期刊文献+
共找到9,847篇文章
< 1 2 250 >
每页显示 20 50 100
Synergistic anionic/zwitterionic mixed surfactant system with high emulsification efficiency for enhanced oil recovery in low permeability reservoirs 被引量:2
1
作者 Hai-Rong Wu Rong Tan +6 位作者 Shi-Ping Hong Qiong Zhou Bang-Yu Liu Jia-Wei Chang Tian-Fang Luan Ning Kang Ji-Rui Hou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期936-950,共15页
Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant... Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs. 展开更多
关键词 anionic/zwitterionic mixed surfactant system EMULSIFICATION Synergistic effect Low permeability reservoir Enhanced oil recovery
原文传递
Screening Anionic Groups Within Zwitterionic Additives for Eliminating Hydrogen Evolution and Dendrites in Aqueous Zinc Ion Batteries
2
作者 Biao Wang Chaohong Guan +10 位作者 Qing Zhou Yiqing Wang Yutong Zhu Haifeng Bian Zhou Chen Shuangbin Zhang Xiao Tan Bin Luo Shaochun Tang Xiangkang Meng Cheng Zhang 《Nano-Micro Letters》 2025年第12期416-427,共12页
Zwitterionic materials with covalently tethered cations and anions have great potential as electrolyte additives for aqueous Znion batteries(AZIBs)owing to their appealing intrinsic characteristics and merits.However,... Zwitterionic materials with covalently tethered cations and anions have great potential as electrolyte additives for aqueous Znion batteries(AZIBs)owing to their appealing intrinsic characteristics and merits.However,the impact of cationic and anionic moieties within zwitterions on enhancing the performance of AZIBs remains poorly understood.Herein,three zwitterions,namely carboxybetaine methacrylate(CBMA),sulfobetaine methacrylate(SBMA),and 2-methacryloyloxyethyl phosphorylcholine(MPC),were selected as additives to investigate their different action mechanisms in AZIBs.All three zwitterions have the same quaternary ammonium as the positively charged group,but having different negatively charged segments,i.e.,carboxylate,sulfonate,and phosphate for CBMA,SBMA,and MPC,respectively.By systematical electrochemical analysis,these zwitterions all contribute to enhanced cycling life of Zn anode,with MPC having the most pronounced effect,which can be attributed to the synergistic effect of positively quaternary ammonium group and unique negatively phosphate groups.As a result,the Zn//Zn cell with MPC as additive in ZnSO_(4)electrolyte exhibits an ultralong lifespan over 5000 h.This work proposes new insights to the future development of multifunctional zwitterionic additives for remarkably stable AZIBs. 展开更多
关键词 zwitterionS Electrolyte additives Zinc deposition Aqueous batteries
在线阅读 下载PDF
Prediction,screening,characterization,antioxidant and antihypoxic effects of multi-component zwitterionic cocrystals of dietary flavonoids with picolinic acid
3
作者 Yao Zou Difei Gong +6 位作者 Haiguang Yang Hongmei Yu Guorong He Ningbo Gong Lianhua Fang Guanhua Du Yang Lu 《Chinese Chemical Letters》 2025年第9期581-588,共8页
The objective of this study was to predict,screen,synthesize,and investigate cocrystals of poorly soluble flavonoids that are commonly found in dietary supplements with bipolar compound picolinic acid(PA).To improve t... The objective of this study was to predict,screen,synthesize,and investigate cocrystals of poorly soluble flavonoids that are commonly found in dietary supplements with bipolar compound picolinic acid(PA).To improve the efficiency and success rate of experimental screening,two virtual tools based on hydrogen bond propensity(HBP)and modified molecular electrostatic potential(MEP)maps were used.The prediction accuracy of HBP and MEP is 58.82%and 94.11%,respectively,presenting that the MEP model is very powerful in the discovery of pharmaceutical cocrystals.Among the 12 successfully obtained cocrystals,4 single crystals of PA with luteolin(LUT),genistein(GEN),taxifolin(TAX),dihydromyricetin(DHM)were obtained for the first time.Charged-assisted O-H…O and N-H…O hydrogen bonds appear as main hydrogen bonding synthons,and PA adopts a zwitterionic form after cocrystallization.GEN-PA,TAX-PA,and DHM-PA showed higher DPPH'radical-scavenging capacities;LUT-PA and DHM-PA showed higher ABTS^(+)radical-scavenging capacities;GEN-PA and DHM-PA possessed better protective effects on H9c2 cells from hypoxic injury caused by CoCl_(2)than corresponding pure flavonoids. 展开更多
关键词 COCRYSTAL Flavonoid Picolinic acid Dietary supplements zwitterionic
原文传递
Prediction of New Functional Fluorooxoborates with Expected Anionic Framework:A Case of CaB_(3)O_(5)F
4
