期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Impacts of the annual cycle of background SST in the tropical Pacific on the phase and amplitude of ENSO
1
作者 Song Jiang Congwen Zhu Ning Jiang 《Atmospheric and Oceanic Science Letters》 2025年第1期12-17,共6页
The dominant annual cycle of sea surface temperature(SST)in the tropical Pacific exhibits an antisymmetric mode,which explains 83.4%total variance,and serves as a background of El Niño-Southern Oscillation(ENSO).... The dominant annual cycle of sea surface temperature(SST)in the tropical Pacific exhibits an antisymmetric mode,which explains 83.4%total variance,and serves as a background of El Niño-Southern Oscillation(ENSO).However,there is no consensus yet on its anomalous impacts on the phase and amplitude of ENSO.Based on data during 1982-2022,results show that anomalies of the antisymmetric mode can affect the evolution of ENSO on the interannual scale via Bjerknes feedback,in which the positive(negative)phase of the antisymmetric mode can strengthen El Niño(La Niña)in boreal winter via an earlier(delayed)seasonal cycle transition and larger(smaller)annual mean.The magnitude of the SST anomalies in the equatorial eastern Pacific can reach more than±0.3◦C,regulated by the changes in the antisymmetric mode based on random sensitivity analysis.Results reveal the spatial pattern of the annual cycle associated with the seasonal phase-locking of ENSO evolution and provide new insight into the impact of the annual cycle of background SST on ENSO,which possibly carries important implications for forecasting ENSO. 展开更多
关键词 annual cycle SST anomaly Antisymmetric mode ENSO
在线阅读 下载PDF
Phase-and Amplitude-Locking of Annual Maximum Rainfall Events in North China with the Annual Cycle of the East Asian Summer Monsoon
2
作者 Wanyi SUN Congwen ZHU +2 位作者 Boqi LIU Yuhan YAN Zhiqi YAN 《Advances in Atmospheric Sciences》 2025年第8期1608-1619,共12页
The annual maximum rainfall event(AMRE)refers to the maximum consecutive five-day rainfall in a year.In North China,these events account for 15%–80%of the total summer(June–August)rainfall amount and pose a great ch... The annual maximum rainfall event(AMRE)refers to the maximum consecutive five-day rainfall in a year.In North China,these events account for 15%–80%of the total summer(June–August)rainfall amount and pose a great challenge for subseasonal-to-seasonal forecasting.Based on data analyses during 1979–2023,this study shows the interannual variability of AMRE is significantly influenced by the phase and amplitude mode of the annual cycle of the East Asian summer monsoon(EASM),characterized by two orthogonal patterns of southeasterly winds at 850 h Pa over the northwestern Pacific.The EASM phase-locked AMRE shows heavy rainfall events occurring extremely early and late in Beijing and surrounding areas,corresponding to the peak southeasterly wind anomalies in June and August.The EASM amplitude-locked AMRE exhibits extreme heavy or light rainfall over southwest areas with normal phase.Therefore,AMRE has a potential predictability on the seasonal time scale due to its phase-and amplitude-locking with the slow variation of the annual cycle of the EASM. 展开更多
关键词 annual maximum rainfall event North China PHASE-LOCKING annual cycle East Asian summer monsoon interannual variability
在线阅读 下载PDF
The Role of Changes in the Annual Cycle in Earlier Onset of Climatic Spring in Northern China 被引量:14
3
作者 钱诚 符淙斌 严中伟 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第2期284-296,共13页
Climatic changes in the onset of spring in northern China associated with changes in the annual cycle and with a recent warming trend were quantified using a recently developed adaptive data analysis tool, the Ensembl... Climatic changes in the onset of spring in northern China associated with changes in the annual cycle and with a recent warming trend were quantified using a recently developed adaptive data analysis tool, the Ensemble Empirical Mode Decomposition. The study was based on a homogenized daily surface air temperature (SAT) dataset for the period 1955–2003. The annual cycle here is referred to as a refined modulated annual cycle (MAC). The results show that spring at Beijing has arrived significantly earlier by about 2.98 d (10 yr)-1, of which about 1.85 d (10 yr)-1 is due to changes in the annual cycle and 1.13 d (10 yr)-1 due to the long-term warming trend. Variations in the MAC component explain about 92.5% of the total variance in the Beijing daily SAT series and could cause as much as a 20-day shift in the onset of spring from one year to another. The onset of spring has been advancing all over northern China, but more significant in the east than in the west part of the region. These differences are somehow unexplainable by the zonal pattern of the warming trend over the whole region, but can be explained by opposite changes in the spring phase of the MAC, i.e. advancing in the east while delaying in the west. In the east of northern China, the change in the spring phase of MAC explains 40%–60% of the spring onset trend and is attributable to a weakening Asian winter monsoon. The average sea level pressure in Siberia (55°–80°N, 50°–110°E), an index of the strength of the winter monsoon, could serve as a potential short-term predictor for the onset of spring in the east of northern China. 展开更多
