversible capacity of 348.4 mA?h/g after 50 cycles at a current density of 100 mA/g. In addition, the composites retain 305.8 mA?h/g after 60 cycles at various current densities of 50, 100, 200, 400 and 800 mA/g.展开更多
The electrochemical performance of Ta-doped Li4Ti5O12 in the form of Li4Ti4.95Ta0.05O12 was characterized.X-ray diffraction(XRD) and scanning electron microscopy(SEM) were employed to characterize the structure an...The electrochemical performance of Ta-doped Li4Ti5O12 in the form of Li4Ti4.95Ta0.05O12 was characterized.X-ray diffraction(XRD) and scanning electron microscopy(SEM) were employed to characterize the structure and morphology of Li4Ti4.95Ta0.05O12.Ta-doping does not change the phase composition and particle morphology,while improves remarkably its cycling stability at high charge/discharge rate.Li4Ti4.95Ta0.05O12 exhibits an excellent rate capability with a reversible capacity of 116.1 mA·h/g at 10C and even 91.0 mA·h/g at 30C.The substitution of Ta for Ti site can enhance the electronic conductivity of Li4Ti5O12 via the generation of mixing Ti4+/Ti3+,which indicates that Li4Ti4.95Ta0.05O12 is a promising candidate material for anodes in lithium-ion battery application.展开更多
Co-P (4.9% P) powders with a chain-like morphology were prepared by a novel chemical reduction method. The Co-P and germanium powders were mixed at various mass ratios to form Co-P composite electrodes. Charge and d...Co-P (4.9% P) powders with a chain-like morphology were prepared by a novel chemical reduction method. The Co-P and germanium powders were mixed at various mass ratios to form Co-P composite electrodes. Charge and discharge test and electrochemical impedance spectroscopy (EIS) were carried out to investigate the electrochemical performance, which can be significantly improved by the addition of germanium. For instance, when the mass ratio of Co-P powders to germanium is 5:1, the sample electrode shows a reversible discharge capacity of 350.3 mA·h/g and a high capacity retention rate of 95.9% after 50 cycles. The results of cyclic voltammmetry (CV) show the reaction mechanism of Co/Co(OH)2 within Co-P composite electrodes and EIS indicates that this electrode shows a low charge-transfer resistance, facilitating the oxidation of Co to Co(OH)2.展开更多
A facile ultrasonic method was used to synthesize CoO/graphene nanohybrids by employing Co4(CO)12 as a cobalt precursor. The nanohybrids were characterized by SEM, TEM and XPS, and the results show that CoO nanopart...A facile ultrasonic method was used to synthesize CoO/graphene nanohybrids by employing Co4(CO)12 as a cobalt precursor. The nanohybrids were characterized by SEM, TEM and XPS, and the results show that CoO nanoparticles (3-5 nm) distribute uniformly on the surface of graphene. The CoO/graphene nanohybrids display high performance as an anode material for lithium-ion battery, such as high reversible lithium storage capacity (650 mA-h/g after 50 cycles, almost twice that of commercial graphite anode), high coulombic efficiency (over 95%) and excellent cycling stability. The extraordinary performance arises from the structure of the nanohybrids: the nanosized CoO particles with high dispersity on conductive graphene substrates are beneficial for lithium-ion insertion/extraction, shortening diffusion length for lithium ions and improving conductivity, thus the lithium storage performance was improved.展开更多
Since lithium-ion batteries(LIBs) have been substantially researched in recent years, they now possess exceptional energy and power densities, making them the most suited energy storage technology for use in developed...Since lithium-ion batteries(LIBs) have been substantially researched in recent years, they now possess exceptional energy and power densities, making them the most suited energy storage technology for use in developed and developing industries like stationary storage and electric cars, etc. Concerns about the cost and availability of lithium have prompted research into alternatives, such as sodium-ion batteries(SIBs), which use sodium instead of lithium as the charge carrier. This is especially relevant for stationary applications, where the size and weight of battery are less important. The working efficiency and capacity of these batteries are mainly dependent on the anode, cathode, and electrolyte. The anode,which is one of these components, is by far the most important part of the rechargeable battery.Because of its characteristics and its structure, the anode has a tremendous impact on the overall performance of the battery as a whole. Keeping the above in view, in this review we critically reviewed the different types of anodes and their performances studied to date in LIBs and SIBs. The review article is divided into three main sections, namely:(i) intercalation reaction-based anode materials;(ii) alloying reaction-based anode materials;and(iii) conversion reaction-based anode materials, which are further classified into a number of subsections based on the type of material used. In each main section, we have discussed the merits and challenges faced by their particular system. Afterward, a brief summary of the review has been discussed. Finally, the road ahead for better application of Li/Na-ion batteries is discussed, which seems to mainly depend on exploring the innovative materials as anode and on the inoperando characterization of the existing materials for making them more capable in terms of application in rechargeable batteries.展开更多
Sodium-ion batteries(SIBs)have been considered as a promising alternative to the commercialized lithium ion batteries(LIBs)in large-scale energy storage field for its rich reserve in the earth.Hard carbon has been exp...Sodium-ion batteries(SIBs)have been considered as a promising alternative to the commercialized lithium ion batteries(LIBs)in large-scale energy storage field for its rich reserve in the earth.Hard carbon has been expected to the first commercial anode material for SIBs.Among various of hard carbon materials,plant-derived carbon is prominent because of abundant source,low cost and excellent electrochemical performance.This review focuses on the recent progress in the development of plantderived hard carbon anodes for SIBs.We summarized the microstructure and electrochemical performance of hard carbon materials pyrolyzed from different parts of plants at different temperatures.It aims to present a full scope of plant-derived hard carbon anode materials and provide indepth understanding and guideline for the design of highperformance hard carbon for sodium ion anodes.展开更多