作者 Ke-Wang Zhang Wen-Qi Jin +4 位作者 Ke Li Abudukadi Tudi Lin-Lin Liu Cong-Wei Xie Yu Xie 《Chinese Physics Letters》 2025年第3期85-92,共8页
The prediction of new fluorooxoborates as ultraviolet(UV)/deep ultraviolet(DUV)opto-electronic functional materials from a largely unexplored chemical space is a challenging task.It has been suggested that the anionic... The prediction of new fluorooxoborates as ultraviolet(UV)/deep ultraviolet(DUV)opto-electronic functional materials from a largely unexplored chemical space is a challenging task.It has been suggested that the anionic frameworks formed by B–O and B–O–F units significantly determine the physical properties of fluorooxoborates.Therefore,the rational design of anionic frameworks could facilitate the materials discovery process.Herein,we propose that a candidate anionic framework can be efficiently derived from an existing one by slightly altering its oxygen content.Following this idea,we hypothesized the existence of a 1D[B_(3)O_(5)F]_(∞)chain from the wellknown 2D[B_(6)O_(9)F_(2_)]_(∞)layer.Accordingly,seven CaB_(3)O_(5)F structures with the expected anionic framework were successfully predicted.First-principles calculations show that all these structures have potential in the UV/DUV birefringent or nonlinear optical(NLO)material field,indicating that the 1D[B_(3)O_(5)F]_(∞)chain is indeed a promising anionic framework for achieving UV/DUV birefringent and NLO performance. 展开更多
关键词 process BORATE anionic
原文传递
Hydrogen-Bonding-Crosslinked Polyzwitterionic Hydrogelswith Extreme Stretchability, Ultralow Hysteresis, Self-adhesion,and Antifreezing Performance as Flexible Self-powered ElectronicDevices
5
作者 Siyu Bao Hongying Wang +5 位作者 Baocheng Liu Chenhao Huang Jingguo Deng Wenjie Ren Yongmao Li Jianhai Yang 《Transactions of Tianjin University》 2025年第1期15-28,共14页
Flexible strain sensors have received tremendous attention because of their potential applications as wearable sensing devices.However, the integration of key functions into a single sensor, such as high stretchabilit... Flexible strain sensors have received tremendous attention because of their potential applications as wearable sensing devices.However, the integration of key functions into a single sensor, such as high stretchability, low hysteresis, self-adhesion, andexcellent antifreezing performance, remains an unmet challenge. In this respect, zwitterionic hydrogels have emerged asideal material candidates for breaking through the above dilemma. The mechanical properties of most reported zwitterionichydrogels, however, are relatively poor, significantly restricting their use under load-bearing conditions. Traditional improve-ment approaches often involve complex preparation processes, making large-scale production challenging. Additionally,zwitterionic hydrogels prepared with chemical crosslinkers are typically fragile and prone to irreversible deformation underlarge strains, resulting in the slow recovery of structure and function. To fundamentally enhance the mechanical properties ofpure zwitterionic hydrogels, the most effective approach is the regulation of the chemical structure of zwitterionic monomersthrough a targeted design strategy. This study employed a novel zwitterionic monomer carboxybetaine urethane acrylate(CBUTA), which contained one urethane group and one carboxybetaine group on its side chain. Through the direct polym-erization of ultrahigh concentration monomer solutions without adding any chemical crosslinker, we successfully developedpure zwitterionic supramolecular hydrogels with significantly enhanced mechanical properties, self-adhesive behavior, andantifreezing performance. Most importantly, the resultant zwitterionic hydrogels exhibited high tensile strength and tough-ness and displayed ultralow hysteresis under strain conditions up to 1100%. This outstanding performance was attributedto the unique liquid–liquid phase separation phenomenon induced by the ultrahigh concentration of CBUTA monomers inan aqueous solution, as well as the enhanced polymer chain entanglement and the strong hydrogen bonds between urethanegroups on the side chains. The potential application of hydrogels in strain sensors and high-performance triboelectric nano-generators was further explored. Overall, this work provides a promising strategy for developing pure zwitterionic hydrogelsfor flexible strain sensors and self-powered electronic devices. 展开更多
关键词 zwitterionic Hydrogen bonding Mechanical enhancement Strain sensor Triboelectric nanogenerator
在线阅读 下载PDF
High-temperature and high-salinity resistance hydrophobic association zwitterionic filtrate loss reducer for water-based drilling fluids