关键词 spring onset Ensemble Empirical Mode Decomposition modulated annual cycle Asian winter monsoon global warming
在线阅读 下载PDF
On Multi-Timescale Variability of Temperature in China in Modulated Annual Cycle Reference Frame 被引量:16
4
作者 钱诚 Zhaohua WU +1 位作者 符淙斌 周天军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第5期1169-1182,共14页
The traditional anomaly (TA) reference frame and its corresponding anomaly for a given data span changes with the extension of data length. In this study, the modulated annual cycle (MAC), instead of the widely us... The traditional anomaly (TA) reference frame and its corresponding anomaly for a given data span changes with the extension of data length. In this study, the modulated annual cycle (MAC), instead of the widely used climatological mean annual cycle, is used as an alternative reference frame for computing climate anomalies to study the multi-timescale variability of surface air temperature (SAT) in China based on homogenized daily data from 1952 to 2004. The Ensemble Empirical Mode Decomposition (EEMD) method is used to separate daily SAT into a high frequency component, a MAC component, an interannual component, and a decadal-to-trend component. The results show that the EEMD method can reflect historical events reasonably well, indicating its adaptive and temporally local characteristics. It is shown that MAC is a temporally local reference frame and will not be altered over a particular time span by an exten-sion of data length, thereby making it easier for physical interpretation. In the MAC reference frame, the low frequency component is found more suitable for studying the interannual to longer timescale variability (ILV) than a 13-month window running mean, which does not exclude the annual cycle. It is also better than other traditional versions (annual or summer or winter mean) of ILV, which contains a portion of the annual cycle. The analysis reveals that the variability of the annual cycle could be as large as the magnitude of interannual variability. The possible physical causes of different timescale variability of SAT in China are further discussed. 展开更多
关键词 modulated annual cycle the Ensemble Empirical Mode Decomposition climate anomaly climate normal variability of surface air temperature in China
在线阅读 下载PDF
Annual Cycle and Interannual Variability in the Tropical Pacific as Simulated by Three Versions of FGOALS 被引量:5
5
作者 俞永强 何杰 +1 位作者 郑伟鹏 栾贻花 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第3期621-637,共17页
The seasonal cycle and interannual variability in the tropical oceans simulated by three versions of the Flexible Ocean-Atmosphere-Land System (FGOALS) model (FGOALS-gl.0, FGOALS-g2 and FGOALS- s2), which have par... The seasonal cycle and interannual variability in the tropical oceans simulated by three versions of the Flexible Ocean-Atmosphere-Land System (FGOALS) model (FGOALS-gl.0, FGOALS-g2 and FGOALS- s2), which have participated in phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5), are presented in this paper. The seasonal cycle of SST in the tropical Pacific is realistically reproduced by FGOALS-g2 and FGOALS- s2, while it is poorly simulated in FGOALS-gl.0. Three feedback mechanisms responsible for the SST annual cycle in the eastern Pacific are evaluated. The ocean-atmosphere dynamic feedback, which is successfully re- produced by both FGOALS-g2 and FGOALS-s2, plays a key role in determining the SST annual cycle, while the overestimated stratus cloud-SST feedback amplifies the annual cycle in FGOALS-s2. Because of the seri- ous warm bias existing in FGOALS-gl.0, the ocean-atmosphere dynamic feedback is greatly underestimated in FGOALS-gl.0, in which the SST annual cycle is mainly driven by surface solar radiation. FGOALS-gl.0 simulates much stronger ENSO events than observed, whereas FGOALS-g2 and FGOALS- s2 successfully simulate the observed ENSO amplitude and period and positive asymmetry, but with less strength. Further ENSO feedback analyses suggest that surface solar radiation feedback is principally re- sponsible for the overestimated ENSO amplitude in FGOALS-gl.0. Both FGOALS-gl.0 and FGOALS-s2 can simulate two different types of E1 Nifio events -- with maximum SST anomalies in the eastern Pacific (EP) or in the central Pacific (CP) -- but FGOALS-g2 is only able to simulate EP E1 Nifio, because the negative cloud shortwave forcing feedback by FGOALS-g2 is much stronger than observed in the central Pacific. 展开更多
关键词 annual cycle ENSO coupled GCM air-sea interaction
在线阅读 下载PDF
Variations in the annual cycle of the East Asian monsoon and its phase-induced interseasonal rainfall anomalies in China 被引量:5
6
作者 JIANG Song ZHU Congwen JIANG Ning 《Atmospheric and Oceanic Science Letters》 CSCD 2020年第4期316-322,共7页
