Angle-resolved photoemission spectroscopy(ARPES)has become a cornerstone technique for elucidating the electronic structures of emergent quantum materials.Among these,kagome materials—distinguished by their two-dimen...Angle-resolved photoemission spectroscopy(ARPES)has become a cornerstone technique for elucidating the electronic structures of emergent quantum materials.Among these,kagome materials—distinguished by their two-dimensional lattice of corner-sharing triangles—provide a fertile ground for investigating exotic quantum phenomena,driven by geometric frustration,electronic correlation,and topology.In this review,we present an overview of recent ARPES studies on transition-metal kagome materials.We first outline the fundamental features of their electronic structures,including van Hove singularities,Dirac points,and flat bands,and discuss the novel quantum states that arise from many-body interactions within the kagome lattice.We then highlight key ARPES investigations into these unique electronic structures,detailing their manifestation and associated quantum states in representative kagome materials.Finally,we offer a forward-looking perspective on the potential of ARPES to uncover new quantum phenomena and its broader implications for the study of underlying physics in kagome materials.展开更多
The doping evolution of the nodal electron dynamics in the trilayer cuprate superconductor Bi_(2)Sr_(2)Ca_(2)Cu_(3)O_(10+δ)(Bi2223)is investigated using high-resolution laser-based angle-resolved photoemission spectr...The doping evolution of the nodal electron dynamics in the trilayer cuprate superconductor Bi_(2)Sr_(2)Ca_(2)Cu_(3)O_(10+δ)(Bi2223)is investigated using high-resolution laser-based angle-resolved photoemission spectroscopy(ARPES).Bi2223single crystals with different doping levels are prepared by controlled annealing,which cover the underdoped,optimallydoped and overdoped regions.The electronic phase diagram of Bi2223 is established which describes the Tcdependence on the sample doping level.The doping dependence of the nodal Fermi momentum for the outer(OP)and inner(IP)CuO_(2)planes is determined.Charge distribution imbalance between the OP and IP CuO_(2)planes is quantified,showing enhanced disparity with increasing doping.Nodal band dispersions demonstrate a prominent kink at~94 meV in the IP band,attributed to the unique Cu coordination in the IP plane,while a weaker~60 meV kink is observed in the OP band.The nodal Fermi velocity of both OP and IP bands is nearly constant at~1.62 eV·A independent of doping.These results provide important information to understand the origin of high Tcand superconductivity mechanism in high temperature cuprate superconductors.展开更多
Angle-resolved polarized Raman(ARPR) spectroscopy can be utilized to assign the Raman modes based on crystal symmetry and Raman selection rules and also to characterize the crystallographic orientation of anisotropi...Angle-resolved polarized Raman(ARPR) spectroscopy can be utilized to assign the Raman modes based on crystal symmetry and Raman selection rules and also to characterize the crystallographic orientation of anisotropic materials.However, polarized Raman measurements can be implemented by several different configurations and thus lead to different results. In this work, we systematically analyze three typical polarization configurations: 1) to change the polarization of the incident laser, 2) to rotate the sample, and 3) to set a half-wave plate in the common optical path of incident laser and scattered Raman signal to simultaneously vary their polarization directions. We provide a general approach of polarization analysis on the Raman intensity under the three polarization configurations and demonstrate that the latter two cases are equivalent to each other. Because the basal plane of highly ordered pyrolytic graphite(HOPG) exhibits isotropic feature and its edge plane is highly anisotropic, HOPG can be treated as a modelling system to study ARPR spectroscopy of twodimensional materials on their basal and edge planes. Therefore, we verify the ARPR behaviors of HOPG on its basal and edge planes at three different polarization configurations. The orientation direction of HOPG edge plane can be accurately determined by the angle-resolved polarization-dependent G mode intensity without rotating sample, which shows potential application for orientation determination of other anisotropic and vertically standing two-dimensional materials and other materials.展开更多
Angle-resolved photoemission spectroscopy (ARPES) has played an important role in determining the band structure and the superconducting gap structure of iron-based superconductors. In this paper, from the ARPES per...Angle-resolved photoemission spectroscopy (ARPES) has played an important role in determining the band structure and the superconducting gap structure of iron-based superconductors. In this paper, from the ARPES perspective, we briefly review the main results from our group in recent years on the iron-based superconductors and their parent compounds, and depict our current understanding on the antiferromagnetism and superconductivity in these materials.展开更多
We report comprehensive angle-resolved photoemission investigations on the electronic structures and nematicity of the parent compounds of the iron-based superconductors including CeFeAsO, BaFe2As2, NaFeAs, FeSe and u...We report comprehensive angle-resolved photoemission investigations on the electronic structures and nematicity of the parent compounds of the iron-based superconductors including CeFeAsO, BaFe2As2, NaFeAs, FeSe and undoped FeSe/SrTiO3 films with 1, 2 and 20 layers. While the electronic structure near tile Brillouin zone center F varies dramatically among different materials, the electronic structure near the Brillouin zone corners (M points), as well as their temperature dependence, are rather similar. The electronic structure near the zone corners is dominated by the electronic nematicity that gives rise to a band splitting of the dxz and dyz bands below the nematie transition temperature. A clear relation is observed between the band splitting magnitude arid the onset temperature of nematicity. Our results may shed light on the origin of nematicity, its effect on the electronic structures, and its relation with superconductivity in the iron-based superconductors.展开更多