6
作者 Tai-Feng Zhang Jin-Sheng Sun +5 位作者 Jing-Ping Liu Kai-He Lv Yuan-Wei Sun Zhe Xu Ning Huang Han Yan 《Petroleum Science》 2025年第7期2851-2867,共17页
As the global exploration and development of oil and gas resources advances into deep formations,the harsh conditions of high temperature and high salinity present significant challenges for drilling fluids.In order t... As the global exploration and development of oil and gas resources advances into deep formations,the harsh conditions of high temperature and high salinity present significant challenges for drilling fluids.In order to address the technical difficulties associated with the failure of filtrate loss reducers under high-temperature and high-salinity conditions.In this study,a hydrophobic zwitterionic filtrate loss reducer(PDA)was synthesized based on N,N-dimethylacrylamide(DMAA),2-acrylamido-2-methylpropane sulfonic acid(AMPS),diallyl dimethyl ammonium chloride(DMDAAC),styrene(ST)and a specialty vinyl monomer(A1).When the concentration of PDA was 3%,the FLAPI of PDA-WBDF was 9.8 mL and the FLHTHP(180℃,3.5 MPa)was 37.8 mL after aging at 240℃for 16 h.In the saturated NaCl environment,the FLAPI of PDA-SWBDF was 4.0 mL and the FLHTHP(180℃,3.5 MPa)was 32.0 mL after aging at 220℃ for 16 h.Under high-temperature and high-salinity conditions,the combined effect of anti-polyelectrolyte and hydrophobic association allowed PDA to adsorb on the bentonite surface tightly.The sulfonic acid groups of PDA increased the negative electronegativity and the hydration film thickness on bentonite surface,which enhanced the colloidal stability,maintained the flattened lamellar structure of bentonite and formed an appropriate particle size distribution,resulting in the formation of dense mud cakes and reducing the filtration loss effectively. 展开更多
关键词 High-temperature HIGH-SALINITY Hydrophobic association zwitterionic Filtrate loss reducer Water-based drilling fluids
原文传递
Recent Advances in High-Strength Zwitterionic Polymer Hydrogels:From Zwitterionic Properties to Mechanical Reinforcement Strategies
7
作者 Haolun Wang Hui Liu +2 位作者 Hongying Wang Yongmao Li Jianhai Yang 《Transactions of Tianjin University》 2025年第4期347-369,共23页
Zwitterionic polymers are polymers containing a pair of oppositely charged groups in their repeating units,which facilitate the formation of a hydration layer on the surface through ionic solvation.This strong hydrati... Zwitterionic polymers are polymers containing a pair of oppositely charged groups in their repeating units,which facilitate the formation of a hydration layer on the surface through ionic solvation.This strong hydration results in the remarkable properties of zwitterionic polymer hydrogels,including antifouling,lubricating,and anti-freezing capabilities.Owing to these properties,zwitterionic polymer hydrogels have attracted notable attention in biomedical and engineering fields.However,the superhydrophilicity of zwitterionic polymer hydrogels renders them brittle and weak,considerably limiting their use in load-bearing applications.Thus,there is an urgent need to improve the mechanical properties of zwitterionic hydrogels.In this work,we systematically review mechanical enhancement strategies for zwitterionic polymer hydrogels.We cover strate-gies applicable to hybrid and pure high-strength zwitterionic polymer hydrogels.Additionally,we discuss the advantages and limitations of various strength enhancement strategies. 展开更多
关键词 zwitterionic polymer hydrogel HIGH-STRENGTH Mechanical enhancement strategies
在线阅读 下载PDF
Anionic electron dimensionality and monolayer ferromagnetism in Y-Co electrides
8
作者 Lu Zheng Zimeng Lv +8 位作者 Xiaochen Huang Zhuangfei Zhang Chao Fang Yuewen Zhang Qianqian Wang Liangchao Chen Xiaopeng Jia Biao Wan Huiyang Gou 《Chinese Physics B》 2025年第9期482-488,共7页
