In the realm of sodium-ion batteries(SIBs),Mn-based layered oxide cathodes have garnered considerable attention owing to their anionic redox reactions(ARRs).Compared to other types of popular sodium-ion cathodes,Mn-ba...In the realm of sodium-ion batteries(SIBs),Mn-based layered oxide cathodes have garnered considerable attention owing to their anionic redox reactions(ARRs).Compared to other types of popular sodium-ion cathodes,Mn-based layered oxide cathodes with ARRs exhibit outstanding specific capacity and energy density,making them promising for SIB applications.However,these cathodes still face some scientific challenges that need to be addressed.This review systematically summarizes the composition,structure,oxygen-redox mechanism,and performance of various types of Mn-based cathodes with ARRs,as well as the main scientific challenges they face,including sluggish ion diffusion,cationic migration,O_(2) release,and element dissolution.Currently,to resolve these challenges,efforts mainly focus on six aspects:synthesis methods,structural design,doped modification,electrolyte design,and surface engineering.Finally,this review provides new insights for future direction,encompassing both fundamental research,such as novel cathode types,interface optimization,and interdisciplinary research,and considerations from an industrialization perspective,including scalability,stability,and safety.展开更多
P3-type manganese-iron-based cathodes with high specific capacity and abundant resource have attracted considerable attention for sodium-ion batteries.However,the long-term cycle stability of P3-type cathodes is still...P3-type manganese-iron-based cathodes with high specific capacity and abundant resource have attracted considerable attention for sodium-ion batteries.However,the long-term cycle stability of P3-type cathodes is still not satisfactory.In this work,we design a new quaternary manganese-iron-based cathode material(P3-Na_(0.54)Mn_(0.64)Fe_(_(0.1)6)Mg_(0.1)Cu_(0.1)O_(2))by Cu substitution.The strong covalent Cu-O bonds improve the structural stability and the reversibility of O redox during charge and discharge processes.Cu substitution also mitigates the structure change with less unit cell volume variation,and improves the Na-ion transport kinetics effectively.As a result,NMFMC delivers much improved cycling stability and rate capability compared with NMFM.It reveals that the charge compensation of NMFMC is mainly contributed by Mn^(3+/4+),Fe^(3+/3.5+)and O_(2-/-)during the charge and discharge processes,and Cu substitution can also enhance the activity and reversibility of Fe redox.This strategy provides a new pathway toward improving the stability and O redox reversibility of P3-type cathode materials for sodium-ion batteries.展开更多
Anionic redox reaction(ARR)can provide extra capacity beyond transition metal(TM)redox in lithium-rich TM oxide cathodes.Practical ARR application is much hindered by the structure instability,particularly at the surf...Anionic redox reaction(ARR)can provide extra capacity beyond transition metal(TM)redox in lithium-rich TM oxide cathodes.Practical ARR application is much hindered by the structure instability,particularly at the surface.Oxygen release has been widely accepted as the ringleader of surficial structure instability.However,the role of TM in surface stability has been much overlooked,not to mention its interplay with oxygen release.Herein,TM dissolution and oxygen release are comparatively investigated in Li_(1.2)Ni_(0.2)Mn_(0.6)O_(2).Ni is verified to detach from the lattice counter-intuitively despite the overwhelming stoichiometry of Mn,facilitating subsequent oxygen release of the ARR process.Intriguingly,surface reorganization occurs following regulated Ni dissolution,enabling the stabilization of the surface and elimination of oxygen release in turn.Accordingly,a novel optimization strategy is proposed by adding a relaxation step at 4.50 V within the first cycle procedure.Battery performance can be effectively improved,with voltage decay suppressed from 3.44 mV/cycle to 1.60 mV/cycle,and cycle stability improved from 66.77%to 90.01%after 100 cycles.This work provides new perspectives for clarifying ARR surface instability and guidance for optimizing ARR performance.展开更多
Lithium-rich layered oxides (LLOs) are increasingly recognized as promising cathode materials for nextgeneration high-energy-density lithium-ion batteries (LIBs).However,they suffer from voltage decay and low initial ...Lithium-rich layered oxides (LLOs) are increasingly recognized as promising cathode materials for nextgeneration high-energy-density lithium-ion batteries (LIBs).However,they suffer from voltage decay and low initial Coulombic efficiency (ICE) due to severe structural degradation caused by irreversible O release.Herein,we introduce a three-in-one strategy of increasing Ni and Mn content,along with Li/Ni disordering and TM–O covalency regulation to boost cationic and anionic redox activity simultaneously and thus enhance the electrochemical activity of LLOs.The target material,Li_(1.2)Ni_(0.168)Mn_(0.558)Co_(0.074)O_(2)(L1),exhibits an improved ICE of 87.2%and specific capacity of 293.2 mA h g^(-1)and minimal voltage decay of less than 0.53 m V cycle-1over 300 cycles at 1C,compared to Li_(1.2)Ni_(0.13)Mn_(0.54)Co_(0.13)O_(2)(Ls)(274.4 mA h g^(-1)for initial capacity,73.8%for ICE and voltage decay of 0.84 mV/cycle over 300 cycles at 1C).Theoretical calculations reveal that the density of states (DOS) area near the Fermi energy level for L1 is larger than that of Ls,indicating higher anionic and cationic redox reactivity than Ls.Moreover,L1 exhibits increased O-vacancy formation energy due to higher Li/Ni disordering of 4.76%(quantified by X-ray diffraction Rietveld refinement) and enhanced TM–O covalency,making lattice O release more difficult and thus improving electrochemical stability.The increased Li/Ni disordering also leads to more Ni^(2+)presence in the Li layer,which acts as a pillar during Li+de-embedding,improving structural stability.This research not only presents a viable approach to designing low-Co LLOs with enhanced capacity and ICE but also contributes significantly to the fundamental understanding of structural regulation in high-performance LIB cathodes.展开更多
The rapidly growing electric cars and energy storage systems have extremely promoted the development of advanced lithium and sodium ion batteries and stimulated evolution of high-capacity cathodes.Li/Na-rich layered c...The rapidly growing electric cars and energy storage systems have extremely promoted the development of advanced lithium and sodium ion batteries and stimulated evolution of high-capacity cathodes.Li/Na-rich layered cathodes consisting cationic and anionic reactions as the most typical representative of high-capacity cathodes have shown its tremendous potential.However,there is a long way to go before commercialization because of unsatisfactory performances including large voltage hysteresis,voltage fade and poor cycle performance.Numerous investigations on redox mechanisms and engineering strategies have been performed from the point view of structure and made significant progress,which has been well reviewed.Meanwhile,the unacceptable issues are essentially correlated to the electronic configuration of anionic redox and its interaction with adjacent transition metal cations,which can be well depicted from electronic structure.However,the investigations on anionic reaction process in the viewpoint of electronic structure have been much less summarized.This review aims to compile the current knowledge of anionic redox from the point view of electronic structure,including configuration,origination,evolution,detection and coupling relationship with cationic redox.This work is attempted to inspire new perspectives and design approaches for the development of high-capacity cathodes.展开更多