The East Asian monsoon(EAM)exhibits a robust annual cycle with significant interannual variability.Here,the authors find that the EAM annual cycle can be decomposed into the equinoctial and solstitial modes in the com... The East Asian monsoon(EAM)exhibits a robust annual cycle with significant interannual variability.Here,the authors find that the EAM annual cycle can be decomposed into the equinoctial and solstitial modes in the combined sea level pressure,850-hPa low-level wind,and rainfall fields.The solstitial mode shows a zonal pressure contrast between the continental thermal low and the western Pacific subtropical high,reaching its peak in July and dominating the East Asian summer monsoon.The equinoctial mode shows an approximate zonal contrast between the low-level cyclone over the east of the Tibetan Plateau and the western Pacific anticyclone over the east of the Philippines.It prevails during the spring rainy season in South China and reaches its peak in April.The interannual variations of the lead–lag phase of the two modes may result in the negative correlation of rainfall anomalies in North China between spring and fall and in South China between winter and summer,which provides a potential basis for the across-seasonal prediction of rainfall.The warm phase of ENSO in winter could give rise to the reverse interseasonal rainfall anomalies in South China,while the SST anomaly in the Northwest Pacific Ocean may regulate the rainfall anomaly in North China. 展开更多
关键词 annual cycle East Asian monsoon interannual variability
在线阅读 下载PDF
Effect of Horizontal Resolution on the Representation of the Global Monsoon Annual Cycle in AGCMs 被引量:3
7
作者 Lixia ZHANG Tianjun ZHOU +2 位作者 Nicholas P.KLINGAMAN Peili WU Malcolm ROBERTS 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第8期107-124,共18页
The sensitivity of the representation of the global monsoon annual cycle to horizontal resolution is compared in three AGCMs: the Met Office Unified Model-Global Atmosphere 3.0; the Meteorological Research Institute ... The sensitivity of the representation of the global monsoon annual cycle to horizontal resolution is compared in three AGCMs: the Met Office Unified Model-Global Atmosphere 3.0; the Meteorological Research Institute AGCM3; and the Global High Resolution AGCM from the Geophysical Fluid Dynamics Laboratory. For each model, we use two horizon- tal resolution configurations for the period 1998-2008. Increasing resolution consistently improves simulated precipitation and low-level circulation of the annual mean and the first two annual cycle modes, as measured by the pattern correla- tion coefficient and equitable threat score. Improvements in simulating the summer monsoon onset and withdrawal are region-dependent. No consistent response to resolution is found in simulating summer monsoon retreat. Regionally, in- creased resolution reduces the positive bias in simulated annual mean precipitation, the two annual-cycle modes over the West African monsoon and Northwestern Pacific monsoon. An overestimation of the solstitial mode and an underestimation of the equinoctial asymmetric mode of the East Asian monsoon axe reduced in all high-resolution configurations. Systematic errors exist in lower-resolution models for simulating the onset and withdrawal of the summer monsoon. Higher resolution models consistently improve the early summer monsoon onset over East Asia and West Africa, but substantial differences exist in the responses over the Indian monsoon region, where biases differ across the three low-resolution AGCMs. This study demonstrates the importance of a multi-model comparison when examining the added value of resolution and the importance of model physical parameterizations for simulation of the Indian monsoon. 展开更多
关键词 global monsoon high resolution modeling monsoon annual cycle AMIP
在线阅读 下载PDF
Amplitude—Phase Characteristics of the Annual Cycle of Surface Air Temperature in the Northern Hemisphere 被引量:2
8
作者 AlexeyV.ELISEEV igorI.MOKHOV 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第1期1-16,共16页
The amplitude-phase characteristics (APC) of surface air temperature (SAT) annual cycle (AC) in the Northern Hemisphere are analyzed. From meteorological observations for the 20th century and meteorological reanalyses... The amplitude-phase characteristics (APC) of surface air temperature (SAT) annual cycle (AC) in the Northern Hemisphere are analyzed. From meteorological observations for the 20th century and meteorological reanalyses for its second half, it is found that over land negative correlation of SAT AC amplitude with annual mean SAT dominates. Nevertheless, some exceptions exist. The positive correlation between these two variables is found over the two desert regions: in northern Africa and in Central America. Areas of positive correlations are also found for the northern Pacific and for the tropical Indian and Pacific Oceans. Southward of the characteristic annual mean snow-ice boundary (SIB) position, the shape of the SAT AC becomes more sinusoidal under climate warming. In contrast, northward of it, this shape becomes less sinusoidal. The latter is also found for the above-mentioned two desert regions. In the Far East (southward of about 50?N), the SAT AC shifts as a whole: here its spring and autumn phases occur earlier if the annual mean SAT increases. From energy-balance climate considerations, those trends for SAT AC APC in the middle and high latitudes are associated with the influence of the albedo-SAT feedback due to the SIB movement. In the Far East the trends are attributed to the interannual cloudiness variability, and in the desert regions, to the influence of a further desertification and/or scattering aerosol loading into the atmosphere. In the north Pacific, the exhibited trends could only be explained as a result of the influence of the greenhouse-gases loading on atmospheric opacity. The trends for SAT AC APC related to the SIB movement are simulated reasonably well by the climate model of intermediate complexity (IAP RAS CM) in the experiment with greenhouse gases atmospheric loading. In contrast, the tendencies resulting from the cloudiness variability are not reproduced by this model. The model also partly simulates the tendencies related to the desertification processes. 展开更多