Electrides,characterized by spatially confined anionic electrons,have emerged as a promising class of materials for catalysis,magnetism,and superconductivity.However,transition-metal-based electrides with diverse elec... Electrides,characterized by spatially confined anionic electrons,have emerged as a promising class of materials for catalysis,magnetism,and superconductivity.However,transition-metal-based electrides with diverse electron dimensionalities remain largely unexplored.Here,we perform a comprehensive first-principles investigation of Y-Co electrides,focusing on Y_(3)Co,Y_(3)Co_(2),and YCo.Our calculations reveal a striking dimensional evolution of anionic electrons:from two-dimensional(2D)confinement in YCo to one-dimensional(1D)in Y_(3)Co_(2)and zero-dimensional(0D)in Y_(3)Co.Remarkably,the YCo monolayer exhibits intrinsic ferromagnetism,with a magnetic moment of 0.65μB per formula unit arising from spin-polarized anionic electrons mediating long-range coupling between Y and Co ions.The monolayer also shows a low exfoliation energy(1.66 J/m^(2)),indicating experimental feasibility.All three electrides exhibit low work functions(2.76 eV-3.11 eV)along with Co-centered anionic states.This work expands the family of transition-metal-based electrides and highlights dimensionality engineering as a powerful strategy for tuning electronic and magnetic properties. 展开更多
关键词 ELECTRIDES cobalt anions work function magnestism
原文传递
Scientific challenges faced by Mn-based layered oxide cathodes with anionic redox for sodium-ion batteries
9
作者 Chao Zheng Shengnan He +7 位作者 Jiantuo Gan Zhijun Wu Liaona She Yong Gao YaXiong Yang Jiatao Lou Zhijin Ju Hongge Pan 《Carbon Energy》 2025年第1期188-218,共31页
In the realm of sodium-ion batteries(SIBs),Mn-based layered oxide cathodes have garnered considerable attention owing to their anionic redox reactions(ARRs).Compared to other types of popular sodium-ion cathodes,Mn-ba... In the realm of sodium-ion batteries(SIBs),Mn-based layered oxide cathodes have garnered considerable attention owing to their anionic redox reactions(ARRs).Compared to other types of popular sodium-ion cathodes,Mn-based layered oxide cathodes with ARRs exhibit outstanding specific capacity and energy density,making them promising for SIB applications.However,these cathodes still face some scientific challenges that need to be addressed.This review systematically summarizes the composition,structure,oxygen-redox mechanism,and performance of various types of Mn-based cathodes with ARRs,as well as the main scientific challenges they face,including sluggish ion diffusion,cationic migration,O_(2) release,and element dissolution.Currently,to resolve these challenges,efforts mainly focus on six aspects:synthesis methods,structural design,doped modification,electrolyte design,and surface engineering.Finally,this review provides new insights for future direction,encompassing both fundamental research,such as novel cathode types,interface optimization,and interdisciplinary research,and considerations from an industrialization perspective,including scalability,stability,and safety. 展开更多
关键词 anionic redox ELECTROCHEMISTRY layered oxide cathodes sodium-ion batteries
在线阅读 下载PDF
Uncovering the Critical Role of Ni on Surface Lattice Stability in Anionic Redox Active Li_(1.2)Ni_(0.2)Mn_(0.6)O_(2)
10
作者 Peirong Li Yande Li +14 位作者 Qi Liang Yize Niu Shun Zheng Zengqing Zhuo Yunhong Luo Bocheng Liang Dong Yang Jixiang Yin Supeng Chen Wanneng Ye Yuanyuan Pan Qinghao Li Pengfei Yu Xiaosong Liu Qiang Li 《Carbon Energy》 2025年第6期160-170,共11页
Anionic redox reaction(ARR)can provide extra capacity beyond transition metal(TM)redox in lithium-rich TM oxide cathodes.Practical ARR application is much hindered by the structure instability,particularly at the surf... Anionic redox reaction(ARR)can provide extra capacity beyond transition metal(TM)redox in lithium-rich TM oxide cathodes.Practical ARR application is much hindered by the structure instability,particularly at the surface.Oxygen release has been widely accepted as the ringleader of surficial structure instability.However,the role of TM in surface stability has been much overlooked,not to mention its interplay with oxygen release.Herein,TM dissolution and oxygen release are comparatively investigated in Li_(1.2)Ni_(0.2)Mn_(0.6)O_(2).Ni is verified to detach from the lattice counter-intuitively despite the overwhelming stoichiometry of Mn,facilitating subsequent oxygen release of the ARR process.Intriguingly,surface reorganization occurs following regulated Ni dissolution,enabling the stabilization of the surface and elimination of oxygen release in turn.Accordingly,a novel optimization strategy is proposed by adding a relaxation step at 4.50 V within the first cycle procedure.Battery performance can be effectively improved,with voltage decay suppressed from 3.44 mV/cycle to 1.60 mV/cycle,and cycle stability improved from 66.77%to 90.01%after 100 cycles.This work provides new perspectives for clarifying ARR surface instability and guidance for optimizing ARR performance. 展开更多
关键词 anionic redox reaction oxygen release surface reorganization TM dissolution
在线阅读 下载PDF