Na-based layered iron-manganese oxide Na_(0.67)Fe_(0.5)Mn_(0.5)O_(2) containing only low-cost elements is a promising cathode for Na-ion batteries used in large-scale energy storage systems.However,the poor cycle stab...Na-based layered iron-manganese oxide Na_(0.67)Fe_(0.5)Mn_(0.5)O_(2) containing only low-cost elements is a promising cathode for Na-ion batteries used in large-scale energy storage systems.However,the poor cycle stability restricts its practical application.The capacity decay of Na_(0.67)Fe_(0.6)Mn_(0.5)O_(2) mainly originates from the irreversible anionic redox reaction charge compensation due to the high-level hybridization between oxygen and iron.Herein,we rationally design a surface Ti doping strategy to tune the anionic redox reaction activity of Na_(0.67)Fe_(0.5)Mn_(0.5)O_(2) and improve its Na-storage properties.The doped Ti ions not only enlarge the Na migration spacing layer but also improve the structure stability thanks to the strong Ti-O bond.More importantly,the d0-shell electronic structure of Ti^(4+) can suppress the charge transfer from the oxidized anions to cations,thus reducing the anionic redox reaction activity and enhancing the reversibility of charge compensation.The modified Na_(0.67)Fe_(0.5)Mn_(0.5)O_(2) cathode shows a reversible capacity of 198 mA h g^(-1) and an increased capacity retention from 15% to 73% after about1 month of cycling.Meanwhile,a superior Na-ion diffusion kinetics and rate capability are also observed.This work advances the commercialization process of Na-based layered iron-manganese oxide cathodes;on the other hand,the proposed modification strategy paves the way for the design of high-performance electrode materials relying on anionic redox reactions.展开更多
The anionic redox has been widely studied in layered-oxide-cathodes in attempts to achieve highenergy-density for Na-ion batteries(NIBs).It is known that an oxidation state of Mn^(4+) or Ru^(5+) is essential for the a...The anionic redox has been widely studied in layered-oxide-cathodes in attempts to achieve highenergy-density for Na-ion batteries(NIBs).It is known that an oxidation state of Mn^(4+) or Ru^(5+) is essential for the anionic reaction of O^(2-)/O~-to occur during Na^(+) de/intercalation.However,here,we report that the anionic redox can occur in Ru-based layered-oxide-cathodes before full oxidation of Ru^(4+)/Ru^(5+).Combining studies using first-principles calculation and experimental techniques reveals that further Na^(+) deintercalation from P2-Na_(0.33)[Mg_(0.33)Ru_(0.67)]O_(2) is based on anionic oxidation after 0.33 mol Na^(+) deintercalation from P2-Na_(0.67)[Mg_(0.33)Ru_(0.67)]O_(2) with cationic oxidation of Ru^(4+)/Ru^(4.5+).Especially,it is revealed that the only oxygen neighboring 2Mg/1 Ru can participate in the anionic redox during Na^(+) de/intercalation,which implies that the Na-O-Mg arrangement in the P2-Na_(0.33)[M9_(0.33)Ru_(0.67)]O_(2) structure can dramatically lower the thermodynamic stability of the anionic redox than that of cationic redox.Through the O anionic and Ru cationic reaction,P2-Na_(0.67)[Mg_(0.33)Ru_(0.67)]O_(2) exhibits not only a large specific capacity of~172 mA h g^(-1) but also excellent power-capability via facile Na^(+) diffusion and reversible structural change during charge/discharge.These findings suggest a novel strategy that can increase the activity of anionic redox by modulating the local environment around oxygen to develop high-energy-density cathode materials for NIBs.展开更多
Employing cathode materials with multiple redox couples and electrolytes with efficient cation transport kinetics are two effective approaches to improving the electrochemical performance of batteries.In this work,for...Employing cathode materials with multiple redox couples and electrolytes with efficient cation transport kinetics are two effective approaches to improving the electrochemical performance of batteries.In this work,for the first time,we present a design strategy of simultaneously realizing reversible cationic and anionic redox chemistries as well as selective anion/cation transport in the viologen-based COFs(BAVCOF:X,coordinated anions of X=Cl^(-),Br^(-),I^(-),and ClO_(4)^(-))for high-performance Na-ion cathodes.Besides the cationic redox of viologen segments,the different redox activities of anions effectively tune the total capacities of the COFs.Meanwhile,electrochemical analysis and ab-initial molecular dynamics(AIMD)calculation illustrate that the anion/cation transport kinetics of electrolytes caged in the COFs'channels can be selectively tuned by the coordinated anions.As a result,combining high-potential Br-/Br_(2)redox couple,cationic redox of viologen segments,and enhanced Na+transport kinetics,the BAV-COF:Brdemonstrates stable performance with energy densities of 358.7 and 145.2 Wh kg^(-1)at power densities of 116.5 and 2124.1 W kg^(-1),respectively.This study offers new insight into the fabrication of organic cathodes with anionic redox and the advantages of COFs electrode materials in anion/cation transport selectivity for energy storage applications.展开更多
Na-ion batteries(NIBs),as one of the next-generation rechargeable battery systems,hold great potential in large-scale energy storage applications owing to the abundance and costeffectiveness of sodium resources.Despit...Na-ion batteries(NIBs),as one of the next-generation rechargeable battery systems,hold great potential in large-scale energy storage applications owing to the abundance and costeffectiveness of sodium resources.Despite the extensive exploration of electrode materials,the relatively low attainable capacity of NIBs hinders their practical application.In recent years,the anionic redox reaction(ARR)in NIBs has been emerging as a new paradigm to deliver extra capacity and thus offers an opportunity to break through the intrinsic energy density limit.In this review,the fundamental investigation of the ARR mechanism and the latest exploration of cathode materials are summarized,in order to highlight the significance of reversible anionic redox and suggest prospective developing directions.展开更多
A new model material of Na[Mg(Ⅱ)Mn(Ⅳ)]O, with only Mgand Mnin the transition metal layers, is synthesized for the research of anionic redox reaction. The material delivers a capacity of ~130 mAh/g with a long plate...A new model material of Na[Mg(Ⅱ)Mn(Ⅳ)]O, with only Mgand Mnin the transition metal layers, is synthesized for the research of anionic redox reaction. The material delivers a capacity of ~130 mAh/g with a long plateau at ~4.2 V in the initial charge profile, indicating anionic redox reaction(ARR) involved during the initial desodiation process. In the following cycles, the reversible capacity can reach a high value of ~210 mAh/g, which is probably derived from the participation of both ARR and Mn/Mnredox couples, further proving the charge compensation from ARR during the initial charge and following cycles. The designed cathode material without Mnhelps avoid the influence of oxygen activity from transition metals, enabling the investigation of ARR without other distractions.展开更多