关键词 annual cycle temperature-albedo feedback cloudiness variation climate model
在线阅读 下载PDF
Annual Cycle and Budgets of Nutrients in the Bohai Sea 被引量:3
9
作者 ZHAOLiang WEIHao FENGShizuo 《Journal of Ocean University of Qingdao》 2002年第1期29-37,共9页
The environmental problems in the Bohai Sea have become more serious in the last decade. High nutrient concentration contributes much to it. A Sino-German cooperation program has been carried out to improve the unders... The environmental problems in the Bohai Sea have become more serious in the last decade. High nutrient concentration contributes much to it. A Sino-German cooperation program has been carried out to improve the understanding of the ecosystem by observations and modelling. A three-dimensional ecosystem model, coupled with a physical transport model, is adopted in this study. The simulation for the year 1982 is validated by the data collected in 1982/1983. The simulated annual mean nutrient concentrations are in good agreement with observations. The nutrient concentrations in the Bohai Sea, which are crucial to the algal growth, are high in winter and low in summer. There are depletion from spring to summer and elevation from autumn to winter for nutrients. The nutrients’ depletion is a response to the consumption of the phytoplankton bloom in spring. Internal recycle and external compensation affect the nutrient cycle. Their contributions to the nutrient budgets are discussed based on the simulated results. Production and respiration are the most important sink and source of nutrients. The process of photosynthesis consumes 152 kilotons-P and 831.1 kilotons-N while respiration releases 94.5 kilotons-P and 516.6 kilotons-N in the same period. The remineralization of the detritus pool is an important source of nutrient regene- ration. It can compensate 23 percent of the nutrient consumed by the production process. The inputs of phosphates and nitrogen from rivers are 0.55 and 52.7 kilotons respectively. The net nutrient budget is -3.05 kilotons-P and 31.6 kilotons-N. 展开更多
关键词 Bohai Sea MODELLING annual cycle nutrients cycle nutrient budget
在线阅读 下载PDF
Modelling the annual cycle of landfast ice near Zhongshan Station,East Antarctica
10
作者 Jiechen Zhao Tao Yang +4 位作者 Qi Shu Hui Shen Zhongxiang Tian Guanghua Hao Biao Zhao 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第7期129-141,共13页
A high resolution one-dimensional thermodynamic snow and ice(HIGHTSI)model was used to model the annual cycle of landfast ice mass and heat balance near Zhongshan Station,East Antarctica.The model was forced and initi... A high resolution one-dimensional thermodynamic snow and ice(HIGHTSI)model was used to model the annual cycle of landfast ice mass and heat balance near Zhongshan Station,East Antarctica.The model was forced and initialized by meteorological and sea ice in situ observations from April 2015 to April 2016.HIGHTSI produced a reasonable snow and ice evolution in the validation experiments,with a negligible mean ice thickness bias of(0.003±0.06)m compared to in situ observations.To further examine the impact of different snow conditions on annual evolution of first-year ice(FYI),four sensitivity experiments with different precipitation schemes(0,half,normal,and double)were performed.The results showed that compared to the snow-free case,the insulation effect of snow cover decreased bottom freezing in the winter,leading to 15%–26%reduction of maximum ice thickness.Thick snow cover caused negative freeboard and flooding,and then snow ice formation,which contributed 12%–49%to the maximum ice thickness.In early summer,snow cover delayed the onset of ice melting for about one month,while the melting of snow cover led to the formation of superimposed ice,accounting for 5%–10%of the ice thickness.Internal ice melting was a significant contributor in summer whether snow cover existed or not,accounting for 35%–56%of the total summer ice loss.The multi-year ice(MYI)simulations suggested that when snow-covered ice persisted from FYI to the 10th MYI,winter congelation ice percentage decreased from 80%to 44%(snow ice and superimposed ice increased),while the contribution of internal ice melting in the summer decreased from 45%to 5%(bottom ice melting dominated). 展开更多
关键词 landfast ice annual cycle snow influence Zhongshan Station East Antarctica
在线阅读 下载PDF
Atmospheric and Coupled Model Intercomparison in Terms of Amplitude—Phase Characteristics of Surface Air Temperature Annual Cycle
11
作者 Alexey V. ELISEEV Igor I. MOKHOV +1 位作者 Konstantin G. RUBINSTEIN Maria S. GUSEVA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第6期837-847,共11页