The rapid development of electric vehicles and mobile electronic devices is the main driving force to improve advanced high-performance lithium ion batteries(LIBs).The capacity,rate performance and cycle stability of ...The rapid development of electric vehicles and mobile electronic devices is the main driving force to improve advanced high-performance lithium ion batteries(LIBs).The capacity,rate performance and cycle stability of LIBs rely directly on the electrode materials.As far as the development of the advanced LIBs electrode is concerned,the improvement of anode materials is more urgent than the cathode materials.Industrial production of anode materials superior to commercial graphite still faces some challenges.This review sets out the most basic LIBs anode material design.The reaction principles and structural design of carbon materials,various transition metal oxides,silicon and germanium are summarized,and then the progress of other anode materials are analyzed.Due to the rapid development of metal organic frameworks(MOFs)in energy storage and conversion in recent years,the synthesis process and energy storage mechanism of nanostructures derived from MOF precursors are also discussed.From the perspective of novel structural design,the progress of various MOFs-derived materials for alleviating the volume expansion of anode materials is discussed.Finally,challenges for the future development of advanced anode materials for LIBs will be considered.展开更多
Aluminum is an innovative anode material for seawater battery. But large polarization and low electrochemical activity restrict its application. In this research, A1-Mg-Sn-Hg-Ce anode materials were prepared and the m...Aluminum is an innovative anode material for seawater battery. But large polarization and low electrochemical activity restrict its application. In this research, A1-Mg-Sn-Hg-Ce anode materials were prepared and the microstructures were investigated by scanning electron microscopy (SEM). The electrochemical properties of A1-Mg-Sn-Hg-Ce anode materials were measured by potentiodynamic polarization and potential-time discharge in a 4.5 wt.%NaOH solution at 353 K. The results indicated that the increasing content of cerium addition refined the grain structure of A1-Mg-Sn-Hg alloy and promoted the uniform distribution of Sn and Hg elements in A1 matrix. The morphology of second phases changed from disperse granular to intergranulate strip with the increasing content of cerium addition in AI-Mg-Sn-Hg alloy. During the half-cell tests at a 650 mA/cm3 current density, the discharge activity of AI-Mg-Sn-Hg-Ce alloy was improved with the increasing content of cerium addition. The average discharge potential of AI-Mg-Sn-Hg-0.3 wt.%Ce alloy was -1.721 V (vs. SCE), which was more negative than -1.406 V (vs. SCE) in AZglD. The best corrosion resistance occurred in A1-Mg-Sn-Hg-0.05 wt.%Ce alloy with the corrosion current density, 18.84± 2.21 mA/cm2. The corrosion behaviours of A1-Mg-Sn-Hg-Ce alloys were also analyzed.展开更多
TiO_(2)-based materials have been considered as one of most promising alternatives for high-performance Li(Na)-ion batteries because of the low cost,simple composition,easy synthesis,good environmental protection,exce...TiO_(2)-based materials have been considered as one of most promising alternatives for high-performance Li(Na)-ion batteries because of the low cost,simple composition,easy synthesis,good environmental protection,excellent safety and relatively high specific capacity.Nonetheless,the inferior electronic conductivity and poor ion diffusion coefficients are the biggest bottlenecks that restrict the popular application.Much effort has been focused on resolving these problems toward large-scale applications,and numerous significant advances have been accomplished.In the present work,a comprehensive overview of structure characteristics,electrochemical reaction mechanism and modification strategies of TiO_(2)-based materials was presented.The recent advances of various efficient ways for improving conductivity,Li(Na)storage capacity,rate capability and cycle stability are systematically summarized,including surface engineering,constructing composite and element doping,etc.Constructing TiO_(2)-based materials with novel porous heterogeneous core-shell structures have been regarded as one of the most effective ways to resolve these challenges.Finally,the future research directions and development prospects of TiO_(2)-based anode materials used in the manufacture of high-performance Li(Na)-ion batteries are prospected.This review can provide important comprehension for the construction and optimization of highperformance of TiO_(2)-based anode materials.展开更多
Graphite as a promising anode candidate of K-ion batteries(KIBs)has been increasingly studied currently,but corresponding rate performance and cycling stability are usually inferior to amorphous carbon materials.To pr...Graphite as a promising anode candidate of K-ion batteries(KIBs)has been increasingly studied currently,but corresponding rate performance and cycling stability are usually inferior to amorphous carbon materials.To protect the layer structure and further boost performance,tempura-like carbon/carbon nanocomposite of graphite@pitch-derived S-doped carbon(G@PSC)is designed and prepared by a facile and low-temperature modified molten salt method.This robust encapsulation structure makes their respective advantages complementary to each other,showing mutual promotion of electrochemical performances caused by synergy effect.As a result,the G@PSC electrode is applied in KIBs,delivering impressive rate capabilities(465,408,370,332,290,and 227 m A h g^(-1)at 0.05,0.2,0.5,1,2,and 5 A g^(-1))and ultralong cyclic stability(163 m A g^(-1)remaining even after 8000 cycles at 2 A g^(-1)).On basis of ex-situ studies,the sectionalized K-storage mechanism with adsorption(pseudocapacitance caused by S doping)-intercalation(pitch-derived carbon and graphite)pattern is revealed.Moreover,the exact insights into remarkable rate performances are taken by electrochemical kinetics tests and density functional theory calculation.In a word,this study adopts a facile method to synthesize high-performance carbon/carbon nanocomposite and is of practical significance for development of carbonaceous anode in KIBs.展开更多