Symmetric secondary batteries are expected to become promising storage devices on account of their low cost,environmentally friendly and high safety.Nevertheless,the further development of symmetric batteries needs to...Symmetric secondary batteries are expected to become promising storage devices on account of their low cost,environmentally friendly and high safety.Nevertheless,the further development of symmetric batteries needs to rely on bipolar electrodes with superior performance.Cation-disordered rocksalt(DRX)Li_(2)FeTiO_(4)shows promising properties as symmetric electrodes,based on the ability of iron to undergo multiple electrochemical reactions over a wide voltage window.Unfortunately,this cation-disordered structure would not provide a cross-path for the rapid migration of Li^(+),ultimately resulting in inferior electrochemical dynamics and cycle stability.Herein,Li_(2)FeTiO_(4)nanoparticles assembled by ultrafine nanocrystals are synthesized via a sol-gel method through an orderly reaction regulation strategy of precursor reactants.Such ultrafine nanocrystals increase the active sites to promote the reversibility of multi-cationic(e.g.,stable Fe^(2+)/Fe^(3+),Ti^(3+)/Ti^(4+)and moderated Fe^(3+)/Fe^(4+))and anionic redox,and maintain the DRX structure well during the cycling process.The half cells with nano-sized Li_(2)FeTiO_(4)as the cathode/anode exhibit a high reversible capacity of 127.8/500.8 mAh/g,respectively.Besides,the Li_(2)FeTiO_(4)//Li_(2)FeTiO_(4)symmetric full cell could provide a reversible capacity of 95.4 mAh/g at 0.1 A/g after 200 cycles.This hierarchical self-assembly by nanocrystal strategy could offer effective guidance for high-performance electrode design for rechargeable secondary batteries.展开更多
Sodium-ion batteries(SIBs) have demonstrated great application prospects in large-scale energy storage systems and low-speed electric vehicles due to the cost effectiveness and abundant resources. Layered transition-m...Sodium-ion batteries(SIBs) have demonstrated great application prospects in large-scale energy storage systems and low-speed electric vehicles due to the cost effectiveness and abundant resources. Layered transition-metal oxides are recognized as one of the most attractive sodium-ion storage cathode candidates by virtue of their high compositional diversity, environmental friendliness, ease of synthesis, and promising theoretical capacities. The practicability, however, is still limited by the fact that the energy densities of most Na-storage layered oxide cathodes solely using the conventional cationic redox are not comparable to those of the lithium-ion storage counterparts. Recently, the strategy of activating anionic redox(O^(2-)/O^(n-)) which is popular in Li-rich layered materials has been successfully applied in oxide cathodes of SIBs to promote the energy density to a new level. It is interesting to note that excess Na is not the prerequisite to induce anionic redox in sodium oxides, indicating a new mechanism underlying Na-ion materials. Herein, the latest advances on the anionic redox chemistry in layered oxide cathodes for SIBs,including the fundamental theories, triggering strategies, and applicable cathode materials, are comprehensively reviewed.Moreover, the challenges(mainly O_(2) release) facing anionic redox are discussed, and the possible remedies are outlined for future developments toward a highly reversible oxygen usage. We believe that this review can provide a valuable guidance for the exploration of high-energy layered oxide cathode materials of SIBs.展开更多
Lithium-rich cathode oxides with capability to realize multivalent cationic and anionic redox reactions have attracted much attention as promising candidate electrode materials for high energy density lithium ion batt...Lithium-rich cathode oxides with capability to realize multivalent cationic and anionic redox reactions have attracted much attention as promising candidate electrode materials for high energy density lithium ion batteries because of their ultrahigh specific capacity. However, redox reaction mechanisms, especially for the anionic redox reaction of these materials, are still not very clear. Meanwhile, several pivotal challenges associated with the redox reactions mechanisms, such as structural instability and limited cycle life, hinder the practical applications of these high-capacity lithium-rich cathode oxides. Herein, we review the lithium-rich oxides with various crystal structures. The multivalent cationic/anionic redox reaction mechanisms of several representative high capacity lithium-rich cathode oxides are discussed, attempting to understand the origins of the high lithium storage capacities of these materials. In addition, we provide perspectives for the further development of these lithium-rich cathode oxides based on multivalent cationic and anionic redox reactions, focusing on addressing the fundamental problems and promoting their practical applications.展开更多
The anionic redox reaction(ARR)is a promising charge contributor to improve the reversible capacity of layeredoxide cathodes for Na-ion batteries;however,some practical bottlenecks still need to be eliminated,includin...The anionic redox reaction(ARR)is a promising charge contributor to improve the reversible capacity of layeredoxide cathodes for Na-ion batteries;however,some practical bottlenecks still need to be eliminated,including a low capacity retention,large voltage hysteresis,and low rate capability.Herein,we proposed a high-Na content honeycomb-ordered cathode,P2–Na_(5/6)[Li_(1/6)Cu_(1/6)Mn_(2/3)]O_(2)(P2-NLCMO),with combined cationic/anionic redox.Neutron powder diffraction and X-ray diffraction of P2-NLCMO suggested P2-type stacking with rarely found P6322 symmetry.In addition,advanced spectroscopy techniques and density functional theory calculations confirmed the synergistic stabilizing relationship between the Li/Cu dual honeycomb centers,achieving fully active Cu^(3+)/Cu^(2+) redox and stabilized ARR with interactively suppressed local distortion.With a meticulously regulated charge/discharge protocol,both the cycling and rate capability of P2-NLCMO were significantly.展开更多
The emergence of anionic redox reactions in layered transition metal oxide cathodes provides practical opportunity to boost the energy density of rechargeable batteries.However,the activation of anionic redox reaction...The emergence of anionic redox reactions in layered transition metal oxide cathodes provides practical opportunity to boost the energy density of rechargeable batteries.However,the activation of anionic redox reaction in layered oxides has significant voltage hysteresis and decay that reduce battery performance and limit commercialization.Here,we critically review the up-todate development of anionic redox reaction in layered oxide cathodes,summarize the proposed reaction mechanism,and unveil their connection to voltage hysteresis and decay based on the state-of-the-art progress.In addition,advances associated with various modification approaches to mitigate the voltage hysteresis/decay in layered transition metal oxide cathodes are also included.Finally,we conclude with an appraisal of further research directions including rational design of high-performance layered oxide cathodes with reversible anionic redox reactions and suppressed voltage hysteresis/decay.Findings will be of immediate benefit to the development of layered oxide cathodes for high performance rechargeable batteries.展开更多