A model intercomparison in terms of surface air temperature annual cycle amplitude-phase characteristics (SAT AC APC) is performed. The models included in the intercomparison belong to two groups: five atmospheric mod... A model intercomparison in terms of surface air temperature annual cycle amplitude-phase characteristics (SAT AC APC) is performed. The models included in the intercomparison belong to two groups: five atmospheric models with prescribed sea surface temperature and sea ice cover and four coupled models forced by the atmospheric abundances of anthropogenic constituents (in total six coupled model simulations). Over land, the models, simulating higher than observed time averaged SAT, also tend to simulate smaller than observed amplitude of its annual and semiannual harmonics and (outside the Tropics) later-than-observed spring and autumn moments. The models with larger (smaller) time averaged amplitudes of annual and semiannual harmonics also tend to simulate larger (smaller) interannual standard deviations. Over the oceans, the coupled models with larger interannual standard deviations of annual mean SAT tend to simulate larger interannual standard deviations of both annual and semiannual SAT harmonics amplitudes. Most model errors are located in the belts 60°–70°N and 60°–70°S and over Antarctica. These errors are larger for those coupled models which do not employ dynamical modules for sea ice. No systematic differences are found in the simulated time averaged fields of the surface air temperature annual cycle characteristics for atmospheric models on one hand and for the coupled models on the other. But the coupled models generally simulate interannual variability of SAT AC APC better than the atmospheric models (which tend to underestimate it). For the coupled models, the results are not very sensitive to the choice of the particular scenario of anthropogenic forcing. There is a strong linear positive relationship between the model simulated time averaged semiannual SAT harmonics amplitude and interannual standard deviation of annual mean SAT. It is stronger over the tropical oceans and is weaker in the extratropics. In the tropical oceanic areas, it is stronger for the coupled than for the atmospheric models. 展开更多
关键词 annual cycle reanalysis data climate model intercomparison
在线阅读 下载PDF
TBB-REVEALED ANNUAL CYCLE FEATURES OF TROPICAL LFO 被引量:1
12
作者 智协飞 陈旭红 田华 《Acta meteorologica Sinica》 SCIE 1997年第4期460-468,共9页
In the context of 1980—1992 JMA(Japan Meteorological Agency)GMS TBB gridded dataset, study is undertaken of annual cycle features of FFT-derived window power spectrum averaged over the record length,with localized sp... In the context of 1980—1992 JMA(Japan Meteorological Agency)GMS TBB gridded dataset, study is undertaken of annual cycle features of FFT-derived window power spectrum averaged over the record length,with localized space/time characteristics of low-frequency oscillation(LFO)in the tropical atmosphere investigated alongside possible causes.It turns out that the LFO takes on surprisingly noticeable annual cycle features marked by a wider variable range of the LFO periods over northern tropics than the southern counterpart and equatorial vicinity.In addition,on the whole,the signals are more intense in the Northern Hemisphere during summer/autumn and at equatorial/southern latitudes when northern winter/spring occur as well.Also,not all these features are identical for different segments at the same latitudes,displaying signatures on a local basis,and the spatial/temporal locality can be qualitatively interpreted in terms of nonlinear interaction between tropical waves,and modulation of diabatic heating on the LFO periods. 展开更多
关键词 TBB(cloud-top blackbody radiation temperature) low frequency oscillaton (LFO) annual cycle feature
在线阅读 下载PDF
Quantifying the response of surface urban heat island to urbanization using the annual temperature cycle model 被引量:3
13
作者 Huidong Li Yuyu Zhou +2 位作者 Gensuo Jia Kaiguang Zhao Jinwei Dong 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第1期478-487,共10页
Urban heat island(UHI),driving by urbanization,plays an important role in urban sustainability under climate change.However,the quantification of UHI’s response to urbanization is still challenging due to the lack of... Urban heat island(UHI),driving by urbanization,plays an important role in urban sustainability under climate change.However,the quantification of UHI’s response to urbanization is still challenging due to the lack of robust and continuous temperature and urbanization datasets and reliable quantification methods.This study proposed a framework to quantify the response of surface UHI(SUHI)to urban expansion using the annual temperate cycle model.We built a continuous annual SUHI series at the buffer level from 2003 to 2018 in the Jing-Jin-Ji region of China using MODIS land surface temperature and imperviousness derived from Landsat.We then investigated the spatiotemporal dynamic of SUHI under urban expansion and examined the underlying mechanism.Spatially,the largest SUHI interannual variations occurred in suburban areas compared to the urban center and rural areas.Temporally,the increase in SUHI under urban expansion was more significant in daytime compare to nighttime.We found that the seasonal variation of SUHI was largely affected by the seasonal variations of vegetation in rural areas and the interannual variation was mainly attributed to urban expansion in urban areas.Additionally,urban greening led to the decrease in summer daytime SHUI in central urban areas.These findings deepen the understanding of the long-term spatiotemporal dynamic of UHI and the quantitative relationship between UHI and urban expansion,providing a scientific basis for prediction and mitigation of UHI. 展开更多