High-resolution angle-resolved photoemission measurements are carried out on transition metal dichalcogenide PdTe2 that is a superconductor with a Tc at 1.7K. Combined with theoretical calculations, we discover for th...High-resolution angle-resolved photoemission measurements are carried out on transition metal dichalcogenide PdTe2 that is a superconductor with a Tc at 1.7K. Combined with theoretical calculations, we discover for the first time the existence of topologically nontrivial surface state with Dirac cone in PbTe2 superconductor. It is located at the Brillouin zone center and possesses helical spin texture. Distinct from the usual three-dimensional topological insulators where the Dirac cone of the surface state lies at the Fermi level, the Dirac point of the surface state in PdTe2 lies deeply below the Fermi level at - 1.75 eV binding energy and is well separated from the bulk states. The identification of topological surface state in PdTe2 superconductor deeply below the Fermi level provides a unique system to explore new phenomena and properties and opens a door for finding new topological materials in transition metal ehalcogenides.展开更多
High-quality superconducting FeSe0.5 Te0.5 films are epitaxiMly grown on different substrates by using the pulsed laser deposition method. By measuring the transport properties and surface morphology of films grown on...High-quality superconducting FeSe0.5 Te0.5 films are epitaxiMly grown on different substrates by using the pulsed laser deposition method. By measuring the transport properties and surface morphology of films grown on single- crystal substrates of Al2O3 (0001), SrTiO3 (001), and MgO (001), as well as monitoring the real-time growth process on MgO substrates with reflection high energy electron diffraction, we find the appropriate parameters for epitaxial growth of high-quality FeSe0.5 Te0.5 thin films suitable for angle-resolved photoemission spectroscopy measurements. We further report the angle-resolved photoemission spectroscopy characterization of the super- conducting films. The clearly resolved Fermi surfaces and the band structure suggest a sample quality that is as good as that of high-quality single-crystals, demonstrating that the pulsed laser deposition method can serve as a promising technique for in situ preparation and manipulation of iron-based superconducting thin films, which may bring new prosperity to angle-resolved photoemission spectroscopy research on iron-based superconductors.展开更多
Layered transition metal dichalcogenides(TMDCs)gained widespread attention because of their electron-correlationrelated physics,such as charge density wave(CDW),superconductivity,etc.In this paper,we report the high-r...Layered transition metal dichalcogenides(TMDCs)gained widespread attention because of their electron-correlationrelated physics,such as charge density wave(CDW),superconductivity,etc.In this paper,we report the high-resolution angle-resolved photoemission spectroscopy(ARPES)studies on the electronic structure of Ti-doped 1T-Ti_(x)Ta_(1-x)S_(2) with different doping levels.We observe a flat band that originates from the formation of the star of David super-cell at the x=5%sample at the low temperature.With the increasing Ti doping levels,the flat band vanishes in the x=8%sample due to the extra hole carrier.We also find the band shift and variation of the CDW gap caused by the Ti-doping.Meanwhile,the band folding positions and the CDW vector g_(CDW)intact.Our ARPES results suggest that the localized flat band and the correlation effect in the 1T-TMDCs could be tuned by changing the filling factor through the doping electron or hole carriers.The Ti-doped 1T-Ti_(x)Ta_(1-x)S_(2) provides a platform to fine-tune the electronic structure evolution and a new insight into the strongly correlated physics in the TMDC materials.展开更多
In high temperature cuprate superconductors,it was found that the superfluid density decreases with the increase of hole doping.One natural question is whether there exists normal fluid in the superconducting state in...In high temperature cuprate superconductors,it was found that the superfluid density decreases with the increase of hole doping.One natural question is whether there exists normal fluid in the superconducting state in the overdoped region.In this paper,we have carried out high-resolution ultra-low temperature laser-based angle-resolved photoemission measurements on a heavily overdoped Bi2212 sample with a T_(c) of 48 K.We find that this heavily overdoped Bi2212 remains in the strong coupling regime with 2Δ_(0)/(k_(B)T_(c))=5.8.The single-particle scattering rate is very small along the nodal direction(~5 meV) and increases as the momentum moves from the nodal to the antinodal regions.A hard superconducting gap opening is observed near the antinodal region with the spectral weight at the Fermi level fully suppressed to zero.The normal fluid is found to be negligibly small in the superconducting state of this heavily overdoped Bi2212.These results provide key information to understand the high T_(c) mechanism in the cuprate superconductors.展开更多
Searching for the dispersionless flat band(FB)in quantum materials,especially in topological systems,becomes an interesting topic.The kagome lattice is an ideal platform for such exploration because the FB can be natu...Searching for the dispersionless flat band(FB)in quantum materials,especially in topological systems,becomes an interesting topic.The kagome lattice is an ideal platform for such exploration because the FB can be naturally induced by the underlying destructive interference.Nevertheless,the magnetic kagome system that hosts the FB close to the Fermi level(EF)is exceptionally rare.Here,we study the electronic structure of a kagome magnet LuMn_(6)Sn_(6) by combining angleresolved photoemission spectroscopy and density functional theory calculations.The observed Fermi-surface topology and overall band dispersions are similar to previous studies of the XMn_(6)Sn_(6)(X=Dy,Tb,Gd,Y)family of compounds.We clearly observe two kagome-derived FBs extending through the entire Brillouin zone,and one of them is located just below EF.The photon-energy-dependent measurements reveal that these FBs are nearly dispersionless along the kz direction as well,supporting the quasi-two-dimensional character of such FBs.Our results complement the XMn_(6)Sn_(6) family and demonstrate the robustness of the FB features across this family.展开更多