Oxygen anion redox chemistry in layered oxide cathodes for sodium-ion batteries has attracted great interest.However,the release of lattice oxygen caused by the irreversible anionic redox and Jahn–Teller effect accel...Oxygen anion redox chemistry in layered oxide cathodes for sodium-ion batteries has attracted great interest.However,the release of lattice oxygen caused by the irreversible anionic redox and Jahn–Teller effect accelerates the structural distortion and electrochemical degradation.Herein,we rationally construct a stable crystal lattice to enhance the reactivity and reversibility of oxygen redox and inhibit the Jahn–Teller effect by Sn doping.The stronger binding energy of Sn–O enhances the structural stability of the cathode,which is favorable to suppress the oxygen release and Jahn–Teller effect.Thus,the reversibility of oxygen redox and the stability of the layered structure are enhanced.The expansion of the interlayer spacing decreases the energy barriers for Na+ion intercalation,improving the rate performance of the electrode.Benefitting from the rational design,the electrode delivers an enhanced rate performance and cycling stability.This work offers some insights into tuning the oxygen anion redox chemistry as well as suppressing the Jahn–Teller effect by lattice modulation.展开更多
Enhancing the specific capacity of P2-type layered oxide cathodes via elevating the upper operation voltage would inevitably deteriorate electrochemical properties owing to the irreversible anionic redox reaction at h...Enhancing the specific capacity of P2-type layered oxide cathodes via elevating the upper operation voltage would inevitably deteriorate electrochemical properties owing to the irreversible anionic redox reaction at high voltage.In this work,the strategy of the electron donor was utilized to address this issue.Remarkably,the earth-abundant P2-layered cathode Na_(2/3)Al_(1/6)Fe_(1/6)Mn_(2/3)O_(2)with the presence of K_(2)S renders superior rate capability(187.4 and 79.5 mA h g^(-1)at 20 and 1000 mA g^(-1))and cycling stability(a capacity retention of 85.6% over 300 cycles at 1000 mA g^(-1))within the voltage region of 2-4.4 V Na^(+)/Na.Furthermore,excellent electrochemical performance is also demonstrated in the full cell.Detailed structural analysis of as-proposed composite cathode illustrates that even at 4.4 V irreversible phase transition can be avoided as well as a cell volume variation of only 0.88%,which are attributed to the enhanced performance compared with the control group.Meanwhile,further investigation of charge compensation reveals the crucial role of sulfur ions in actively control of reversible redox reaction of oxygen species in the lattice structure.This work inspires a new strategy to enhance the structural stability of layered sodium ion cathode materials at high voltages.展开更多
The polymerization of acrylonitrile (AN) in aqueous nitric acid initiated by metavanadate-containing anion exchange resin (PV)-thiourea (TU) redox system at 20—40℃. has been investigated. The overall rate of polymer...The polymerization of acrylonitrile (AN) in aqueous nitric acid initiated by metavanadate-containing anion exchange resin (PV)-thiourea (TU) redox system at 20—40℃. has been investigated. The overall rate of polymerization (R_p) is given byR_p=1.92×10~4e^(-6.860/RT) [AN]^(1.2) [PV]^(0.44) [TU]^(1.0)[HNO_3]^(1.0)The kinetic parameters differed from those of V^(5+)-TU system indicated that the generation of the primary radicals is mainly a difffusion-controlled reaction. The effect of macromolecular field arisen from the polymer matrix exerts a great influence on the polymerization process.展开更多
Due to a high energy density,layered transition-metal oxides have gained much attention as the promising sodium-ion batteries cathodes.However,they readily suffer from multiple phase transitions during the Na extracti...Due to a high energy density,layered transition-metal oxides have gained much attention as the promising sodium-ion batteries cathodes.However,they readily suffer from multiple phase transitions during the Na extraction process,resulting in large lattice strains which are the origin of cycledstructure degradations.Here,we demonstrate that the Na-storage lattice strains of layered oxides can be reduced by pushing charge transfer on anions(O^(2-)).Specifically,the designed O3-type Ru-based model compound,which shows an increased charge transfer on anions,displays retarded O3-P3-O1 multiple phase transitions and obviously reduced lattice strains upon cycling as directly revealed by a combination of ex situ X-ray absorption spectroscopy,in situ X-ray diffraction and geometric phase analysis.Meanwhile,the stable Na-storage lattice structure leads to a superior cycling stability with an excellent capacity retention of 84%and ultralow voltage decay of 0.2 mV/cycle after 300 cycles.More broadly,our work highlights an intrinsically structure-regulation strategy to enable a stable cycling structure of layered oxides meanwhile increasing the materials’redox activity and Nadiffusion kinetics.展开更多
The application of Li-rich Mn-based cathodes, the most promising candidates for high-energy-density Liion batteries, in all-solid-state batteries can further enhance the safety and stability of battery systems.However...The application of Li-rich Mn-based cathodes, the most promising candidates for high-energy-density Liion batteries, in all-solid-state batteries can further enhance the safety and stability of battery systems.However, the utilization of high-capacity Li-rich cathodes has been limited by sluggish kinetics and severe interfacial issues in all-solid-state batteries. Here, a multi-functional interface modification strategy involving dispersed submicron single-crystal structure and multi-functional surface modification layer obtained through in-situ interfacial chemical reactions was designed to improve the electrochemical performance of Li-rich Mn-based cathodes in all-solid-state batteries. The design of submicron single-crystal structure promotes the interface contact between the cathode particles and the solid-state electrolyte,and thus constructs a more complete ion and electron conductive network in the composite cathode.Furthermore, the Li-gradient layer and the lithium molybdate coating layer constructed on the surface of single-crystal Li-rich particles accelerate the transport of Li ions at the interface, suppress the side reactions between cathodes and electrolyte, and inhibit the oxygen release on the cathode surface. The optimized Li-rich cathode materials exhibit excellent electrochemical performance in halide all-solid-state batteries. This study emphasizes the vital importance of reaction kinetics and interfacial stability of Lirich cathodes in all-solid-state batteries and provides a facile modification strategy to enhance the electrochemical performance of all-solid-state batteries based on Li-rich cathodes.展开更多
基金National Key Research and Development Program of China,Grant/Award Number:2022YFB2502000National Natural Science Foundation of China,Grant/Award Number:52207244。
文摘In the realm of sodium-ion batteries(SIBs),Mn-based layered oxide cathodes have garnered considerable attention owing to their anionic redox reactions(ARRs).Compared to other types of popular sodium-ion cathodes,Mn-based layered oxide cathodes with ARRs exhibit outstanding specific capacity and energy density,making them promising for SIB applications.However,these cathodes still face some scientific challenges that need to be addressed.This review systematically summarizes the composition,structure,oxygen-redox mechanism,and performance of various types of Mn-based cathodes with ARRs,as well as the main scientific challenges they face,including sluggish ion diffusion,cationic migration,O_(2) release,and element dissolution.Currently,to resolve these challenges,efforts mainly focus on six aspects:synthesis methods,structural design,doped modification,electrolyte design,and surface engineering.Finally,this review provides new insights for future direction,encompassing both fundamental research,such as novel cathode types,interface optimization,and interdisciplinary research,and considerations from an industrialization perspective,including scalability,stability,and safety.