关键词 Urban heat island URBANIZATION Spatiotemporal dynamics annual temperature cycle model Diurnal temperature range
在线阅读 下载PDF
Trends in Temperature Extremes in Association with Weather-Intraseasonal Fluctuations in Eastern China 被引量:15
14
作者 钱诚 严中伟 +1 位作者 符淙斌 涂锴 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第2期297-309,共13页
Trends in the frequencies of four temperature extremes (the occurrence of warm days, cold days, warm nights and cold nights) with respect to a modulated annual cycle (MAC), and those associated exclusively with we... Trends in the frequencies of four temperature extremes (the occurrence of warm days, cold days, warm nights and cold nights) with respect to a modulated annual cycle (MAC), and those associated exclusively with weather-intraseasonal fluctuations (WIF) in eastern China were investigated based on an updated homogenized daily maximum and minimum temperature dataset for 1960–2008. The Ensemble Empirical Mode Decomposition (EEMD) method was used to isolate the WIF, MAC, and longer-term components from the temperature series. The annual, winter and summer occurrences of warm (cold) nights were found to have increased (decreased) significantly almost everywhere, while those of warm (cold) days have increased (decreased) in northern China (north of 40°N). However, the four temperature extremes associated exclusively with WIF for winter have decreased almost everywhere, while those for summer have decreased in the north but increased in the south. These characteristics agree with changes in the amplitude of WIF. In particular, winter WIF of maximum temperature tended to weaken almost everywhere, especially in eastern coastal areas (by 10%–20%); summer WIF tended to intensify in southern China by 10%–20%. It is notable that in northern China, the occurrence of warm days has increased, even where that associated with WIF has decreased significantly. This suggests that the recent increasing frequency of warm extremes is due to a considerable rise in the mean temperature level, which surpasses the effect of the weakening weather fluctuations in northern China. 展开更多
关键词 climate extremes EEMD weather-intraseasonal fluctuations modulated annual cycle global warming
在线阅读 下载PDF
Patterns of upper layer circulation variability in the South China Sea from satellite altimetry using the self-organizing map 被引量:6
15
作者 WEISBERG Robert H 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2008年第z1期129-144,共16页
Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal... Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal and inter-annual variations of the SCS surface circulation are identified through the evolution of the characteristic circulation patterns.The annual cycle of the SCS general circulation patterns is described as a change between two opposite basin-scale SW-NE oriented gyres embedded with eddies: low sea surface height anomaly (SSHA) (cyclonic) in winter and high SSHA (anticyclonic) in summer half year. The transition starts from July—August (January—February) with a high (low) SSHA tongue east of Vietnam around 12°~14° N, which develops into a big anticyclonic (cyclonic) gyre while moving eastward to the deep basin. During the transitions, a dipole structure, cyclonic (anticyclonic) in the north and anticyclonic (cyclonic) in the south, may be formed southeast off Vietnam with a strong zonal jet around 10°~12° N. The seasonal variation is modulated by the interannual variations. Besides the strong 1997/1998 event in response to the peak Pacific El Nio in 1997, the overall SCS sea level is found to have a significant rise during 1999~2001, however, in summer 2004 the overall SCS sea level is lower and the basin-wide anticyclonic gyre becomes weaker than the other years. 展开更多
关键词 circulation patterns self-organizing map satellite altimetry annual cycle inter-annual variation South China Sea
在线阅读 下载PDF
Statistically Downscaled Temperature Scenarios over China 被引量:3
16
作者 FAN Li-Jun 《Atmospheric and Oceanic Science Letters》 2009年第4期208-213,共6页
Monthly mean temperatures at 562 stations in China are estimated using a statistical downscaling technique. The technique used is multiple linear regressions (MLRs) of principal components (PCs). A stepwise screen... Monthly mean temperatures at 562 stations in China are estimated using a statistical downscaling technique. The technique used is multiple linear regressions (MLRs) of principal components (PCs). A stepwise screening procedure is used for selecting the skilful PCs as predictors used in the regression equation. The predictors include temperature at 850 hPa (7), the combination of sea-level pressure and temperature at 850 hPa (P+T) and the combination of geo-potential height and temperature at 850 hPa (H+T). The downscaling procedure is tested with the three predictors over three predictor domains. The optimum statistical model is obtained for each station and month by finding the predictor and