Micro-sized(1030.3±178.4 nm) and nano-sized(50.4±8.0 nm) Fe3O4 particles have been fabricated through hydrogen thermal reduction of α-Fe2O3 particles synthesized by means of a hydrothermal process.The m...Micro-sized(1030.3±178.4 nm) and nano-sized(50.4±8.0 nm) Fe3O4 particles have been fabricated through hydrogen thermal reduction of α-Fe2O3 particles synthesized by means of a hydrothermal process.The morphology and microstructure of the micro-sized and the nano-sized Fe3O4 particles were characterized by X-ray diffraction,field-emission gun scanning electron microscopy,transmission electron microscopy and highresolution electron microscopy.The micro-sized Fe3O4 particles exhibit porous structure,while the nano-sized Fe3O4 particles are solid structure.Their electrochemical performance was also evaluated.The nano-sized solid Fe3O4 particles exhibit gradual capacity fading with initial discharge capacity of 1083.1 mAhg-1 and reversible capacity retention of 32.6% over 50 cycles.Interestingly,the micro-sized porous Fe3O4 particles display very stable capacity-cycling behavior,with initial discharge capacity of 887.5 mAhg-1 and charge capacity of 684.4 mAhg-1 at the 50th cycle.Therefore,77.1% of the reversible capacity can be maintained over 50 cycles.The micro-sized porous Fe3O4 particles with facile synthesis,good cycling performance and high capacity retention are promising candidate as anode materials for high energy-density lithium-ion batteries.展开更多
Silicon monoxide(SiO)is considered as a promising anode material for lithium-ion batteries(LIBs)due to its higher capacity and longer cycle life than those of graphite and silicon,respectively.In this study,glucose wa...Silicon monoxide(SiO)is considered as a promising anode material for lithium-ion batteries(LIBs)due to its higher capacity and longer cycle life than those of graphite and silicon,respectively.In this study,glucose was developed as a suitable and inexpensive carbon source to synthesize SiO/C composite with a high performance.In addition,the effects of the calcination temperature and the amount of c arbon source on the electrochemical performance of the SiO/C composite were investigated.The addition of 5 wt%glucose and a calcination temperature of 800℃ demonstrated the optimum conditions for SiO/C synthesis.The resultant SiO/C showed an initial charge capacity of 1259 mAh·g^(-1) and a high initial coulombic efficiency of 71.9%.A charge capacity of 850 mAh·g^(-1) after 100 cycles at 200 mA·g^(-1) was achieved,demonstrating the best value of the SiO/C-based materials.The composition changes of SiO under the calcination temperature played a significant role in the electrochemical performance.Overall,the obtained SiO/C material with a high capacity and good stability is suitable for LIB applications as an anode material.展开更多
Hierarchical Sb_2S_3 hollow microspheres assembled by nanowires have been successfully synthesized by a simple and practical hydrothermal reaction. The possible formation process of this architecture was investigated ...Hierarchical Sb_2S_3 hollow microspheres assembled by nanowires have been successfully synthesized by a simple and practical hydrothermal reaction. The possible formation process of this architecture was investigated by X-ray diffraction, focused-ion beam-scanning electron microscopy dual-beam system, and transmission electron microscopy. When used as the anode material for lithium-ion batteries, Sb_2S_3 hollow microspheres manifest excellent rate property and enhanced lithium-storage capability and can deliver a discharge capacity of 674 m Ah g^(-1) at a current density of 200 m A g^(-1) after 50 cycles. Even at a high currentdensity of 5000 m A g^(-1), a discharge capacity of541 m Ah g^(-1) is achieved. Sb_2S_3 hollow microspheres also display a prominent sodium-storage capacity and maintain a reversible discharge capacity of 384 m Ah g^(-1) at a current density of 200 m A g^(-1) after 50 cycles. The remarkable lithium/sodium-storage property may be attributed to the synergetic effect of its nanometer size and three-dimensional hierarchical architecture, and the outstanding stability property is attributed to the sufficient interior void space,which can buffer the volume expansion.展开更多
基金National Key Research and Development Program of China (2022YFB2402200)National Natural Science Foundation of China (22225201,22379028)+2 种基金Fundamental Research Funds for the Central Universities (20720220010)Shanghai Pilot Program for Basic Research–Fudan University 21TQ1400100 (21TQ009)Key Basic Research Program of Science and Technology Commission of Shanghai Municipality (23520750400)。
文摘Sodium-ion batteries (SIBs) with organic electrodes are an emerging research direction due to the sustainability of organic materials based on elements like C,H,O,and sodium ions.Currently,organic electrode materials for SIBs are mainly used as cathodes because of their relatively high redox potentials(>1 V).Organic electrodes with low redox potential that can be used as anode are rare.Herein,a novel organic anode material (tetrasodium 1,4,5,8-naphthalenetetracarboxylate,Na_(4)TDC) has been developed with low redox potential (<0.7 V) and excellent cyclic stability.Its three-sodium storage mechanism was demonstrated with various in-situ/ex-situ spectroscopy and theoretical calculations,showing a high capacity of 208 mAh/g and an average decay rate of merely 0.022%per cycle.Moreover,the Na_(4)TDC-hard carbon composite can further acquire improved capacity and cycling stability for 1200 cycles even with a high mass loading of up to 20 mg cm^(-2).By pairing with a thick Na_(3)V_(2)(PO_(4))_(3)cathode (20.6 mg cm^(-2)),the as-fabricated full cell exhibited high operating voltage (2.8 V),excellent rate performance and cycling stability with a high capacity retention of 88.7% after 200 cycles,well highlighting the Na_(4)TDC anode material for SIBs.