基金supported by the National Key Scientific Research Project(No.2022YFB2502300)the National Natural Science Foundation of China(No.52071085).
文摘P3-type manganese-iron-based cathodes with high specific capacity and abundant resource have attracted considerable attention for sodium-ion batteries.However,the long-term cycle stability of P3-type cathodes is still not satisfactory.In this work,we design a new quaternary manganese-iron-based cathode material(P3-Na_(0.54)Mn_(0.64)Fe_(_(0.1)6)Mg_(0.1)Cu_(0.1)O_(2))by Cu substitution.The strong covalent Cu-O bonds improve the structural stability and the reversibility of O redox during charge and discharge processes.Cu substitution also mitigates the structure change with less unit cell volume variation,and improves the Na-ion transport kinetics effectively.As a result,NMFMC delivers much improved cycling stability and rate capability compared with NMFM.It reveals that the charge compensation of NMFMC is mainly contributed by Mn^(3+/4+),Fe^(3+/3.5+)and O_(2-/-)during the charge and discharge processes,and Cu substitution can also enhance the activity and reversibility of Fe redox.This strategy provides a new pathway toward improving the stability and O redox reversibility of P3-type cathode materials for sodium-ion batteries.
基金supported by the National Key Research and Development Program (2019YFA0405601)National Science Foundation of China(No. 22309097, 22179066, 21902179)+1 种基金Shandong Provincial Natural Science Foundation (2023KJ228, ZR2021QE061, ZR202103010205)the Startup Foundation for Advanced Talents in Qingdao University (DC2000005106)
文摘Anionic redox reaction(ARR)can provide extra capacity beyond transition metal(TM)redox in lithium-rich TM oxide cathodes.Practical ARR application is much hindered by the structure instability,particularly at the surface.Oxygen release has been widely accepted as the ringleader of surficial structure instability.However,the role of TM in surface stability has been much overlooked,not to mention its interplay with oxygen release.Herein,TM dissolution and oxygen release are comparatively investigated in Li_(1.2)Ni_(0.2)Mn_(0.6)O_(2).Ni is verified to detach from the lattice counter-intuitively despite the overwhelming stoichiometry of Mn,facilitating subsequent oxygen release of the ARR process.Intriguingly,surface reorganization occurs following regulated Ni dissolution,enabling the stabilization of the surface and elimination of oxygen release in turn.Accordingly,a novel optimization strategy is proposed by adding a relaxation step at 4.50 V within the first cycle procedure.Battery performance can be effectively improved,with voltage decay suppressed from 3.44 mV/cycle to 1.60 mV/cycle,and cycle stability improved from 66.77%to 90.01%after 100 cycles.This work provides new perspectives for clarifying ARR surface instability and guidance for optimizing ARR performance.
基金National Natural Science Foundation of China (No.52202046)Natural Science Foundation of Shaanxi Province (No.2021JQ-034)。
文摘Lithium-rich layered oxides (LLOs) are increasingly recognized as promising cathode materials for nextgeneration high-energy-density lithium-ion batteries (LIBs).However,they suffer from voltage decay and low initial Coulombic efficiency (ICE) due to severe structural degradation caused by irreversible O release.Herein,we introduce a three-in-one strategy of increasing Ni and Mn content,along with Li/Ni disordering and TM–O covalency regulation to boost cationic and anionic redox activity simultaneously and thus enhance the electrochemical activity of LLOs.The target material,Li_(1.2)Ni_(0.168)Mn_(0.558)Co_(0.074)O_(2)(L1),exhibits an improved ICE of 87.2%and specific capacity of 293.2 mA h g^(-1)and minimal voltage decay of less than 0.53 m V cycle-1over 300 cycles at 1C,compared to Li_(1.2)Ni_(0.13)Mn_(0.54)Co_(0.13)O_(2)(Ls)(274.4 mA h g^(-1)for initial capacity,73.8%for ICE and voltage decay of 0.84 mV/cycle over 300 cycles at 1C).Theoretical calculations reveal that the density of states (DOS) area near the Fermi energy level for L1 is larger than that of Ls,indicating higher anionic and cationic redox reactivity than Ls.Moreover,L1 exhibits increased O-vacancy formation energy due to higher Li/Ni disordering of 4.76%(quantified by X-ray diffraction Rietveld refinement) and enhanced TM–O covalency,making lattice O release more difficult and thus improving electrochemical stability.The increased Li/Ni disordering also leads to more Ni^(2+)presence in the Li layer,which acts as a pillar during Li+de-embedding,improving structural stability.This research not only presents a viable approach to designing low-Co LLOs with enhanced capacity and ICE but also contributes significantly to the fundamental understanding of structural regulation in high-performance LIB cathodes.
基金financially supported by the National Key Research and Development Program of China(No.2019YFA0405601)the National Natural Science Foundation of China(No.52130202)the Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology(No.2022yjrc105)。
文摘The rapidly growing electric cars and energy storage systems have extremely promoted the development of advanced lithium and sodium ion batteries and stimulated evolution of high-capacity cathodes.Li/Na-rich layered cathodes consisting cationic and anionic reactions as the most typical representative of high-capacity cathodes have shown its tremendous potential.However,there is a long way to go before commercialization because of unsatisfactory performances including large voltage hysteresis,voltage fade and poor cycle performance.Numerous investigations on redox mechanisms and engineering strategies have been performed from the point view of structure and made significant progress,which has been well reviewed.Meanwhile,the unacceptable issues are essentially correlated to the electronic configuration of anionic redox and its interaction with adjacent transition metal cations,which can be well depicted from electronic structure.However,the investigations on anionic reaction process in the viewpoint of electronic structure have been much less summarized.This review aims to compile the current knowledge of anionic redox from the point view of electronic structure,including configuration,origination,evolution,detection and coupling relationship with cationic redox.This work is attempted to inspire new perspectives and design approaches for the development of high-capacity cathodes.