The detailed information of the electronic structure is the key to understanding the nature of charge density wave (CDW) order and its relationship with superconducting order in the microscopic level. In this paper,...The detailed information of the electronic structure is the key to understanding the nature of charge density wave (CDW) order and its relationship with superconducting order in the microscopic level. In this paper, we present a high resolution laser-based angle-resolved photoemission spectroscopy (ARPES) study on the three-dimensional (3D) hole-like Fermi surface around the Brillouin zone center in a prototypical quasi-one-dimensional CDW and superconducting system ZrTe3. Double Fermi surface sheets are clearly resolved for the 3D hole-like Fermi surface around the zone center. The 3D Fermi surface shows a pronounced shrinking with increasing temperature. In particular, the quasiparticle scattering rate along the 3D Fermi surface experiences an anomaly near the charge density wave transition temperature of ZrTe3 - 63 K). The signature of electron-phonon coupling is observed with a dispersion kink at -20 meV; the strength of the electron-phonon coupling around the 3D Fermi surface is rather weak. These results indicate that the 3D Fermi surface is also closely connected to the charge-density-wave transition and suggest a more global impact on the entire electronic structure induced by the CDW phase transition in ZrTe3.展开更多
WTe2 has attracted a great deal of attention because it exhibits extremely large and non-saturating magnetore- sistance. The underlying origin of such a giant magnetoresistance is still under debate. Utilizing laser-b...WTe2 has attracted a great deal of attention because it exhibits extremely large and non-saturating magnetore- sistance. The underlying origin of such a giant magnetoresistance is still under debate. Utilizing laser-based angle-resolved photoemission spectroscopy with high energy and momentum resolutions, we reveal the complete electronic structure of WTe2. This makes it possible to determine accurately the electron and hole concentrations and their temperature dependence. We find that, with increasing the temperature, the overall electron concen- tration increases while the total hole concentration decreases. It indicates that the electron-hole compensation, if it exists, can only occur in a narrow temperature range,and in most of the temperature range there is an electron-hole imbalance. Our results are not consistent with the perfect electron-hole compensation picture that is commonly considered to be the cause of the unusual magnetoresistance in WTe2. We identify a fiat band near the Brillouin zone center that is close to the Fermi level and exhibits a pronounced temperature dependence. Such a fiat band can play an important role in dictating the transport properties of WTe2. Our results provide new insight on understanding the origin of the unusual magnetoresistance in WTe2.展开更多
We utilize high-resolution resonant angle-resolved photoemission spectroscopy(ARPES)to study the band structure and hybridization effect of the heavy-fermion compound Ce2 IrIn8.We observe a nearly flat band at the bin...We utilize high-resolution resonant angle-resolved photoemission spectroscopy(ARPES)to study the band structure and hybridization effect of the heavy-fermion compound Ce2 IrIn8.We observe a nearly flat band at the binding energy of 7 meV below the coherent temperature Tcoh^40 K,which characterizes the electrical resistance maximum and indicates the onset temperature of hybridization.However,the Fermi vector and the Fermi surface volume have little change around Tcoh,which challenges the widely believed evolution from a hightemperature small Fermi surface to a low-temperature large Fermi surface.Our experimental results of the band structure fit well with the density functional theory plus dynamic mean-field theory calculations.展开更多
We systemically investigate the nature of Ce 4f electrons in structurally layered heavy-fermion compounds Ce_(m)M_(n)In_(3m+2n)(with M=Co,Rh,Ir,and Pt,m=1,2,n=0–2),at low temperature using on-resonance angle-resolved...We systemically investigate the nature of Ce 4f electrons in structurally layered heavy-fermion compounds Ce_(m)M_(n)In_(3m+2n)(with M=Co,Rh,Ir,and Pt,m=1,2,n=0–2),at low temperature using on-resonance angle-resolved photoemission spectroscopy.Three heavy quasiparticle bands f^(0),f^(1/7/2)and f^(1/5/2),are observed in all compounds,whereas their intensities and energy locations vary greatly with materials.The strong f0 states imply that the localized electron behavior dominates the Ce 4f states.The Ce 4f electrons are partially hybridized with the conduction electrons,making them have the dual nature of localization and itinerancy.Our quantitative comparison reveals that the f^(1/5/2)–f^(0)intensity ratio is more suitable to reflect the 4f-state hybridization strength.展开更多
This paper describes the design and performance of the tender energy spectroscopy beamline(BL16U1),a phase Ⅱ beamline,at the Shanghai Synchrotron Radiation Facility.The beamline,based on an in-vacuum undulator source...This paper describes the design and performance of the tender energy spectroscopy beamline(BL16U1),a phase Ⅱ beamline,at the Shanghai Synchrotron Radiation Facility.The beamline,based on an in-vacuum undulator source with 26 mm period,provides an operable energy range between 2.1 keV and 16 keV,covering the K-edges of P to Rb and L3-edges of Zr to Bi.The principal optical elements of the beamline are a toroidal mirror,a liquid nitrogen-cooled double-crystal monochromator,a high-harmonic-rejection mirror,and two pairs of Kirkpatrick–Baez(KB)mirrors.Three end-stations,including non-focusing,microprobe,and sub-microprobe types,are installed on the beamline.X-ray fluorescence(XRF)and X-ray absorption spectroscopy(XAS),including X-ray absorption near-edge structure(XANES)and extended X-ray absorption fine structure(EXAFS),are performed under vacuum or He atmosphere at the non-focusing end-station(with a beam spot size of∼670μm×710μm).Using two KB mirrors systems,micro-XRF(μXRF)mapping and micro-XANES(μXANES)studies can be performed with a spot size of approximately∼3.3μm×1.3μm at the microprobe end-station and with a smaller spot size of∼0.5μm×0.25μm at the sub-microprobe end-station.The non-focusing end-station was officially opened to users in January 2024.The microprobe and sub-microprobe end-stations will be opened to users in the near future.This paper presents the characteristics,short-term technical developments,and early experimental results of this new beamline.展开更多