Rational modulation of fluorophosphate cathode by anionic groups to reduce the polarization behavior for fast-charging sodium-ion batteries
11
作者 Xinyuan Wang Fan Zhang +5 位作者 Xingyu Zhou Qian Wang Changyu Liu Yangyang Liu Hui Wang Xiaojie Liu 《Journal of Energy Chemistry》 2025年第1期509-521,共13页
Na_(3)V_(2)(PO_(4))_(2)O_(2)F (VP) is recognized as a promising cathode material for sodium-ion batteries due to its stable structural framework and high specific capacity.Density functional theory (DFT) and finite el... Na_(3)V_(2)(PO_(4))_(2)O_(2)F (VP) is recognized as a promising cathode material for sodium-ion batteries due to its stable structural framework and high specific capacity.Density functional theory (DFT) and finite element simulations show that incorporating SO_(4)^(2-)into VP decreases its band gap,lowers the migration energy barrier,and ensures a uniform Na+concentration gradient and stress distribution during charge and discharge cycles.Consequently,the average Na+diffusion coefficient of Na_(3)V_(2)(PO_(4))_(1.95)(SO_(4))_(0.05)O_(2)F(VPS-1) is roughly double that of VP,leading to enhanced rate capability (80 C,75.5 mAh g^(-1)) and cycling stability (111.0 mAh g^(-1)capacity after 1000 cycles at 10 C current density) for VPS-1.VPS-1 exhibits outstanding fast-charging capabilities,achieving an 80%state of charge in just 8.1 min.The assembled VPS-1//SbSn/NPC full cell demonstrated stable cycling over 200 cycles at a high 5 C current,maintaining an average coulombic efficiency of 95.35%. 展开更多
关键词 anionic group modulation Polarization behavior Fast-charging Sodium-ion battery Fluorophosphate Cathode
在线阅读 下载PDF
Copper-substituted P3-type Na_(0.54)Mn_(0.64)Fe_(_(0.1)6)Mg_(0.1)Cu_(0.1)O_(2) cathode material for sodium-ion batteries with enhanced anionic redox reversibility
12
作者 Zhe Mei Xun-Lu Li +10 位作者 Cui Ma Jie Zeng Chong-Yu Du Rui-Jie Luo Xuan Xu Zhe Qian Zi-Ting Zhou Ya Zhang Qian Cheng Yao-Guo Fang Yong-Ning Zhou 《Rare Metals》 2025年第5期2986-2996,共11页
P3-type manganese-iron-based cathodes with high specific capacity and abundant resource have attracted considerable attention for sodium-ion batteries.However,the long-term cycle stability of P3-type cathodes is still... P3-type manganese-iron-based cathodes with high specific capacity and abundant resource have attracted considerable attention for sodium-ion batteries.However,the long-term cycle stability of P3-type cathodes is still not satisfactory.In this work,we design a new quaternary manganese-iron-based cathode material(P3-Na_(0.54)Mn_(0.64)Fe_(_(0.1)6)Mg_(0.1)Cu_(0.1)O_(2))by Cu substitution.The strong covalent Cu-O bonds improve the structural stability and the reversibility of O redox during charge and discharge processes.Cu substitution also mitigates the structure change with less unit cell volume variation,and improves the Na-ion transport kinetics effectively.As a result,NMFMC delivers much improved cycling stability and rate capability compared with NMFM.It reveals that the charge compensation of NMFMC is mainly contributed by Mn^(3+/4+),Fe^(3+/3.5+)and O_(2-/-)during the charge and discharge processes,and Cu substitution can also enhance the activity and reversibility of Fe redox.This strategy provides a new pathway toward improving the stability and O redox reversibility of P3-type cathode materials for sodium-ion batteries. 展开更多
关键词 Sodium-ion batteries Cathode materials Cu substitution anionic redox reversibility
原文传递
Understanding anionic redox chemistry from the perspective of electronic structure
13
作者 Zhen Yu Peng-Fei Yu Xiao-Song Liu 《Rare Metals》 2025年第6期3709-3734,共26页
The rapidly growing electric cars and energy storage systems have extremely promoted the development of advanced lithium and sodium ion batteries and stimulated evolution of high-capacity cathodes.Li/Na-rich layered c... The rapidly growing electric cars and energy storage systems have extremely promoted the development of advanced lithium and sodium ion batteries and stimulated evolution of high-capacity cathodes.Li/Na-rich layered cathodes consisting cationic and anionic reactions as the most typical representative of high-capacity cathodes have shown its tremendous potential.However,there is a long way to go before commercialization because of unsatisfactory performances including large voltage hysteresis,voltage fade and poor cycle performance.Numerous investigations on redox mechanisms and engineering strategies have been performed from the point view of structure and made significant progress,which has been well reviewed.Meanwhile,the unacceptable issues are essentially correlated to the electronic configuration of anionic redox and its interaction with adjacent transition metal cations,which can be well depicted from electronic structure.However,the investigations on anionic reaction process in the viewpoint of electronic structure have been much less summarized.This review aims to compile the current knowledge of anionic redox from the point view of electronic structure,including configuration,origination,evolution,detection and coupling relationship with cationic redox.This work is attempted to inspire new perspectives and design approaches for the development of high-capacity cathodes. 展开更多