predictor domain corresponding to the highest correlation. Finally, the optimum statistical downscaling models are applied to the Hadley Centre Coupled Model, version 3 (HadCM3) outputs under the Special Report on Emission Scenarios (SRES) A2 and B2 scenarios to construct local future temperature change scenarios for each station and month, The results show that (1) statistical downscaling produces less warming than the HadCM3 output itself; (2) the downscaled annual cycles of temperature differ from the HadCM3 output, but are similar to the observation; (3) the downscaled temperature scenarios show more warming in the north than in the south; (4) the downscaled temperature scenarios vary with emission scenarios, and the A2 scenario produces more warming than the B2, especially in the north of China. 展开更多
关键词 statistical downscaling temperature scenarios annual cycles China
在线阅读 下载PDF
Seasonal Gametogenesis of Host Sea Anemone(Entacmaea quadricolor) Inhabiting Hong Kong Waters 被引量:1
17
作者 BI Ying ZHANG Bin +1 位作者 ZHANG Zhifeng QIU Jianwen 《Journal of Ocean University of China》 SCIE CAS 2015年第1期143-148,共6页
Studying gonadal development of annual cycle can reveal the process of gametogenesis and reproductive period, and evaluate fertility and source utilization of a species. Host sea anemones are conspicuous members of tr... Studying gonadal development of annual cycle can reveal the process of gametogenesis and reproductive period, and evaluate fertility and source utilization of a species. Host sea anemones are conspicuous members of tropical and subtropical reef ecosystems, but little is known about its biology including reproductive seasonality. Here we reported a one-year study on the gametogenesis and reproduction of host sea anemone(Entacmaea quadricolor) inhabiting Hong Kong waters. E. quadricolor tissues were sampled in 12 occasions from 5 m and 15 m depths of water, respectively. Histological sectioning of the tissues showed that E. quadricolor was dioecious, and populational ratio of female to male was 1:1.6. The gonadal development was asynchronous within an annual cycle, which included proliferating, growing, maturing, spawning, and resting stages. The spawning occurred between August and October when surface seawater temperature reached the annual maximum(28℃), suggesting that temperature is an important factor modulating the gonadal development and mature of E. quadricolor. 展开更多
关键词 Entacmae aquadricolor GONAD annual cycle HISTOLOGY seawater temperature
在线阅读 下载PDF
Circulation in the South China Sea is in a state of forced oscillation:Results from a simple reduced gravity model with a closed boundary
18
作者 Rui Xin Huang Hui Zhou 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第7期1-12,共12页
The South China Sea(SCS)is a narrow semi-enclosed basin,ranging from 4°–6°N to 21°–22°N meridionally.It is forced by a strong annual cycle of monsoon-related wind stress.The Coriolis parameter f ... The South China Sea(SCS)is a narrow semi-enclosed basin,ranging from 4°–6°N to 21°–22°N meridionally.It is forced by a strong annual cycle of monsoon-related wind stress.The Coriolis parameter f increases at least three times from the southern basin to the northern basin.As a result,the basin-cross time for the first baroclinic Rossby wave in the southern part of the basin is about 10-times faster than that in the northern part,which plays the most vitally important role in setting the circulation.At the northernmost edge of SCS,the first baroclinic Rossby wave takes slightly less than 1 year to move across the basin,however,it takes only 1–2 months in the southernmost part.Therefore,circulation properties for a station in the model ocean are not solely determined by the forcing at that time instance only;instead,they depend on the information over the past months.The combination of a strong annual cycle of wind forcing and large difference of basin-cross time for the first baroclinic Rossby wave leads to a strong seasonal cycle of the circulation in the SCS,hence,the circulation is dominated by the forced oscillations,rather than the quasi-steady state discussed in many textbooks.The circulation in the SCS is explored in detail by using a simple reduced gravity model forced by seasonally varying zonal wind stress.In particular,for a given time snap the western boundary current in the SCS cannot play the role of balancing mass transport across each latitude nor balancing mechanical energy and vorticity in the whole basin.In a departure from the steady wind-driven circulation discussed in many existing textbooks,the circulation in the SCS is characterized by the imbalance of mechanical energy and vorticity for the whole basin at any part of the seasonal cycle.In particular,the western boundary current in the SCS cannot balance the mass,mechanical energy,and vorticity in the seasonal cycle of the basin.Consequently,the circulation near the western boundary cannot be interpreted in terms of the wind stress and thermohaline forcing at the same time.Instead,circulation properties near the western boundary should be interpreted in terms of the contributions due to the delayed wind stress and the eastern boundary layer thickness.In fact,there is a clear annual cycle of net imbalance of mechanical energy and vorticity source/sink.Results from such a simple model may have important implications for our understanding of the complicated phenomena in the SCS,either from in-situ observations or numerical simulations. 展开更多