The layered van der Waals(vdW)ferroelectric CuInP2S6(CIPS)exhibits unique cation-hopping-driven phenomena that bring about unconventional properties with intriguing mechanisms and hold promise for advanced application...The layered van der Waals(vdW)ferroelectric CuInP2S6(CIPS)exhibits unique cation-hopping-driven phenomena that bring about unconventional properties with intriguing mechanisms and hold promise for advanced applications in nanoelectronics.However,an explicit analysis of its lattice dynamics and vibrational symmetries,pivotal for understanding the material’s peculiar ferroelectric and ferroionic behaviors,remains incomplete.Here,we employ angle-resolved polarized Raman spectroscopy in concert with first-principles calculations to systematically unravel the anisotropic lattice vibrations of CIPS single crystals.By analyzing the polarization-dependent Raman intensities,we determine the symmetry assignments and Raman tensors of all major vibrational modes,revealing good agreement with theoretical predictions.Furthermore,we demonstrate the utility of Raman spectroscopy as a sensitive and non-invasive probe for structural and ferroelectric order evolution by examining temperature-driven phase transitions and thickness-dependent polarization suppression in CIPS.Our findings establish a foundational framework for correlating lattice dynamics with functional properties in CIPS and provide a methodological blueprint for studying other vdW ferroelectrics.展开更多
A RadioFrequency Quadrupole(RFQ)cooler-buncher system was developed and implemented in a collinear laser spectroscopy setup.This system converts a continuous ion beam into short bunches while enhancing the beam qualit...A RadioFrequency Quadrupole(RFQ)cooler-buncher system was developed and implemented in a collinear laser spectroscopy setup.This system converts a continuous ion beam into short bunches while enhancing the beam quality and reducing the energy spread.The functionality of the RFQ cooler buncher was verified through offline tests with stable rubidium and indium beams delivered from a surface ion source and a laser ablation ion source,respectively.Bunched ion beams with a full width at half maximum of approximately 2μs in the time-of-flight spectrum were successfully achieved with a transmission efficiency exceeding 60%.The implementation of the RFQ cooler-buncher system also significantly improved the overall transmission efficiency of the collinear laser spectroscopy setup.展开更多
We report a photoelectron spectroscopic study of the valence bands of double hexagonal-close-packed (dhcp) α-La(0001) films epitaxially grown on W(110) at room temperature. The La 5d photoemission cross section in th...We report a photoelectron spectroscopic study of the valence bands of double hexagonal-close-packed (dhcp) α-La(0001) films epitaxially grown on W(110) at room temperature. The La 5d photoemission cross section in the photon energy region from 20 eV to 130 eV was obtained and the valence-band structure of α-La was determined. Except for 4f-related structures, the valence-band structures of dhcp α-La and dhcp β-Ce were found to resemble each other. From the band structure, the crystal structure of the La film was confirmed. No evidence for the existence of a 5d-like surface state near the Fermi energy at the point of the surface Brillouin zone was obtained and a 6s band bottom was identified.展开更多
We investigate the electronic structure of NbGeSb with non-symmorphic symmetry.We employ angle-resolved photoemission spectroscopy(ARPES)to observe and identify the bulk and surface states over the Brillouin zone.By u...We investigate the electronic structure of NbGeSb with non-symmorphic symmetry.We employ angle-resolved photoemission spectroscopy(ARPES)to observe and identify the bulk and surface states over the Brillouin zone.By utilizing high-energy photons,we identify the bulk Fermi surface and bulk nodal line along the direction X–R,while the Fermi surface of the surface state is observed by using low-energy photons.We observe the splitting of surface bands away from the high-symmetry point X.The density functional theory calculations on bulk and 1 to 5-layer slab models,as well as spin textures of NbGeSb,verify that the band splitting could be attributed to the Rashba-like spin–orbit coupling caused by space-inversion-symmetry breaking at the surface.These splitted surface bands cross with each other,forming two-dimensional Weyl-like crossings that are protected by mirror symmetry.Our findings provide insights into the two-dimensional topological and symmetry-protected band inversion of surface states.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12488201,12074411,12374066,12374154,and 12494593)the National Key Research and Development Program of China(Grant No.2022YFA1403900,2021YFA1401800,2022YFA1604200,2023YFA1406002,2024YFA1408301,and 2024YFA1400026)+3 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant Nos.XDB25000000 and XDB33000000)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301800)the Youth Innovation Promotion Association of CAS(Grant No.Y2021006)Synergetic Extreme Condition User Facility(SECUF).
文摘Angle-resolved photoemission spectroscopy(ARPES)has become a cornerstone technique for elucidating the electronic structures of emergent quantum materials.Among these,kagome materials—distinguished by their two-dimensional lattice of corner-sharing triangles—provide a fertile ground for investigating exotic quantum phenomena,driven by geometric frustration,electronic correlation,and topology.In this review,we present an overview of recent ARPES studies on transition-metal kagome materials.We first outline the fundamental features of their electronic structures,including van Hove singularities,Dirac points,and flat bands,and discuss the novel quantum states that arise from many-body interactions within the kagome lattice.We then highlight key ARPES investigations into these unique electronic structures,detailing their manifestation and associated quantum states in representative kagome materials.Finally,we offer a forward-looking perspective on the potential of ARPES to uncover new quantum phenomena and its broader implications for the study of underlying physics in kagome materials.