文摘The urgent demand for clean energy solutions has intensified the search for advanced storage materials,with rechargeable alkali-ion batteries(AIBs)playing a pivotal role in electrochemical energy storage.Enhancing electrode performance is critical to addressing the increasing need for high-energy and high-power AIBs.Next-generation anode materials face significant challenges,including limited energy storage capacities and complex reaction mechanisms that complicate structural modeling.Sn-based materials have emerged as promising candidates for AIBs due to their inherent advantages.Recent research has increasingly focused on the development of heterojunctions as a strategy to enhance the performance of Sn-based anode materials.Despite significant advances in this field,comprehensive reviews summarizing the latest developments are still sparse.This review provides a detailed overview of recent progress in Sn-based heterojunction-type anode materials.It begins with an explanation of the concept of heterojunctions,including their fabrication,characterization,and classification.Cutting-edge research on Sn-based heterojunction-type anodes for AIBs is highlighted.Finally,the review summarizes the latest advancements in heterojunction technology and discusses future directions for research and development in this area.
基金financial support provided by the NORPART-2021/10355 project,funded by the Norwegian Directorate for Higher Education and Skills(HK-Dir)。
文摘The scarcity and high cost of lithium resources drive the search for sustainable alternatives,positioning potassium-ion batteries(KIBs)as promising energy storage solutions due to the natural abundance and advantageous electrochemical properties of the potassium.This study investigates the enhancement of KIB anodes through phase transformation and electronic structure engineering of monolayer 1T-MoS_(2),achieved via doping with highly electronegative non-metal elements:carbon(C),nitrogen(N),oxygen(O),and fluorine(F).Density functional theory(DFT)simulations reveal that electronegative atom doping enhances phase stability,structural robustness,and thermal resilience,which are key properties for highperformance KIB anodes.Among the doped configurations,F and N-doped 1T-MoS_(2)(MoS_(2-)F and MoS_(2)-N)exhibit superior electrochemical performance,showing optimal adsorption energies and significantly improved electronic conductivity,attributable to favorable charge redistribution and increased active potassium adsorption sites.Specifically,MoS_(2)-F and MoS_(2)-N achieve the highest specific capacities of339.65 and 339.17 mAh/g,respectively,while maintaining stability within an ideal open circuit voltage range,outperforming undoped MoS_(2).This work undersco res the potential of electronegative atom doping in 1T-MoS_(2)to enable sustainable,high-capacity energy storage solutions,offering key advancements in the electrochemical and structural properties of KIB anodes.
基金the Khalifa University of Science and Technology through the internal grant RIG-2023-01.
文摘The discovery of novel materials with compelling properties is more accessible with the help of advanced computational algorithms.Recent experimental synthesis of the biphenylene network(C_(6))motivated us to discover new BN-doped biphenylene networks(C_(4)BN,C_(2)B_(2)N_(2),and B_(4)N_(4))and their applications in Li(K)-ion batteries using an evolutionary algorithm and the first-principles calculations.The thermodynamic,thermal,and mechanical stability calculations and decomposition energy suggest the experimental synthesis of predicted biphenylene networks.Adding BN in the biphenylene networks shows a transition from metal to semimetal to semiconductor.The BN biphenylene network shows an HSE06 band gap of 3.06 eV,smaller than h-BN.The C_(4)BN and C_(2)B_(2)N_(2)biphenylene networks offer Li(K)adsorption energy of-0.56 eV(-0.81 eV)and-0.14 eV(-0.28 eV),respectively,with a low diffusion barrier of 178 meV(58 meV)and 251 meV(79 meV),and a large diffusion constant of 8.50×10^(-5)cm^(2)=s(8.78×10^(-3)cm^(2)=s)and 5.33×10^(-6)cm^(2)=s(4.12×10^(-3)cm^(2)=s),respectively.The calculated Li(K)theoretical capacity of C_(4)BN and C_(2)B_(2)N_(2)biphenylene networks is 940.21 mA h g^(-1)(899.01 mA h g^(-1))and 768.08 mA h g^(-1)(808.47 mA h g^(-1)),with a low open circuit voltage of 0.34 V(0.23 V),and 0.17 V(0.13 V),resulting in very high energy density of 2576.18 mW h g^(-1)(2445.31 mW h g^(-1))and 2181.35 mW h g^(-1)(2263.72 mW h g^(-1)),respectively.Only a slight volume change of 1.6%confirms the robustness of BN-doped carbon-based biphenylene networks.Our findings present novel 2D BN-doped biphenylene networks and a pathway toward their applications in metal-ion batteries.
基金supported by“regional innovation mega project”program through the Korea Innovation Foundation funded by Ministry of Science and ICT(Project Number:2023-DD-UP-0026)the Energy Technology Evaluation and Planning(KETEP)and the Ministry of Trade,Industry&Energy(MOTIE)(No.RS-2024-00509401,RS-2023-00217581)“Regional Innovation Strategy(RIS)”through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-001).