关键词 anionic redox Electronic structure Li/Narichlayered cathodes
原文传递
Competitive coordination of Na^(+)to"rescue"lithium-ion mobility in zwitterionic quasi-solid electrolytes for lithium metal batteries
14
作者 Yating Zhang Yanan Zhang +3 位作者 Weiteng Lin Xuan Li Kemeng Ji Mingming Chen 《Journal of Energy Chemistry》 2025年第5期52-61,共10页
Zwitterions(ZIs)are considered as an ideal,novel ionic conductive medium due to their high dipole moment and good solubility of lithium salts.However,the strong interactions between ZIs and Li^(+)severely hinder Li^(+... Zwitterions(ZIs)are considered as an ideal,novel ionic conductive medium due to their high dipole moment and good solubility of lithium salts.However,the strong interactions between ZIs and Li^(+)severely hinder Li^(+)migration.Herein,a quasi-solid electrolyte(MSQSE-2Na)was fabricated by adding sodium bis(fluorosulfonyl)imide(NaFSI)to sulfobetaine methacrylate(SBMA,a ZI)based polymerization system.Na^(+)occupies the–SO_(3)^(-)site in SBMA prior to Li^(+),which weakens the self-crosslinking of SBMA and frees the Li^(+)bound to the polymer segments.Thus,the polymer conformation of MSQSE-2Na changes to a relaxed,homogeneous"sea-island"type.Meanwhile,Na^(+),due to its electron-withdrawing effect,decreases the electron cloud density of the polymer segments,building a weakly coordinated environment in MSQSE-2Na.Consequently,MSQSE-2Na exhibits excellent ionic conductivity of 7.38×10^(-4)S cm^(-1)and a high Li^(+)transference number of 0.632 at 25℃.The(-)Li|MSQSE-2Na|Li(+)cells exhibit super stability,sustaining operation for over 6182h.The(-)Li|MSQSE-2Na|LiFePO_(4)(+)cells demonstrate outstanding charge/discharge reversibility with a Coulombic efficiency exceeding 99.9%over 270 cycles(≈4500 h),with a capacity retention of 70.0%.This work proposes a new design concept for regulating the polymer conformation and charge characteristics through competitive coordination,thereby advancing the application of ZI-based polymer electrolytes in lithium metal batteries. 展开更多
关键词 zwitterionS Quasi-solid electrolyte Li^(+)migration Na^(+)–Li^(+)competitive coordination Lithium metal batteries
在线阅读 下载PDF
A multifunctional separator decorated by anionic metal-organic framework toward ultrastable zinc anodes
15
作者 Ruotong Li Bin Yan +2 位作者 Zutian Chen Zhangxing He Juan Yang 《Journal of Energy Chemistry》 2025年第6期860-868,I0018,共10页
Aqueous zinc ion batteries(AZIBs)have excellent development prospects due to their high theoretical capacity and low cost.Nevertheless,the commercial separator represented by glass fiber(GF)in AZIBs usually exhibits u... Aqueous zinc ion batteries(AZIBs)have excellent development prospects due to their high theoretical capacity and low cost.Nevertheless,the commercial separator represented by glass fiber(GF)in AZIBs usually exhibits uneven porosity,poor zincophilicity,and insufficient functional groups,resulting in the emergence of the zinc anode dendrites and side reactions.Designing a separator with specific interfacial ion transport behavior is essential to achieve a highly stable reversible zinc anode.Herein,an anionic metal-organic framework(MOF)functionalized separator(GF-Bio-MOF-100)was presented to accelerate the desolvation process and modulate Zn^(2+)flux,thereby delivering the decreased nucleation overpotential and uniform Zn^(2+)deposition.The in-depth kinetics investigations combined with the in-situ Raman spectroscopy demonstrate that the carbonyl group within the Bio-MOF-100 is capable of capturing the H_(2)O molecules of[Zn(H_(2)O)_(6)]^(2+)via the H-bond interaction,which further accelerates the desolvation process and transport kinetics of Zn^(2+).Meanwhile,the anionic framework of the GFBio-MOF-100 separator acts as an interfacial ion channel to regulate the Zn^(2+)flux and enables dendrite-free Zn^(2+)deposition and growth.Consequently,the Zn|GF-Bio-MOF-100|Zn symmetric cell exhibited a stable Zn^(2+)plating/stripping behavior and it could cycle for 2000 h at 0.3 mA cm^(-2).Additionally,the assembled Zn|GF-Bio-MOF-100|MnO_(2)full cell delivers a capacity retention of 83.9% after 1000 cycles at 0.5 A g^(-1).This work provides new insights into the design of functionalized separators for long-life AZIBs. 展开更多