基金supported by the National Natural Science Foundation of China(Grant Nos.12488201 by X.J.Z.,12374066 by L.Z.,and 12374154 by X.T.L.)the National Key Research and Development Program of China(Grant Nos.2021YFA1401800 by X.J.Z.,2022YFA1604200 by L.Z.,2022YFA1403900 by G.D.L.and 2023YFA1406000by X.T.L.)+3 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB25000000by X.J.Z.)Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301800 by X.J.Z.)the Youth Innovation Promotion Association of CAS(Grant No.Y2021006 by L.Z.)the Synergetic Extreme Condition User Facility(SECUF)。
文摘The doping evolution of the nodal electron dynamics in the trilayer cuprate superconductor Bi_(2)Sr_(2)Ca_(2)Cu_(3)O_(10+δ)(Bi2223)is investigated using high-resolution laser-based angle-resolved photoemission spectroscopy(ARPES).Bi2223single crystals with different doping levels are prepared by controlled annealing,which cover the underdoped,optimallydoped and overdoped regions.The electronic phase diagram of Bi2223 is established which describes the Tcdependence on the sample doping level.The doping dependence of the nodal Fermi momentum for the outer(OP)and inner(IP)CuO_(2)planes is determined.Charge distribution imbalance between the OP and IP CuO_(2)planes is quantified,showing enhanced disparity with increasing doping.Nodal band dispersions demonstrate a prominent kink at~94 meV in the IP band,attributed to the unique Cu coordination in the IP plane,while a weaker~60 meV kink is observed in the OP band.The nodal Fermi velocity of both OP and IP bands is nearly constant at~1.62 eV·A independent of doping.These results provide important information to understand the origin of high Tcand superconductivity mechanism in high temperature cuprate superconductors.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFA0301204)the National Natural Science Foundation of China(Grant Nos.11604326,11434010,11474277,and 11225421)
文摘Angle-resolved polarized Raman(ARPR) spectroscopy can be utilized to assign the Raman modes based on crystal symmetry and Raman selection rules and also to characterize the crystallographic orientation of anisotropic materials.However, polarized Raman measurements can be implemented by several different configurations and thus lead to different results. In this work, we systematically analyze three typical polarization configurations: 1) to change the polarization of the incident laser, 2) to rotate the sample, and 3) to set a half-wave plate in the common optical path of incident laser and scattered Raman signal to simultaneously vary their polarization directions. We provide a general approach of polarization analysis on the Raman intensity under the three polarization configurations and demonstrate that the latter two cases are equivalent to each other. Because the basal plane of highly ordered pyrolytic graphite(HOPG) exhibits isotropic feature and its edge plane is highly anisotropic, HOPG can be treated as a modelling system to study ARPR spectroscopy of twodimensional materials on their basal and edge planes. Therefore, we verify the ARPR behaviors of HOPG on its basal and edge planes at three different polarization configurations. The orientation direction of HOPG edge plane can be accurately determined by the angle-resolved polarization-dependent G mode intensity without rotating sample, which shows potential application for orientation determination of other anisotropic and vertically standing two-dimensional materials and other materials.
基金supported by the National Natural Science Foundation of Chinathe National Basic Research Program of China(Grant Nos.2012CB921400,2011CB921802,and 2011CBA00112)
文摘Angle-resolved photoemission spectroscopy (ARPES) has played an important role in determining the band structure and the superconducting gap structure of iron-based superconductors. In this paper, from the ARPES perspective, we briefly review the main results from our group in recent years on the iron-based superconductors and their parent compounds, and depict our current understanding on the antiferromagnetism and superconductivity in these materials.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11190022,11334010 and 11534007the National Basic Research Program of China under Grant No 2015CB921000the Strategic Priority Research Program(B)of Chinese Academy of Sciences under Grant No XDB07020300
文摘We report comprehensive angle-resolved photoemission investigations on the electronic structures and nematicity of the parent compounds of the iron-based superconductors including CeFeAsO, BaFe2As2, NaFeAs, FeSe and undoped FeSe/SrTiO3 films with 1, 2 and 20 layers. While the electronic structure near tile Brillouin zone center F varies dramatically among different materials, the electronic structure near the Brillouin zone corners (M points), as well as their temperature dependence, are rather similar. The electronic structure near the zone corners is dominated by the electronic nematicity that gives rise to a band splitting of the dxz and dyz bands below the nematie transition temperature. A clear relation is observed between the band splitting magnitude arid the onset temperature of nematicity. Our results may shed light on the origin of nematicity, its effect on the electronic structures, and its relation with superconductivity in the iron-based superconductors.
基金the National Natural Science Foundation of China under Grant Nos 11190022,11274359 and 11422428the National Basic Research Program of China under Grant Nos 2011CB921703,2011CBA00110,2011CBA00108 and 2013CB921700the Strategic Priority Research Program(B)of the Chinese Academy of Sciences under Grant Nos XDB07020300 and XDB07020100
文摘High-resolution angle-resolved photoemission measurements are carried out on transition metal dichalcogenide PdTe2 that is a superconductor with a Tc at 1.7K. Combined with theoretical calculations, we discover for the first time the existence of topologically nontrivial surface state with Dirac cone in PbTe2 superconductor. It is located at the Brillouin zone center and possesses helical spin texture. Distinct from the usual three-dimensional topological insulators where the Dirac cone of the surface state lies at the Fermi level, the Dirac point of the surface state in PdTe2 lies deeply below the Fermi level at - 1.75 eV binding energy and is well separated from the bulk states. The identification of topological surface state in PdTe2 superconductor deeply below the Fermi level provides a unique system to explore new phenomena and properties and opens a door for finding new topological materials in transition metal ehalcogenides.