基金supported by the National Natural Science Foundation of China (Grant No. 12105197)the Science Center of the National Science Foundation of China (Grant No. 52088101)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant ZDKYYQ20170001)。
文摘Na-based layered iron-manganese oxide Na_(0.67)Fe_(0.5)Mn_(0.5)O_(2) containing only low-cost elements is a promising cathode for Na-ion batteries used in large-scale energy storage systems.However,the poor cycle stability restricts its practical application.The capacity decay of Na_(0.67)Fe_(0.6)Mn_(0.5)O_(2) mainly originates from the irreversible anionic redox reaction charge compensation due to the high-level hybridization between oxygen and iron.Herein,we rationally design a surface Ti doping strategy to tune the anionic redox reaction activity of Na_(0.67)Fe_(0.5)Mn_(0.5)O_(2) and improve its Na-storage properties.The doped Ti ions not only enlarge the Na migration spacing layer but also improve the structure stability thanks to the strong Ti-O bond.More importantly,the d0-shell electronic structure of Ti^(4+) can suppress the charge transfer from the oxidized anions to cations,thus reducing the anionic redox reaction activity and enhancing the reversibility of charge compensation.The modified Na_(0.67)Fe_(0.5)Mn_(0.5)O_(2) cathode shows a reversible capacity of 198 mA h g^(-1) and an increased capacity retention from 15% to 73% after about1 month of cycling.Meanwhile,a superior Na-ion diffusion kinetics and rate capability are also observed.This work advances the commercialization process of Na-based layered iron-manganese oxide cathodes;on the other hand,the proposed modification strategy paves the way for the design of high-performance electrode materials relying on anionic redox reactions.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (2021R1A2C1014280)supported by the “Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-004)+1 种基金the Fundamental Research Program of the Korea Institute of Material Science (KIMS) (PNK9370)the calculation resources were supported by the Supercomputing Center in Korea Institute of Science and Technology Information (KISTI) (KSC-2022-CRE-0030)。
文摘The anionic redox has been widely studied in layered-oxide-cathodes in attempts to achieve highenergy-density for Na-ion batteries(NIBs).It is known that an oxidation state of Mn^(4+) or Ru^(5+) is essential for the anionic reaction of O^(2-)/O~-to occur during Na^(+) de/intercalation.However,here,we report that the anionic redox can occur in Ru-based layered-oxide-cathodes before full oxidation of Ru^(4+)/Ru^(5+).Combining studies using first-principles calculation and experimental techniques reveals that further Na^(+) deintercalation from P2-Na_(0.33)[Mg_(0.33)Ru_(0.67)]O_(2) is based on anionic oxidation after 0.33 mol Na^(+) deintercalation from P2-Na_(0.67)[Mg_(0.33)Ru_(0.67)]O_(2) with cationic oxidation of Ru^(4+)/Ru^(4.5+).Especially,it is revealed that the only oxygen neighboring 2Mg/1 Ru can participate in the anionic redox during Na^(+) de/intercalation,which implies that the Na-O-Mg arrangement in the P2-Na_(0.33)[M9_(0.33)Ru_(0.67)]O_(2) structure can dramatically lower the thermodynamic stability of the anionic redox than that of cationic redox.Through the O anionic and Ru cationic reaction,P2-Na_(0.67)[Mg_(0.33)Ru_(0.67)]O_(2) exhibits not only a large specific capacity of~172 mA h g^(-1) but also excellent power-capability via facile Na^(+) diffusion and reversible structural change during charge/discharge.These findings suggest a novel strategy that can increase the activity of anionic redox by modulating the local environment around oxygen to develop high-energy-density cathode materials for NIBs.
基金supported by the NSFC/RGC Joint Research Scheme 2020/21(Project No:N_City U104/20)。
文摘Employing cathode materials with multiple redox couples and electrolytes with efficient cation transport kinetics are two effective approaches to improving the electrochemical performance of batteries.In this work,for the first time,we present a design strategy of simultaneously realizing reversible cationic and anionic redox chemistries as well as selective anion/cation transport in the viologen-based COFs(BAVCOF:X,coordinated anions of X=Cl^(-),Br^(-),I^(-),and ClO_(4)^(-))for high-performance Na-ion cathodes.Besides the cationic redox of viologen segments,the different redox activities of anions effectively tune the total capacities of the COFs.Meanwhile,electrochemical analysis and ab-initial molecular dynamics(AIMD)calculation illustrate that the anion/cation transport kinetics of electrolytes caged in the COFs'channels can be selectively tuned by the coordinated anions.As a result,combining high-potential Br-/Br_(2)redox couple,cationic redox of viologen segments,and enhanced Na+transport kinetics,the BAV-COF:Brdemonstrates stable performance with energy densities of 358.7 and 145.2 Wh kg^(-1)at power densities of 116.5 and 2124.1 W kg^(-1),respectively.This study offers new insight into the fabrication of organic cathodes with anionic redox and the advantages of COFs electrode materials in anion/cation transport selectivity for energy storage applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51725206 and 52002394)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA21070500).
文摘Na-ion batteries(NIBs),as one of the next-generation rechargeable battery systems,hold great potential in large-scale energy storage applications owing to the abundance and costeffectiveness of sodium resources.Despite the extensive exploration of electrode materials,the relatively low attainable capacity of NIBs hinders their practical application.In recent years,the anionic redox reaction(ARR)in NIBs has been emerging as a new paradigm to deliver extra capacity and thus offers an opportunity to break through the intrinsic energy density limit.In this review,the fundamental investigation of the ARR mechanism and the latest exploration of cathode materials are summarized,in order to highlight the significance of reversible anionic redox and suggest prospective developing directions.
基金supported by funding from Science and Technology Project of the State Grid Corporation of China("research on key technology of low-strain layered oxides for long-life Na-ion batteries",No.DG71-16-027)
文摘A new model material of Na[Mg(Ⅱ)Mn(Ⅳ)]O, with only Mgand Mnin the transition metal layers, is synthesized for the research of anionic redox reaction. The material delivers a capacity of ~130 mAh/g with a long plateau at ~4.2 V in the initial charge profile, indicating anionic redox reaction(ARR) involved during the initial desodiation process. In the following cycles, the reversible capacity can reach a high value of ~210 mAh/g, which is probably derived from the participation of both ARR and Mn/Mnredox couples, further proving the charge compensation from ARR during the initial charge and following cycles. The designed cathode material without Mnhelps avoid the influence of oxygen activity from transition metals, enabling the investigation of ARR without other distractions.