文摘High-performance lithium-ion batteries and sodium-ion batteries have been developed utilizing a hybrid anode material composed of zinc sulfide/sulfurized polyacrylonitrile.The in situ-generated zinc sulfide nanoparticles serve as catalytic agents,significantly enhancing conductivity,shortening diffusion paths,and accelerating reaction kinetics.Simultaneously,the sulfurized polyacrylonitrile fibers form a three-dimensional matrix that not only provides a continuous network for rapid electron transfer but also prevents zinc sulfide nanoparticle aggregation and mitigates volume changes during charge-discharge cycles.Moreover,the heterointerface structure at the junction of zinc sulfide nanoparticles and the sulfurized polyacrylonitrile matrix increases the availability of active sites and facilitates both ion adsorption and electron transfer.As an anode material for lithium-ion batteries,the zinc sulfide/sulfurized polyacrylonitrile hybrid demonstrates a high reversible capacity of 1178 mAh g^(-1)after 100 cycles at a current density of 0.2 A g^(-1),maintaining a capacity of 788 mAh g^(-1)after 200 cycles at 1 A g^(-1).It also exhibits excellent sodium storage capabilities,retaining a capacity of 625 mAh g^(-1)after 150 cycles at 0.2 A g^(-1).Furthermore,ex-situ X-ray photoelectron spectroscopy,X-ray diffraction,7Li solid-state magic angle spinning nuclear magnetic resonance,and in situ Raman are employed to investigate the reaction mechanisms of the zinc sulfide/sulfurized polyacrylonitrile hybrid anode,providing valuable insights that pave the way for the advancement of hybrid anode materials in lithium-ion batteries and sodium-ion batteries.
基金supported by Guangdong Basic and Applied Basic Research Foundation(Nos.2021A1515110164 and 2022A1515010208)the National Natural Science Foundation of China(No.52207248)the Open Testing Foundation of Analytical&Testing Center of Northwestern Polytechnical University(No.2022T024).
文摘Conversion-alloying anode materials are competitive candidates for high-energy-density sodium-ion batteries(SIBs).However,the sluggish dynamics and severe volume expansion during Na insertion/extraction become the key bottlenecks hindering their application in SIBs.Herein,SnTe nanoparticles are anchored on reduced graphene oxide(rGO)and encapsulated by nitrogen-doped carbon(NC)to construct SnTe@rGO@NC composite as anode for SIBs,where hierarchical confinement effect can provide a buffer area to accommodate huge volume expansion as well as enhance electronic conductivity and Na-ion transfer kinetics behavior,confirmed by density functional theory(DFT)calculation and experimental study.Meanwhile,structural stability and interfacial charge transfer of the composite can be further improved by the strong chemical bonds of C-Sn and C-Te.High-angle annular dark field scanning transmission electron microscopy visually at atomic scale declares that SnTe@rGO@NC proceeds conversion-alloying dual-mechanism for Na-ion storage employing Sn as redox center(4SnTe+23Na^(+)+23e^(-)→Na_(15)Sn_(4)+4Na_(2)Te).Thus,SnTe@rGO@NC architecture displays a high reversible specific capacity of 261.5 mAh·g^(-1)at 50 mA·g^(-1),superior rate capability and excellent cycling stability with long-term lifespan over 1000 cycles at 200 mA·g^(-1).The multi-physicochemical encapsulation strategy sheds light on the development of a high-performance conversion-alloying anode for SIBs.
基金financially supported by the National Natural Science Foundation of China(Nos.22302133 and 22405161)Central Guidance on Local Science and Technology Development Fund of Hebei Province,China(No.236Z4406G)+5 种基金the Natural Science Foundation of Hebei Education Department,China(No.BJ2025100)the Natural Science Foundation of Hebei Province,China(No.B2021210001)the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2024D01A157)the Key R&D Plan of Karamay(No.2024zdyf0009)Karamay Innovation Environment Construction Plan(Innovative Talents)Project(No.2024hjcxrc0029)the Research Foundation of China University of Petroleum-Beijing at Karamay(No.XQZX20240023)
文摘Tin dioxide(SnO_(2))with a high theoretical specific capacity of 1494 mAh g^(-1)is a promising candidate anode material for lithium storage.However,the shortcomings of serious volume expansion and low conductivity limit its wide application.Herein,coaxial nano-multilayered C/SnO_(2)/TiO_(2)composites were fabricated via layerby-layer self-assembly of TiO_(2)and SnO_(2)-gel layers on the natural cellulose filter paper,followed by thermal treatment under a nitrogen atmosphere.Through engineering design of the assembly process,the optimal C/SinO_(2)/TiO_(2)composite features five alternating SnO_(2)and TiO_(2)nanolayers,with TiO_(2)as the outside shell(denoted as C/TSTST).This unique structure endows the C/TSTST with excellent structural stability and electrochemical kinetics,making it a high-performance anode for lithium-ion batteries(LIBs).The C/TSTST composite delivers a high reversible capacity of 676 mAh g^(-1)at 0.1 A g^(-1)after 200 cycles and retains a capacity of 504 mAh g^(-1)at 1.0 A g^(-1),which can be recovered to 781 mAh g^(-1)at 0.1 A g^(-1)The significantly enhanced electrochemical performance is attributed to the hierarchical hybrid structure,where the carbon core combined with coaxial TiO_(2)nanolayers serves as a structural scaffold,ameliorating volume change of SnO_(2)while creating abundant interfacial defects for enhanced lithium storage and rapid charge transport.These findings are further demonstrated by the density functional theory(DFT)calculations.This work provides an efficient strategy for designing coaxial nano-multilayered transition metal oxide-related electrode materials,offering new insights into high-performance LIBs anodes.