基金Supported by the Chinese Academy of Sciences under Grant No 2010Y1JB6the National Basic Research Program of China under Grant No 2010CB923000the National Natural Science Foundation of China under Grant Nos 11234014 and 11227903
文摘High-quality superconducting FeSe0.5 Te0.5 films are epitaxiMly grown on different substrates by using the pulsed laser deposition method. By measuring the transport properties and surface morphology of films grown on single- crystal substrates of Al2O3 (0001), SrTiO3 (001), and MgO (001), as well as monitoring the real-time growth process on MgO substrates with reflection high energy electron diffraction, we find the appropriate parameters for epitaxial growth of high-quality FeSe0.5 Te0.5 thin films suitable for angle-resolved photoemission spectroscopy measurements. We further report the angle-resolved photoemission spectroscopy characterization of the super- conducting films. The clearly resolved Fermi surfaces and the band structure suggest a sample quality that is as good as that of high-quality single-crystals, demonstrating that the pulsed laser deposition method can serve as a promising technique for in situ preparation and manipulation of iron-based superconducting thin films, which may bring new prosperity to angle-resolved photoemission spectroscopy research on iron-based superconductors.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12274455,11774421,21622304,61674045,11604063,and 12074116)the National Key R&D Program of China(Grant Nos.2016YFA0200700 and 2022YFA1403800)+1 种基金the Strategic Priority Research Program(Chinese Academy of Sciences,CAS)(Grant No.XDB30000000)supported by the Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China(Grant No.21XNLG27)。
文摘Layered transition metal dichalcogenides(TMDCs)gained widespread attention because of their electron-correlationrelated physics,such as charge density wave(CDW),superconductivity,etc.In this paper,we report the high-resolution angle-resolved photoemission spectroscopy(ARPES)studies on the electronic structure of Ti-doped 1T-Ti_(x)Ta_(1-x)S_(2) with different doping levels.We observe a flat band that originates from the formation of the star of David super-cell at the x=5%sample at the low temperature.With the increasing Ti doping levels,the flat band vanishes in the x=8%sample due to the extra hole carrier.We also find the band shift and variation of the CDW gap caused by the Ti-doping.Meanwhile,the band folding positions and the CDW vector g_(CDW)intact.Our ARPES results suggest that the localized flat band and the correlation effect in the 1T-TMDCs could be tuned by changing the filling factor through the doping electron or hole carriers.The Ti-doped 1T-Ti_(x)Ta_(1-x)S_(2) provides a platform to fine-tune the electronic structure evolution and a new insight into the strongly correlated physics in the TMDC materials.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12488201,12374066,12074411,and 12374154)the National Key Research and Development Program of China(Grant Nos.2021YFA1401800,2022YFA1604200,2022YFA1403900,and 2023YFA1406000)+3 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant Nos.XDB25000000 and XDB33000000)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301800)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.Y2021006)the Synergetic Extreme Condition User Facility(SECUF)。
文摘In high temperature cuprate superconductors,it was found that the superfluid density decreases with the increase of hole doping.One natural question is whether there exists normal fluid in the superconducting state in the overdoped region.In this paper,we have carried out high-resolution ultra-low temperature laser-based angle-resolved photoemission measurements on a heavily overdoped Bi2212 sample with a T_(c) of 48 K.We find that this heavily overdoped Bi2212 remains in the strong coupling regime with 2Δ_(0)/(k_(B)T_(c))=5.8.The single-particle scattering rate is very small along the nodal direction(~5 meV) and increases as the momentum moves from the nodal to the antinodal regions.A hard superconducting gap opening is observed near the antinodal region with the spectral weight at the Fermi level fully suppressed to zero.The normal fluid is found to be negligibly small in the superconducting state of this heavily overdoped Bi2212.These results provide key information to understand the high T_(c) mechanism in the cuprate superconductors.
基金Project supported by the National Natural Science Foundation of China(Grant No.12204536)the Fundamental Research Funds for the Central Universities,and the Research Funds of People’s Public Security University of China(PPSUC)(Grant No.2023JKF02ZK09).
文摘Searching for the dispersionless flat band(FB)in quantum materials,especially in topological systems,becomes an interesting topic.The kagome lattice is an ideal platform for such exploration because the FB can be naturally induced by the underlying destructive interference.Nevertheless,the magnetic kagome system that hosts the FB close to the Fermi level(EF)is exceptionally rare.Here,we study the electronic structure of a kagome magnet LuMn_(6)Sn_(6) by combining angleresolved photoemission spectroscopy and density functional theory calculations.The observed Fermi-surface topology and overall band dispersions are similar to previous studies of the XMn_(6)Sn_(6)(X=Dy,Tb,Gd,Y)family of compounds.We clearly observe two kagome-derived FBs extending through the entire Brillouin zone,and one of them is located just below EF.The photon-energy-dependent measurements reveal that these FBs are nearly dispersionless along the kz direction as well,supporting the quasi-two-dimensional character of such FBs.Our results complement the XMn_(6)Sn_(6) family and demonstrate the robustness of the FB features across this family.
基金Project supported by the National Basic Research Program of China(Grant No.2015CB921301)the National Natural Science Foundation of China(Grant Nos.11574360,11534007,and 11334010)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB07020300)
文摘The detailed information of the electronic structure is the key to understanding the nature of charge density wave (CDW) order and its relationship with superconducting order in the microscopic level. In this paper, we present a high resolution laser-based angle-resolved photoemission spectroscopy (ARPES) study on the three-dimensional (3D) hole-like Fermi surface around the Brillouin zone center in a prototypical quasi-one-dimensional CDW and superconducting system ZrTe3. Double Fermi surface sheets are clearly resolved for the 3D hole-like Fermi surface around the zone center. The 3D Fermi surface shows a pronounced shrinking with increasing temperature. In particular, the quasiparticle scattering rate along the 3D Fermi surface experiences an anomaly near the charge density wave transition temperature of ZrTe3 - 63 K). The signature of electron-phonon coupling is observed with a dispersion kink at -20 meV; the strength of the electron-phonon coupling around the 3D Fermi surface is rather weak. These results indicate that the 3D Fermi surface is also closely connected to the charge-density-wave transition and suggest a more global impact on the entire electronic structure induced by the CDW phase transition in ZrTe3.