基金supported by the National Natural Science Foundation of China(No.22278347)the Excellent Doctoral Student Research Innovation Project of Xinjiang University of China(No.XJU2022BS048)the Postgraduate Innovation Project of Xinjiang Uygur Autonomous Region of China(No.XJ2023G027)。
文摘Symmetric secondary batteries are expected to become promising storage devices on account of their low cost,environmentally friendly and high safety.Nevertheless,the further development of symmetric batteries needs to rely on bipolar electrodes with superior performance.Cation-disordered rocksalt(DRX)Li_(2)FeTiO_(4)shows promising properties as symmetric electrodes,based on the ability of iron to undergo multiple electrochemical reactions over a wide voltage window.Unfortunately,this cation-disordered structure would not provide a cross-path for the rapid migration of Li^(+),ultimately resulting in inferior electrochemical dynamics and cycle stability.Herein,Li_(2)FeTiO_(4)nanoparticles assembled by ultrafine nanocrystals are synthesized via a sol-gel method through an orderly reaction regulation strategy of precursor reactants.Such ultrafine nanocrystals increase the active sites to promote the reversibility of multi-cationic(e.g.,stable Fe^(2+)/Fe^(3+),Ti^(3+)/Ti^(4+)and moderated Fe^(3+)/Fe^(4+))and anionic redox,and maintain the DRX structure well during the cycling process.The half cells with nano-sized Li_(2)FeTiO_(4)as the cathode/anode exhibit a high reversible capacity of 127.8/500.8 mAh/g,respectively.Besides,the Li_(2)FeTiO_(4)//Li_(2)FeTiO_(4)symmetric full cell could provide a reversible capacity of 95.4 mAh/g at 0.1 A/g after 200 cycles.This hierarchical self-assembly by nanocrystal strategy could offer effective guidance for high-performance electrode design for rechargeable secondary batteries.
基金financially supported by the National Natural Science Foundation of China(21805007,21825102,22075016,and 21731001)the National Key Research and Development Program of China(2018YFA0703702)+1 种基金the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(CAST,2018QNRC001)the Fundamental Research Funds for the Central Universities(FRF-TP20-020A3)。
文摘Sodium-ion batteries(SIBs) have demonstrated great application prospects in large-scale energy storage systems and low-speed electric vehicles due to the cost effectiveness and abundant resources. Layered transition-metal oxides are recognized as one of the most attractive sodium-ion storage cathode candidates by virtue of their high compositional diversity, environmental friendliness, ease of synthesis, and promising theoretical capacities. The practicability, however, is still limited by the fact that the energy densities of most Na-storage layered oxide cathodes solely using the conventional cationic redox are not comparable to those of the lithium-ion storage counterparts. Recently, the strategy of activating anionic redox(O^(2-)/O^(n-)) which is popular in Li-rich layered materials has been successfully applied in oxide cathodes of SIBs to promote the energy density to a new level. It is interesting to note that excess Na is not the prerequisite to induce anionic redox in sodium oxides, indicating a new mechanism underlying Na-ion materials. Herein, the latest advances on the anionic redox chemistry in layered oxide cathodes for SIBs,including the fundamental theories, triggering strategies, and applicable cathode materials, are comprehensively reviewed.Moreover, the challenges(mainly O_(2) release) facing anionic redox are discussed, and the possible remedies are outlined for future developments toward a highly reversible oxygen usage. We believe that this review can provide a valuable guidance for the exploration of high-energy layered oxide cathode materials of SIBs.
基金supported by the National Key Research and Development Program of China (2016YFA202500)the “One Hundred Talent Project” of the Chinese Academy of Sciencesthe National Natural Science Foundation of China (11675255)
文摘Lithium-rich cathode oxides with capability to realize multivalent cationic and anionic redox reactions have attracted much attention as promising candidate electrode materials for high energy density lithium ion batteries because of their ultrahigh specific capacity. However, redox reaction mechanisms, especially for the anionic redox reaction of these materials, are still not very clear. Meanwhile, several pivotal challenges associated with the redox reactions mechanisms, such as structural instability and limited cycle life, hinder the practical applications of these high-capacity lithium-rich cathode oxides. Herein, we review the lithium-rich oxides with various crystal structures. The multivalent cationic/anionic redox reaction mechanisms of several representative high capacity lithium-rich cathode oxides are discussed, attempting to understand the origins of the high lithium storage capacities of these materials. In addition, we provide perspectives for the further development of these lithium-rich cathode oxides based on multivalent cationic and anionic redox reactions, focusing on addressing the fundamental problems and promoting their practical applications.
基金supported by the National Natural Science Foundation(NSFC)of China(52002394)Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)Youth Innovation Promotion Association of the Chinese Academy of Sciences(2020006).
文摘The anionic redox reaction(ARR)is a promising charge contributor to improve the reversible capacity of layeredoxide cathodes for Na-ion batteries;however,some practical bottlenecks still need to be eliminated,including a low capacity retention,large voltage hysteresis,and low rate capability.Herein,we proposed a high-Na content honeycomb-ordered cathode,P2–Na_(5/6)[Li_(1/6)Cu_(1/6)Mn_(2/3)]O_(2)(P2-NLCMO),with combined cationic/anionic redox.Neutron powder diffraction and X-ray diffraction of P2-NLCMO suggested P2-type stacking with rarely found P6322 symmetry.In addition,advanced spectroscopy techniques and density functional theory calculations confirmed the synergistic stabilizing relationship between the Li/Cu dual honeycomb centers,achieving fully active Cu^(3+)/Cu^(2+) redox and stabilized ARR with interactively suppressed local distortion.With a meticulously regulated charge/discharge protocol,both the cycling and rate capability of P2-NLCMO were significantly.
基金the support of China Scholarship Council(No.202108430035)G.M.L.acknowledges the Australian Institute of Nuclear Science and Engineering(AINSE)Limited for financial assistance in the form of a Post Graduate Research Award(PGRA)supported by the Australian Research Council(Nos.DP200101862,DP210101486,and FL210100050).