关键词 South China Sea ocean circulation annual cycle first baroclinic Rossby wave propagation western boundary current forced ossilation
在线阅读 下载PDF
Migration routes and strategies of Grey Plovers (Pluvialis squatarola) on the East Atlantic Flyway as revealed by satellite tracking
19
作者 Klaus-Michael Exo Franziska Hillig Franz Bairlein 《Avian Research》 CSCD 2019年第3期305-318,共14页
Background:While the general migration routes of most waders are known,details concerning connectivity between breeding grounds, stopover sites and wintering grounds are often lacking.Such information is critical from... Background:While the general migration routes of most waders are known,details concerning connectivity between breeding grounds, stopover sites and wintering grounds are often lacking.Such information is critical from the conservation perspective and necessary for understanding the annual cycle.Studies are especially needed to identify key stopover sites in remote regions. Using satellite transmitters, we traced spring and autumn migration routes and connectivity of Grey Plovers on the East Atlantic Flyway.Our findings also revealed the timing,flight speed, and duration of migrations. Methods:We used ARGOS satellite transmitters to track migration routes of 11 Grey Plovers that were captured at the German Wadden Sea where they had stopped during migration.Birds were monitored for up to 3 years,2011-2014.Results:Monitoring signals indicated breeding grounds in the Taimyr and Yamal regions;important staging sites on the coasts of the southern Pechora Sea and the Kara Sea;and wintering areas that ranged from NW-Ireland to Guinea Bissau.The average distance traveled from wintering grounds to breeding grounds was 5534 km. Migration duration varied between 42 and 152 days;during this period birds spent about 95% of the time at staging sites.In spring most plovers crossed inland Eastern Europe, whereas in autumn most followed the coastline.Almost all of the birds departed during favorable wind conditions within just 4 days (27-30 May) on northward migration from the Wadden Sea.In spring birds migrated significantly faster between the Wadden Sea and the Arctic than on return migration in autumn (12 vs.37 days),with shorter stopovers during the northward passage.Conclusions:Our study shows that satellite tags can shed considerable light on migration strategies by revealing the use of different regions during the annual cycle and by providing detailed quantitative data on population connectivity and migration timing. 展开更多
关键词 annual cycle Long-distance migration Migration speed Migration strategy Migration timing Satellite transmitters SHOREBIRDS Tracking STOPOVER
在线阅读 下载PDF
Seasonal Dynamics of Male and Female Reproductive Systems in the Siberian Salamander, Salamandrella keyserlingii (Caudata, Hynobiidae) 被引量:2
20
作者 Vadim V.YARTSEV Valentina N.KURANOVA 《Asian Herpetological Research》 SCIE CSCD 2015年第3期169-183,共15页
It is not well known how low temperatures, like a subarctic steppe–tundra climate, influence reproductive traits of ectothermic vertebrates. To begin answering this question, we studied male and female reproductive s... It is not well known how low temperatures, like a subarctic steppe–tundra climate, influence reproductive traits of ectothermic vertebrates. To begin answering this question, we studied male and female reproductive systems of Salamandrella keyserlingii inhabiting a Tomsk population(southeast of Western Siberia), Russia, in ecological and physiological terms. In males, before spermiation, the testicular size and weight in late April–early May were greatest of all. Spermiation occurred during breeding immigration in spring when mean air temperature was above 10°С, and at the same time rain fell. After spermiation, the testicular size and weight decreased sharply, and the diameter of the vasa deferentia increased. "Spawning"(i.e., simultaneous extrusion of sperm and oviposition) occurred from late April to late May, and this duration fluctuated in temperature and humidity. The testicular size and weight increased in summer. Sperm mass was detected in the testes by the smear method in April–September, except in June when single fragmented unrealized sperm was detected and in July when spermatids were detected. In females, ovarian weight was greatest in spring before ovulation. From late June, vitellogenesis began in ovarian follicles, in which mint green yolks accumulated. Melanin deposited in the surface of the ovary from July when oviducts were hypertrophying. In contrast, some large-sized females did not show any sexual maturity shortly before hibernation(although these females may be subadults). These results suggest that low temperatures in Siberia induce early timing of gamete maturation in females, but the females' reproductive cycle might also be biennial. A reproductive cycle in males was annual with the completion of the gamete maturation process in August. 展开更多
关键词 annual reproductive cycle biennial reproductive cycle breeding immigration gamete maturation subarctic climate
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部