关键词 anionic metal-organic framework Multifunctional separator Zn^(2+)deposition Aqueous zinc ion batteries
在线阅读 下载PDF
Boosting cationic and anionic redox activity of Li-rich layered oxide cathodes via Li/Ni disordered regulation
16
作者 Zewen Liu Zhen Wu +7 位作者 Hao Wang Xudong Zhang Yuanzhen Chen Yongning Liu Shengwu Guo Shenghua Chen Yanli Nan Yan Liu 《Journal of Energy Chemistry》 2025年第1期533-543,共11页
Lithium-rich layered oxides (LLOs) are increasingly recognized as promising cathode materials for nextgeneration high-energy-density lithium-ion batteries (LIBs).However,they suffer from voltage decay and low initial ... Lithium-rich layered oxides (LLOs) are increasingly recognized as promising cathode materials for nextgeneration high-energy-density lithium-ion batteries (LIBs).However,they suffer from voltage decay and low initial Coulombic efficiency (ICE) due to severe structural degradation caused by irreversible O release.Herein,we introduce a three-in-one strategy of increasing Ni and Mn content,along with Li/Ni disordering and TM–O covalency regulation to boost cationic and anionic redox activity simultaneously and thus enhance the electrochemical activity of LLOs.The target material,Li_(1.2)Ni_(0.168)Mn_(0.558)Co_(0.074)O_(2)(L1),exhibits an improved ICE of 87.2%and specific capacity of 293.2 mA h g^(-1)and minimal voltage decay of less than 0.53 m V cycle-1over 300 cycles at 1C,compared to Li_(1.2)Ni_(0.13)Mn_(0.54)Co_(0.13)O_(2)(Ls)(274.4 mA h g^(-1)for initial capacity,73.8%for ICE and voltage decay of 0.84 mV/cycle over 300 cycles at 1C).Theoretical calculations reveal that the density of states (DOS) area near the Fermi energy level for L1 is larger than that of Ls,indicating higher anionic and cationic redox reactivity than Ls.Moreover,L1 exhibits increased O-vacancy formation energy due to higher Li/Ni disordering of 4.76%(quantified by X-ray diffraction Rietveld refinement) and enhanced TM–O covalency,making lattice O release more difficult and thus improving electrochemical stability.The increased Li/Ni disordering also leads to more Ni^(2+)presence in the Li layer,which acts as a pillar during Li+de-embedding,improving structural stability.This research not only presents a viable approach to designing low-Co LLOs with enhanced capacity and ICE but also contributes significantly to the fundamental understanding of structural regulation in high-performance LIB cathodes. 展开更多
关键词 Low-Co Li-rich layered oxides Li/Ni disordering TM-O covalency Cationic and anionic redox activity
在线阅读 下载PDF
Binding of Mono, Bi and Tridomain Proteins to Zwitterionic and Anionic Vesicles: Asymmetric Location of Anionic Phospholipids in Mixed Zwitterionic/Anionic Vesicles and Cooperative Binding
17
作者 Francisco Torrens Gloria Castellano 《Journal of Life Sciences》 2011年第3期167-181,共15页
Lysozyme,myoglobin and BSA were used as models of globular proteins covering a wide range of pl.The purpose is to extend the studies to anionic lipid bilayers.Electrostatics is studied in cationic protein adsorption t... Lysozyme,myoglobin and BSA were used as models of globular proteins covering a wide range of pl.The purpose is to extend the studies to anionic lipid bilayers.Electrostatics is studied in cationic protein adsorption to zwitterionic PC and anionic mixed PC/PG SUVs.Protein adsorption is investigated in SUVs along with changes of fluorescence emission spectra.Partition coefficients and cooperativity parameters are calculated.At pl binding obtains maximum while at lower or higher pHs binding decreases.In Gouy-Chapman formalism activity coefficient goes with square charge,which deviations indicate asymmetric location of anionic phospholipid in the inner leaflet,in mixed SUVs for lysozyme-and myoglobin-PC/PG systems,in agreement with experiments and molecular dynamics simulations.Vesicles bind myoglobin anti-cooperatively while lysozyme-BSA cooperativitivey.A model is proposed for both,which composes two protein sub-layers with different structures and properties.Hill coefficient reflects subunit cooperativity of bi and tridomain proteins. 展开更多
关键词 Protein-lipid interaction sigmoid adsorption isotherm transbilayer asymmetry anionic phospholipid asymmetric location cooperative binding hill plot.