文摘The emergence of anionic redox reactions in layered transition metal oxide cathodes provides practical opportunity to boost the energy density of rechargeable batteries.However,the activation of anionic redox reaction in layered oxides has significant voltage hysteresis and decay that reduce battery performance and limit commercialization.Here,we critically review the up-todate development of anionic redox reaction in layered oxide cathodes,summarize the proposed reaction mechanism,and unveil their connection to voltage hysteresis and decay based on the state-of-the-art progress.In addition,advances associated with various modification approaches to mitigate the voltage hysteresis/decay in layered transition metal oxide cathodes are also included.Finally,we conclude with an appraisal of further research directions including rational design of high-performance layered oxide cathodes with reversible anionic redox reactions and suppressed voltage hysteresis/decay.Findings will be of immediate benefit to the development of layered oxide cathodes for high performance rechargeable batteries.
基金the National Natural Science Foundation of China(grant nos.11975238 and 11575192)the Chinese Academy of Sciences(grant nos.ZDKYYQ20170001,211211KYSB20170060,and 211211KYSB20180020)the Natural Science Foundation of Beijing Municipality(grant no.2182082).
文摘Oxygen anion redox chemistry in layered oxide cathodes for sodium-ion batteries has attracted great interest.However,the release of lattice oxygen caused by the irreversible anionic redox and Jahn–Teller effect accelerates the structural distortion and electrochemical degradation.Herein,we rationally construct a stable crystal lattice to enhance the reactivity and reversibility of oxygen redox and inhibit the Jahn–Teller effect by Sn doping.The stronger binding energy of Sn–O enhances the structural stability of the cathode,which is favorable to suppress the oxygen release and Jahn–Teller effect.Thus,the reversibility of oxygen redox and the stability of the layered structure are enhanced.The expansion of the interlayer spacing decreases the energy barriers for Na+ion intercalation,improving the rate performance of the electrode.Benefitting from the rational design,the electrode delivers an enhanced rate performance and cycling stability.This work offers some insights into tuning the oxygen anion redox chemistry as well as suppressing the Jahn–Teller effect by lattice modulation.
基金funding support from the Beijing Natural Science Foundation(2252055)National Natural Science Foundation of China(52072033)BIT Research and Innovation Promoting Project(2024YCXY040,GIIP2023-34)。
文摘Enhancing the specific capacity of P2-type layered oxide cathodes via elevating the upper operation voltage would inevitably deteriorate electrochemical properties owing to the irreversible anionic redox reaction at high voltage.In this work,the strategy of the electron donor was utilized to address this issue.Remarkably,the earth-abundant P2-layered cathode Na_(2/3)Al_(1/6)Fe_(1/6)Mn_(2/3)O_(2)with the presence of K_(2)S renders superior rate capability(187.4 and 79.5 mA h g^(-1)at 20 and 1000 mA g^(-1))and cycling stability(a capacity retention of 85.6% over 300 cycles at 1000 mA g^(-1))within the voltage region of 2-4.4 V Na^(+)/Na.Furthermore,excellent electrochemical performance is also demonstrated in the full cell.Detailed structural analysis of as-proposed composite cathode illustrates that even at 4.4 V irreversible phase transition can be avoided as well as a cell volume variation of only 0.88%,which are attributed to the enhanced performance compared with the control group.Meanwhile,further investigation of charge compensation reveals the crucial role of sulfur ions in actively control of reversible redox reaction of oxygen species in the lattice structure.This work inspires a new strategy to enhance the structural stability of layered sodium ion cathode materials at high voltages.
文摘The polymerization of acrylonitrile (AN) in aqueous nitric acid initiated by metavanadate-containing anion exchange resin (PV)-thiourea (TU) redox system at 20—40℃. has been investigated. The overall rate of polymerization (R_p) is given byR_p=1.92×10~4e^(-6.860/RT) [AN]^(1.2) [PV]^(0.44) [TU]^(1.0)[HNO_3]^(1.0)The kinetic parameters differed from those of V^(5+)-TU system indicated that the generation of the primary radicals is mainly a difffusion-controlled reaction. The effect of macromolecular field arisen from the polymer matrix exerts a great influence on the polymerization process.
基金supported by the National Natural Science Foundation of China(Grant No.12105197 and 52088101)Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515010319)+1 种基金the open research fund of Songshan Lake Materials Laboratory(No.2022SLABFK04)Large Scientific Facility Open Subject of Songshan Lake,Dongguan,Guangdong
文摘Due to a high energy density,layered transition-metal oxides have gained much attention as the promising sodium-ion batteries cathodes.However,they readily suffer from multiple phase transitions during the Na extraction process,resulting in large lattice strains which are the origin of cycledstructure degradations.Here,we demonstrate that the Na-storage lattice strains of layered oxides can be reduced by pushing charge transfer on anions(O^(2-)).Specifically,the designed O3-type Ru-based model compound,which shows an increased charge transfer on anions,displays retarded O3-P3-O1 multiple phase transitions and obviously reduced lattice strains upon cycling as directly revealed by a combination of ex situ X-ray absorption spectroscopy,in situ X-ray diffraction and geometric phase analysis.Meanwhile,the stable Na-storage lattice structure leads to a superior cycling stability with an excellent capacity retention of 84%and ultralow voltage decay of 0.2 mV/cycle after 300 cycles.More broadly,our work highlights an intrinsically structure-regulation strategy to enable a stable cycling structure of layered oxides meanwhile increasing the materials’redox activity and Nadiffusion kinetics.
基金National Key R&D Program of China (2023YFB2503900)National Natural Science Foundation of China (22222904, 22179133 and 12374176)CAS Project for Young Scientists in Basic Research (YSBR-058)。
文摘The application of Li-rich Mn-based cathodes, the most promising candidates for high-energy-density Liion batteries, in all-solid-state batteries can further enhance the safety and stability of battery systems.However, the utilization of high-capacity Li-rich cathodes has been limited by sluggish kinetics and severe interfacial issues in all-solid-state batteries. Here, a multi-functional interface modification strategy involving dispersed submicron single-crystal structure and multi-functional surface modification layer obtained through in-situ interfacial chemical reactions was designed to improve the electrochemical performance of Li-rich Mn-based cathodes in all-solid-state batteries. The design of submicron single-crystal structure promotes the interface contact between the cathode particles and the solid-state electrolyte,and thus constructs a more complete ion and electron conductive network in the composite cathode.Furthermore, the Li-gradient layer and the lithium molybdate coating layer constructed on the surface of single-crystal Li-rich particles accelerate the transport of Li ions at the interface, suppress the side reactions between cathodes and electrolyte, and inhibit the oxygen release on the cathode surface. The optimized Li-rich cathode materials exhibit excellent electrochemical performance in halide all-solid-state batteries. This study emphasizes the vital importance of reaction kinetics and interfacial stability of Lirich cathodes in all-solid-state batteries and provides a facile modification strategy to enhance the electrochemical performance of all-solid-state batteries based on Li-rich cathodes.