基金Supported by the National Natural Science Foundation of China under Grant No 11574367the National Basic Research Program of China under Grant Nos 2013CB921904 and 2015CB921300+2 种基金the National Key Research and Development Program of China under Grant No 2016YFA0300600the Strategic Priority Research Program(B)of the Chinese Academy of Sciences under Grant No XDB07020300the US Department of Energy under Grant No DE-SC0014208
文摘WTe2 has attracted a great deal of attention because it exhibits extremely large and non-saturating magnetore- sistance. The underlying origin of such a giant magnetoresistance is still under debate. Utilizing laser-based angle-resolved photoemission spectroscopy with high energy and momentum resolutions, we reveal the complete electronic structure of WTe2. This makes it possible to determine accurately the electron and hole concentrations and their temperature dependence. We find that, with increasing the temperature, the overall electron concen- tration increases while the total hole concentration decreases. It indicates that the electron-hole compensation, if it exists, can only occur in a narrow temperature range,and in most of the temperature range there is an electron-hole imbalance. Our results are not consistent with the perfect electron-hole compensation picture that is commonly considered to be the cause of the unusual magnetoresistance in WTe2. We identify a fiat band near the Brillouin zone center that is close to the Fermi level and exhibits a pronounced temperature dependence. Such a fiat band can play an important role in dictating the transport properties of WTe2. Our results provide new insight on understanding the origin of the unusual magnetoresistance in WTe2.
基金Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0401000,2015CB921300,2016YFA0300303,2016YFA0401002 and 2017YFA0303103the National Natural Science Foundation of China under Grant Nos 11674371,11774401 and 11874330+4 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences under Grant No XDB07000000the Beijing Municipal Science and Technology Commission under Grant No Z171100002017018the Hundred-Talent Program(type C)of the Chinese Academy of Sciencesthe Sino-Swiss Science and Technology Cooperation under Grant No IZLCZ2-170075the Swiss National Science Foundation under Grant No 200021-159678
文摘We utilize high-resolution resonant angle-resolved photoemission spectroscopy(ARPES)to study the band structure and hybridization effect of the heavy-fermion compound Ce2 IrIn8.We observe a nearly flat band at the binding energy of 7 meV below the coherent temperature Tcoh^40 K,which characterizes the electrical resistance maximum and indicates the onset temperature of hybridization.However,the Fermi vector and the Fermi surface volume have little change around Tcoh,which challenges the widely believed evolution from a hightemperature small Fermi surface to a low-temperature large Fermi surface.Our experimental results of the band structure fit well with the density functional theory plus dynamic mean-field theory calculations.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 12074436 and 11574402)the Innovation-Driven Plan in Central South University (Grant No. 2016CXS032)+7 种基金support through the Swedish Research Council (VR) and the Swedish National Infrastructure for Computing (SNIC),for computing time on computer cluster Triolith at the NSC center Link?ping (supported by VR Grant No. 2018-05973)the support from the Swedish Research Council (VR) through a Starting Grant (No. Dnr. 2017-05078)support from the Swedish Research Council(VR)the Knut and Alice Wallenberg foundationsupported by a Marie Sklodowska-Curie Action,International Career Grant through the European Commission and Swedish Research Council (VR)(Grant No. INCA-2014-6426)a VR neutron project (Grant No. BIFROST, Dnr. 2016-06955)granted by the Carl Tryggers Foundation for Scientific Research (Grant Nos. CTS-16:324 and CTS-17:325)the auspices of the U.S. Department of Energy,Office of Basic Energy Sciences,Division of Materials Sciences and Engineering
文摘We systemically investigate the nature of Ce 4f electrons in structurally layered heavy-fermion compounds Ce_(m)M_(n)In_(3m+2n)(with M=Co,Rh,Ir,and Pt,m=1,2,n=0–2),at low temperature using on-resonance angle-resolved photoemission spectroscopy.Three heavy quasiparticle bands f^(0),f^(1/7/2)and f^(1/5/2),are observed in all compounds,whereas their intensities and energy locations vary greatly with materials.The strong f0 states imply that the localized electron behavior dominates the Ce 4f states.The Ce 4f electrons are partially hybridized with the conduction electrons,making them have the dual nature of localization and itinerancy.Our quantitative comparison reveals that the f^(1/5/2)–f^(0)intensity ratio is more suitable to reflect the 4f-state hybridization strength.
基金supported by the National Key R&D Program of China(No.2021YFA1601003)the financial support of the SSRF PhaseⅡproject.
文摘This paper describes the design and performance of the tender energy spectroscopy beamline(BL16U1),a phase Ⅱ beamline,at the Shanghai Synchrotron Radiation Facility.The beamline,based on an in-vacuum undulator source with 26 mm period,provides an operable energy range between 2.1 keV and 16 keV,covering the K-edges of P to Rb and L3-edges of Zr to Bi.The principal optical elements of the beamline are a toroidal mirror,a liquid nitrogen-cooled double-crystal monochromator,a high-harmonic-rejection mirror,and two pairs of Kirkpatrick–Baez(KB)mirrors.Three end-stations,including non-focusing,microprobe,and sub-microprobe types,are installed on the beamline.X-ray fluorescence(XRF)and X-ray absorption spectroscopy(XAS),including X-ray absorption near-edge structure(XANES)and extended X-ray absorption fine structure(EXAFS),are performed under vacuum or He atmosphere at the non-focusing end-station(with a beam spot size of∼670μm×710μm).Using two KB mirrors systems,micro-XRF(μXRF)mapping and micro-XANES(μXANES)studies can be performed with a spot size of approximately∼3.3μm×1.3μm at the microprobe end-station and with a smaller spot size of∼0.5μm×0.25μm at the sub-microprobe end-station.The non-focusing end-station was officially opened to users in January 2024.The microprobe and sub-microprobe end-stations will be opened to users in the near future.This paper presents the characteristics,short-term technical developments,and early experimental results of this new beamline.