基金Project (2014CB643406) supported by the National Basic Research Program of ChinaProject (2011FJ1005) supported by Major Special Project of Science and Technology of Hunan Province,China
文摘A facile way was used to synthesize Cu2O/reduced graphene oxide (rGO) composites with octahedron-like morphology in aqueous solution without any surfactant. TEM images of the obtained Cu2O/rGOs reveal that the Cu2O particles and rGO distribute hierarchically and the primary Cu2O particles are encapsulated well in the graphene nanosheets. The electrochemical performance of Cu2O/rGOs is enhanced compared with bare Cu2O when they are employed as anode materials for lithium ion batteries. The Cu2O/rGO composites maintain a reversible capacity of 348.4 mA?h/g after 50 cycles at a current density of 100 mA/g. In addition, the composites retain 305.8 mA?h/g after 60 cycles at various current densities of 50, 100, 200, 400 and 800 mA/g.
文摘The electrochemical performance of Ta-doped Li4Ti5O12 in the form of Li4Ti4.95Ta0.05O12 was characterized.X-ray diffraction(XRD) and scanning electron microscopy(SEM) were employed to characterize the structure and morphology of Li4Ti4.95Ta0.05O12.Ta-doping does not change the phase composition and particle morphology,while improves remarkably its cycling stability at high charge/discharge rate.Li4Ti4.95Ta0.05O12 exhibits an excellent rate capability with a reversible capacity of 116.1 mA·h/g at 10C and even 91.0 mA·h/g at 30C.The substitution of Ta for Ti site can enhance the electronic conductivity of Li4Ti5O12 via the generation of mixing Ti4+/Ti3+,which indicates that Li4Ti4.95Ta0.05O12 is a promising candidate material for anodes in lithium-ion battery application.
基金Project supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions of ChinaProject(CXLX11_0359)supported by Research Innovative Projects for Average College Graduate Students of 2011 in Jiangsu Province,China+2 种基金Project(RERU2011010)supported by Open Subject of State Key Laboratory of Rare Earth Resource Utilization,ChinaProject(51201089)supported by the National Natural Science Foundation of ChinaProject(CPSF2012M521064)supported by China Postdoctoral Science Foundation
文摘Co-P (4.9% P) powders with a chain-like morphology were prepared by a novel chemical reduction method. The Co-P and germanium powders were mixed at various mass ratios to form Co-P composite electrodes. Charge and discharge test and electrochemical impedance spectroscopy (EIS) were carried out to investigate the electrochemical performance, which can be significantly improved by the addition of germanium. For instance, when the mass ratio of Co-P powders to germanium is 5:1, the sample electrode shows a reversible discharge capacity of 350.3 mA·h/g and a high capacity retention rate of 95.9% after 50 cycles. The results of cyclic voltammmetry (CV) show the reaction mechanism of Co/Co(OH)2 within Co-P composite electrodes and EIS indicates that this electrode shows a low charge-transfer resistance, facilitating the oxidation of Co to Co(OH)2.
基金Project (4340142501) supported by Start-up Funds of Chair Professor, Tongji University, ChinaProject (51173135) supported by the National Natural Science Foundation of China
文摘A facile ultrasonic method was used to synthesize CoO/graphene nanohybrids by employing Co4(CO)12 as a cobalt precursor. The nanohybrids were characterized by SEM, TEM and XPS, and the results show that CoO nanoparticles (3-5 nm) distribute uniformly on the surface of graphene. The CoO/graphene nanohybrids display high performance as an anode material for lithium-ion battery, such as high reversible lithium storage capacity (650 mA-h/g after 50 cycles, almost twice that of commercial graphite anode), high coulombic efficiency (over 95%) and excellent cycling stability. The extraordinary performance arises from the structure of the nanohybrids: the nanosized CoO particles with high dispersity on conductive graphene substrates are beneficial for lithium-ion insertion/extraction, shortening diffusion length for lithium ions and improving conductivity, thus the lithium storage performance was improved.
文摘Since lithium-ion batteries(LIBs) have been substantially researched in recent years, they now possess exceptional energy and power densities, making them the most suited energy storage technology for use in developed and developing industries like stationary storage and electric cars, etc. Concerns about the cost and availability of lithium have prompted research into alternatives, such as sodium-ion batteries(SIBs), which use sodium instead of lithium as the charge carrier. This is especially relevant for stationary applications, where the size and weight of battery are less important. The working efficiency and capacity of these batteries are mainly dependent on the anode, cathode, and electrolyte. The anode,which is one of these components, is by far the most important part of the rechargeable battery.Because of its characteristics and its structure, the anode has a tremendous impact on the overall performance of the battery as a whole. Keeping the above in view, in this review we critically reviewed the different types of anodes and their performances studied to date in LIBs and SIBs. The review article is divided into three main sections, namely:(i) intercalation reaction-based anode materials;(ii) alloying reaction-based anode materials;and(iii) conversion reaction-based anode materials, which are further classified into a number of subsections based on the type of material used. In each main section, we have discussed the merits and challenges faced by their particular system. Afterward, a brief summary of the review has been discussed. Finally, the road ahead for better application of Li/Na-ion batteries is discussed, which seems to mainly depend on exploring the innovative materials as anode and on the inoperando characterization of the existing materials for making them more capable in terms of application in rechargeable batteries.