在线阅读 下载PDF
Recent advances in zwitterionic nanoscale drug delivery systems to overcome biological barriers 被引量:1
18
作者 Xumei Ouyang Yu Liu +2 位作者 Ke Zheng Zhiqing Pang Shaojun Peng 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第1期49-68,共20页
Nanoscale drug delivery systems(nDDS)have been employed widely in enhancing the therapeutic efficacy of drugs against diseases with reduced side effects.Although several nDDS have been successfully approved for clinic... Nanoscale drug delivery systems(nDDS)have been employed widely in enhancing the therapeutic efficacy of drugs against diseases with reduced side effects.Although several nDDS have been successfully approved for clinical use up to now,biological barriers between the administration site and the target site hinder the wider clinical adoption of nDDS in disease treatment.Polyethylene glycol(PEG)-modification(or PEGylation)has been regarded as the gold standard for stabilising nDDS in complex biological environment.However,the accelerated blood clearance(ABC)of PEGylated nDDS after repeated injections becomes great challenges for their clinical applications.Zwitterionic polymer,a novel family of antifouling materials,have evolved as an alternative to PEG due to their super-hydrophilicity and biocompatibility.Zwitterionic nDDS could avoid the generation of ABC phenomenon and exhibit longer blood circulation time than the PEGylated analogues.More impressively,zwitterionic nDDS have recently been shown to overcome multiple biological barriers such as nonspecific organ distribution,pressure gradients,impermeable cell membranes and lysosomal degradation without the need of any complex chemical modifications.The realization of overcoming multiple biological barriers by zwitterionic nDDS may simplify the current overly complex design of nDDS,which could facilitate their better clinical translation.Herein,we summarise the recent progress of zwitterionic nDDS at overcoming various biological barriers and analyse their underlyingmechanisms.Finally,prospects and challenges are introduced to guide the rational design of zwitterionic nDDS for disease treatment. 展开更多
关键词 zwitterionic polymer Nano drug delivery system Biological barrier Targeting delivery Disease treatment
暂未订购
Bacterial Cellulose/Zwitterionic Dual-network Porous Gel Polymer Electrolytes with High Ionic Conductivity
19
作者 侯朝霞 WANG Haoran QU Chenying 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期596-605,共10页
Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with... Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with high ionic conductivity.The dual network structure BC/P(AM-co-SBMA)gels were formed by a simple one-step polymerization method.The results show that ionic conductivity of BC/P(AM-co-SBMA)GPEs at the room temperature are 3.2×10^(-2) S/cm@1 M H_(2)SO_(4),4.5×10^(-2) S/cm@4 M KOH,and 3.6×10^(-2) S/cm@1 M NaCl,respectively.Using active carbon(AC)as the electrodes,BC/P(AM-co-SBMA)GPEs as both separator and electrolyte matrix,and 4 M KOH as the electrolyte,a symmetric solid supercapacitors(SSC)(AC-GPE-KOH)was assembled and testified.The specific capacitance of AC electrode is 173 F/g and remains 95.0%of the initial value after 5000 cycles and 86.2%after 10,000 cycles. 展开更多
关键词 bacterial cellulose zwitterion gel polymer electrolytes ionic conductivity dual-network structure
原文传递
Zwitterionic ring-opening polymerization of macrocyclic ethyleneoxy-substituted carbonate:Access to cyclic PEG-like polycarbonate
20
作者 Jin Huang Jinwen Li +7 位作者 Rui Yan Yuanyuan Qu Fengzhen Guo Lei Shen Can-liang Ma Jie Sun Zhenjiang Li Kai Guo 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第3期282-286,共5页
The innovation in polymer design to rival conventional polyethylene glycol(PEG)is an important approach to achieving a more sustainable society.Here,cyclic PEG-like polycarbonates having high molecular weight(4.4–49.... The innovation in polymer design to rival conventional polyethylene glycol(PEG)is an important approach to achieving a more sustainable society.Here,cyclic PEG-like polycarbonates having high molecular weight(4.4–49.5 kg/mol)were enabled through zwitterionic ring-opening polymerization(ZROP)of macrocyclic carbonates(MCs)mediated by N-heterocyclic carbene(NHC).The thermodynamic behavior of polymerization depends on the ring size of monomers.During this process,the ZROP of 11-membered MC was driven by the change of enthalpy(ΔH_(p))which differed from the ZROP of 14-membered MC driven by the entropic change(ΔS_(p)).Cyclic polycarbonates depicted improved thermostability(T_(d5%)≥204℃)and higher glass transition temperatures(T_(g)>–40℃)in comparison to their linear analogues(T_(d5%)≤185℃,T_(g)~–50℃).In addition,the mechanism of ZROP of MC was addressed through computational study.A distinct mechanism of polymerization distinguishable from the well-known NHC-mediated ZROP of cyclic esters was revealed,where the zwitterion from nucleophilic addition to MC,i.e.tetrahedral intermediate,cannot be ring-opened probably due to the delocalization of negative charge on the carbonate group,but serves as an active center for the polymerization.In comparison to PEG,the attained polymer demonstrated comparable hydrophilic and biocompatible properties,as revealed by the results of contact angle and in vitro cytotoxicity studies,suggesting that cyclic polycarbonate hold the promise as the alternative of PEG. 展开更多
关键词 zwitterionic ring-opening polymerization Cyclic polycarbonate Macrocycles Tetrahedral intermediate NHC carbene
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部