基金supported by the National Natural Science Foundation of China(Grant Nos.12474089,12574102 for L.Y.and L.F.,and 12404102 for J.Z.)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions(for L.Y.and L.F.)+2 种基金the Natural Science Foundation of the Jiangsu Province(Grant No.BK20230806 for J.Z.)Southeast University Interdisciplinary Research Program for Young Scholars(Grant No.2024FGC1008 for J.Z.)the support by the State Key Laboratory of Solid State Microstructures(Nanjing University)(No.M37067)。
文摘The layered van der Waals(vdW)ferroelectric CuInP2S6(CIPS)exhibits unique cation-hopping-driven phenomena that bring about unconventional properties with intriguing mechanisms and hold promise for advanced applications in nanoelectronics.However,an explicit analysis of its lattice dynamics and vibrational symmetries,pivotal for understanding the material’s peculiar ferroelectric and ferroionic behaviors,remains incomplete.Here,we employ angle-resolved polarized Raman spectroscopy in concert with first-principles calculations to systematically unravel the anisotropic lattice vibrations of CIPS single crystals.By analyzing the polarization-dependent Raman intensities,we determine the symmetry assignments and Raman tensors of all major vibrational modes,revealing good agreement with theoretical predictions.Furthermore,we demonstrate the utility of Raman spectroscopy as a sensitive and non-invasive probe for structural and ferroelectric order evolution by examining temperature-driven phase transitions and thickness-dependent polarization suppression in CIPS.Our findings establish a foundational framework for correlating lattice dynamics with functional properties in CIPS and provide a methodological blueprint for studying other vdW ferroelectrics.
基金supported by the National Natural Science Foundation of China(Nos.12027809,12350007)National Key R&D Program of China(Nos.2022YFA1605100,2023YFA1606403,and 2023YFE0101600)+1 种基金New Cornerstone Science Foundation through the XPLORER PRIZEfunding from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation program under grant agreement No.679038.
文摘A RadioFrequency Quadrupole(RFQ)cooler-buncher system was developed and implemented in a collinear laser spectroscopy setup.This system converts a continuous ion beam into short bunches while enhancing the beam quality and reducing the energy spread.The functionality of the RFQ cooler buncher was verified through offline tests with stable rubidium and indium beams delivered from a surface ion source and a laser ablation ion source,respectively.Bunched ion beams with a full width at half maximum of approximately 2μs in the time-of-flight spectrum were successfully achieved with a transmission efficiency exceeding 60%.The implementation of the RFQ cooler-buncher system also significantly improved the overall transmission efficiency of the collinear laser spectroscopy setup.
文摘We report a photoelectron spectroscopic study of the valence bands of double hexagonal-close-packed (dhcp) α-La(0001) films epitaxially grown on W(110) at room temperature. The La 5d photoemission cross section in the photon energy region from 20 eV to 130 eV was obtained and the valence-band structure of α-La was determined. Except for 4f-related structures, the valence-band structures of dhcp α-La and dhcp β-Ce were found to resemble each other. From the band structure, the crystal structure of the La film was confirmed. No evidence for the existence of a 5d-like surface state near the Fermi energy at the point of the surface Brillouin zone was obtained and a 6s band bottom was identified.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFA1403803)H.M.is supported by the Fundamental Research Funds for the Central Universities,and the Research Funds of Renmin University of China(Grant No.22XNH099)+7 种基金The results of DFT calculations described in this paper are supported by HPC Cluster of ITP-CAS.M.L.is supported by the National Natural Science Foundation of China(Grant No.12204536)the Fundamental Research Funds for the Central Universities,and the Research Funds of People’s Public Security University of China(PPSUC)(Grant No.2023JKF02ZK09)T.L.X.is supported by the National Key R&D Program of China(Grant No.2019YFA0308602)the National Natural Science Foundation of China(Grant Nos.12074425 and 11874422)Y.Y.W.is supported by the National Natural Science Foundation of China(Grant No.12104011)H.Y.L.is supported by the National Natural Science Foundation of China(Grant No.12074213)the Major Basic Program of Natural Science Foundation of Shandong Province(Grant No.ZR2021ZD01)the Project of Introduction and Cultivation for Young Innovative Talents in Colleges and Universities of Shandong Province.
文摘We investigate the electronic structure of NbGeSb with non-symmorphic symmetry.We employ angle-resolved photoemission spectroscopy(ARPES)to observe and identify the bulk and surface states over the Brillouin zone.By utilizing high-energy photons,we identify the bulk Fermi surface and bulk nodal line along the direction X–R,while the Fermi surface of the surface state is observed by using low-energy photons.We observe the splitting of surface bands away from the high-symmetry point X.The density functional theory calculations on bulk and 1 to 5-layer slab models,as well as spin textures of NbGeSb,verify that the band splitting could be attributed to the Rashba-like spin–orbit coupling caused by space-inversion-symmetry breaking at the surface.These splitted surface bands cross with each other,forming two-dimensional Weyl-like crossings that are protected by mirror symmetry.Our findings provide insights into the two-dimensional topological and symmetry-protected band inversion of surface states.