基金financially supported by the Key Research and Development Project of Hunan Education Department(No.18A114)the Joint Natural Science Project of Hunan-Changde(No.2018JJ4001)+1 种基金the Youth Fund of Hunan Agricultural University(No.18QN01)the Funding for the Major Scientific Research and Innovation Team Cultivation at Hunan Agricultural University(No.2018)。
文摘Sodium-ion batteries(SIBs)have been considered as a promising alternative to the commercialized lithium ion batteries(LIBs)in large-scale energy storage field for its rich reserve in the earth.Hard carbon has been expected to the first commercial anode material for SIBs.Among various of hard carbon materials,plant-derived carbon is prominent because of abundant source,low cost and excellent electrochemical performance.This review focuses on the recent progress in the development of plantderived hard carbon anodes for SIBs.We summarized the microstructure and electrochemical performance of hard carbon materials pyrolyzed from different parts of plants at different temperatures.It aims to present a full scope of plant-derived hard carbon anode materials and provide indepth understanding and guideline for the design of highperformance hard carbon for sodium ion anodes.
基金financial support from the National Natural Science Foundation of China(81671737)the support from‘Sponsored by Shanghai Pujiang Program’(18PJD020)the Interdisciplinary Program of Shanghai Jiao Tong University(YG2019QNB31)。
文摘The rapid development of electric vehicles and mobile electronic devices is the main driving force to improve advanced high-performance lithium ion batteries(LIBs).The capacity,rate performance and cycle stability of LIBs rely directly on the electrode materials.As far as the development of the advanced LIBs electrode is concerned,the improvement of anode materials is more urgent than the cathode materials.Industrial production of anode materials superior to commercial graphite still faces some challenges.This review sets out the most basic LIBs anode material design.The reaction principles and structural design of carbon materials,various transition metal oxides,silicon and germanium are summarized,and then the progress of other anode materials are analyzed.Due to the rapid development of metal organic frameworks(MOFs)in energy storage and conversion in recent years,the synthesis process and energy storage mechanism of nanostructures derived from MOF precursors are also discussed.From the perspective of novel structural design,the progress of various MOFs-derived materials for alleviating the volume expansion of anode materials is discussed.Finally,challenges for the future development of advanced anode materials for LIBs will be considered.
基金supported by National Natural Science Foundation of China(51101171)the Specialized Research Fund for the Doctor Program of Higher Education(20110162120051)
文摘Aluminum is an innovative anode material for seawater battery. But large polarization and low electrochemical activity restrict its application. In this research, A1-Mg-Sn-Hg-Ce anode materials were prepared and the microstructures were investigated by scanning electron microscopy (SEM). The electrochemical properties of A1-Mg-Sn-Hg-Ce anode materials were measured by potentiodynamic polarization and potential-time discharge in a 4.5 wt.%NaOH solution at 353 K. The results indicated that the increasing content of cerium addition refined the grain structure of A1-Mg-Sn-Hg alloy and promoted the uniform distribution of Sn and Hg elements in A1 matrix. The morphology of second phases changed from disperse granular to intergranulate strip with the increasing content of cerium addition in AI-Mg-Sn-Hg alloy. During the half-cell tests at a 650 mA/cm3 current density, the discharge activity of AI-Mg-Sn-Hg-Ce alloy was improved with the increasing content of cerium addition. The average discharge potential of AI-Mg-Sn-Hg-0.3 wt.%Ce alloy was -1.721 V (vs. SCE), which was more negative than -1.406 V (vs. SCE) in AZglD. The best corrosion resistance occurred in A1-Mg-Sn-Hg-0.05 wt.%Ce alloy with the corrosion current density, 18.84± 2.21 mA/cm2. The corrosion behaviours of A1-Mg-Sn-Hg-Ce alloys were also analyzed.
基金financially supported by the National Natural Science Foundation of China(No.51774002)the Key Program for International S&T Cooperation Projects of China(No.2017YFE0124300)the“333 Talent Project”of Hebei Province(No.A202005018)。
文摘TiO_(2)-based materials have been considered as one of most promising alternatives for high-performance Li(Na)-ion batteries because of the low cost,simple composition,easy synthesis,good environmental protection,excellent safety and relatively high specific capacity.Nonetheless,the inferior electronic conductivity and poor ion diffusion coefficients are the biggest bottlenecks that restrict the popular application.Much effort has been focused on resolving these problems toward large-scale applications,and numerous significant advances have been accomplished.In the present work,a comprehensive overview of structure characteristics,electrochemical reaction mechanism and modification strategies of TiO_(2)-based materials was presented.The recent advances of various efficient ways for improving conductivity,Li(Na)storage capacity,rate capability and cycle stability are systematically summarized,including surface engineering,constructing composite and element doping,etc.Constructing TiO_(2)-based materials with novel porous heterogeneous core-shell structures have been regarded as one of the most effective ways to resolve these challenges.Finally,the future research directions and development prospects of TiO_(2)-based anode materials used in the manufacture of high-performance Li(Na)-ion batteries are prospected.This review can provide important comprehension for the construction and optimization of highperformance of TiO_(2)-based anode materials.
基金the financial support from the National Natural Science Foundation of China(No.91963118)the 111 Project(No.B13013)supported by the Open Project Program of Key Laboratory of Preparation and Application of Environmental Friendly Materials(Jilin Normal University),Ministry of Education,China(No.2020004)。
文摘Graphite as a promising anode candidate of K-ion batteries(KIBs)has been increasingly studied currently,but corresponding rate performance and cycling stability are usually inferior to amorphous carbon materials.To protect the layer structure and further boost performance,tempura-like carbon/carbon nanocomposite of graphite@pitch-derived S-doped carbon(G@PSC)is designed and prepared by a facile and low-temperature modified molten salt method.This robust encapsulation structure makes their respective advantages complementary to each other,showing mutual promotion of electrochemical performances caused by synergy effect.As a result,the G@PSC electrode is applied in KIBs,delivering impressive rate capabilities(465,408,370,332,290,and 227 m A h g^(-1)at 0.05,0.2,0.5,1,2,and 5 A g^(-1))and ultralong cyclic stability(163 m A g^(-1)remaining even after 8000 cycles at 2 A g^(-1)).On basis of ex-situ studies,the sectionalized K-storage mechanism with adsorption(pseudocapacitance caused by S doping)-intercalation(pitch-derived carbon and graphite)pattern is revealed.Moreover,the exact insights into remarkable rate performances are taken by electrochemical kinetics tests and density functional theory calculation.In a word,this study adopts a facile method to synthesize high-performance carbon/carbon nanocomposite and is of practical significance for development of carbonaceous anode in KIBs.
基金supported by the National Natural Science Foundation of China (Grand No. 50872032)the financial support from the Hundred Talents Program of the Chinese Academy of Sciencesthe National Basic Research Program of China(Grant No. 2010CB631006)
文摘Micro-sized(1030.3±178.4 nm) and nano-sized(50.4±8.0 nm) Fe3O4 particles have been fabricated through hydrogen thermal reduction of α-Fe2O3 particles synthesized by means of a hydrothermal process.The morphology and microstructure of the micro-sized and the nano-sized Fe3O4 particles were characterized by X-ray diffraction,field-emission gun scanning electron microscopy,transmission electron microscopy and highresolution electron microscopy.The micro-sized Fe3O4 particles exhibit porous structure,while the nano-sized Fe3O4 particles are solid structure.Their electrochemical performance was also evaluated.The nano-sized solid Fe3O4 particles exhibit gradual capacity fading with initial discharge capacity of 1083.1 mAhg-1 and reversible capacity retention of 32.6% over 50 cycles.Interestingly,the micro-sized porous Fe3O4 particles display very stable capacity-cycling behavior,with initial discharge capacity of 887.5 mAhg-1 and charge capacity of 684.4 mAhg-1 at the 50th cycle.Therefore,77.1% of the reversible capacity can be maintained over 50 cycles.The micro-sized porous Fe3O4 particles with facile synthesis,good cycling performance and high capacity retention are promising candidate as anode materials for high energy-density lithium-ion batteries.
基金financially supported by a Fund Project from Education Department of Jiangxi Province(No.KJLD14008)the Special Fund Project for Graduate Innovation of Nanchang University(No.CX2017005)。
文摘Silicon monoxide(SiO)is considered as a promising anode material for lithium-ion batteries(LIBs)due to its higher capacity and longer cycle life than those of graphite and silicon,respectively.In this study,glucose was developed as a suitable and inexpensive carbon source to synthesize SiO/C composite with a high performance.In addition,the effects of the calcination temperature and the amount of c arbon source on the electrochemical performance of the SiO/C composite were investigated.The addition of 5 wt%glucose and a calcination temperature of 800℃ demonstrated the optimum conditions for SiO/C synthesis.The resultant SiO/C showed an initial charge capacity of 1259 mAh·g^(-1) and a high initial coulombic efficiency of 71.9%.A charge capacity of 850 mAh·g^(-1) after 100 cycles at 200 mA·g^(-1) was achieved,demonstrating the best value of the SiO/C-based materials.The composition changes of SiO under the calcination temperature played a significant role in the electrochemical performance.Overall,the obtained SiO/C material with a high capacity and good stability is suitable for LIB applications as an anode material.
基金supported financially by the National Natural Foundation of China(Grant No.51672234)the Research Foundation for Hunan Youth Outstanding People from Hunan Provincial Science and Technology Department(2015RS4030)+1 种基金Hunan 2011 Collaborative Innovation Center of Chemical Engineering&Technology with Environmental Benignity and Effective Resource UtilizationProgram for Innovative Research Cultivation Team in University of Ministry of Education of China(1337304)
文摘Hierarchical Sb_2S_3 hollow microspheres assembled by nanowires have been successfully synthesized by a simple and practical hydrothermal reaction. The possible formation process of this architecture was investigated by X-ray diffraction, focused-ion beam-scanning electron microscopy dual-beam system, and transmission electron microscopy. When used as the anode material for lithium-ion batteries, Sb_2S_3 hollow microspheres manifest excellent rate property and enhanced lithium-storage capability and can deliver a discharge capacity of 674 m Ah g^(-1) at a current density of 200 m A g^(-1) after 50 cycles. Even at a high currentdensity of 5000 m A g^(-1), a discharge capacity of541 m Ah g^(-1) is achieved. Sb_2S_3 hollow microspheres also display a prominent sodium-storage capacity and maintain a reversible discharge capacity of 384 m Ah g^(-1) at a current density of 200 m A g^(-1) after 50 cycles. The remarkable lithium/sodium-storage property may be attributed to the synergetic effect of its nanometer size and three-dimensional hierarchical architecture, and the outstanding stability property is attributed to the sufficient interior void space,which can buffer the volume expansion.