To increase the transmission efficiency of a wireless power transmission system while ensuring high stability and low cost,a two-degree-of-freedom two-sided control strategy to control the phase-shift duty ratio of th...To increase the transmission efficiency of a wireless power transmission system while ensuring high stability and low cost,a two-degree-of-freedom two-sided control strategy to control the phase-shift duty ratio of the triggered pulse of the primary inverter and the angle between the resonant current and the AC voltage of the secondary side is proposed.The control strategy does not require additional DC-DC converters and components,and only some parameters of the basic circuit can be adjusted.The zero-voltage switching(ZVS)of all the MOSFETs in the system can be achieved by adjusting the shift duty ratio and power angle,and the current and voltage on the load side can be adjusted in real time.First,the basic principle of the two-sided control and the relationship of the phase angle are analyzed,and the operating range is determined by analyzing the operating modes on both sides.Second,the power loss of each link is analyzed,and the best operating point is determined.Subsequently,the system structure and the control strategy of the proposed method are presented.The two-sided control strategy is verified experimentally,which shows that the system can achieve the ZVS of all the MOSFETs while maintaining a constant current output.展开更多
The d-axis inductance(Ld)of the negative-salient permanent magnet synchronous motor(NSPMSM)is larger than the q-axis inductance(Lq).Compared with the traditional motor,the NSPMSM has the characteristics of a high over...The d-axis inductance(Ld)of the negative-salient permanent magnet synchronous motor(NSPMSM)is larger than the q-axis inductance(Lq).Compared with the traditional motor,the NSPMSM has the characteristics of a high overload capacity,wide speed range,and preventing permanent magnet demagnetization.Positive d-axis current(id)is applied to control positive reluctance torque when running at base speed.When the motor is running at high speed,a relatively small id can achieve speed expansion and effectively expand the motor flux-weakening range.The use of a magnetic bridge to increase the Ld and a W-type permanent magnet to reduce the Lq is proposed in this article as a novel NSPMSM rotor structure.Firstly,the working principle of the NSPMSM was determined according to the equivalent magnetic circuit.Secondly,using the finite element method,the influence of motor structure on torque and speed performance of NSPMSM was analyzed,and the motor structure was optimized.Thirdly,the effect of the internal power factor angle on the performance of the two motors is analyzed.Finally,the short circuit simulation and analysis verified that the NSPMSM has a stronger short circuit current suppression ability without sacrificing overload ability.展开更多
To study the unsteady aerodynamic loads of high-speed trains in fluctuating crosswinds, the fluctuating winds of a moving point shifting with high-speed trains are calculated in this paper based on Cooper theory and h...To study the unsteady aerodynamic loads of high-speed trains in fluctuating crosswinds, the fluctuating winds of a moving point shifting with high-speed trains are calculated in this paper based on Cooper theory and harmonic superposition method. The computational fluid dynamics method is used to obtain the aerodynamic load coefficients at different mean yaw angles, and the aero- dynamic admittance function is introduced to calculate unsteady aerodynamic loads of high-speed trains in fluctuating winds. Using this method, the standard deviation and maximum value of the aerodynamic force (moment) are simulated. The results show that when the train speed is fixed, the varying mean wind speeds have large impact on the fluctuating value of the wind speeds and aerodynamic loads; in contrast, when the wind speed is fixed, the varying train speeds have little impact on the fluctuating value of the wind speeds or aerodynamic loads. The ratio of standard deviation to 0.SpKU2, or maximum value to 0.5pKU2, can be expressed as the function of mean yaw angle. The peak factors of the side force and roll moment are the same ( - 3.28), the peak factor of the lift force is - 3.33, and the peak factors of the yaw moment and pitch moment are also the same (- 3.77).展开更多
Remote monitoring of transmission lines of a power system is significant for improved reliability and stability during fault conditions and protection system breakdowns.This paper proposes a smart backup monitoring sy...Remote monitoring of transmission lines of a power system is significant for improved reliability and stability during fault conditions and protection system breakdowns.This paper proposes a smart backup monitoring system for detecting and classifying the type of transmission line fault occurred in a power grid.In contradiction to conventional methods,transmission line fault occurred at any locality within power grid can be identified and classified using measurements from phasor measurement unit(PMU)at one of the generator buses.This minimal requirement makes the proposed methodology ideal for providing backup protection.Spectral analysis of equivalent power factor angle(EPFA)variation has been adopted for detecting the occurrence of fault that occurred anywhere in the grid.Classification of the type of fault occurred is achieved from the spectral coefficients with the aid of artificial intelligence.The proposed system can considerably assist system protection center(SPC)in fault localization and to restore the line at the earliest.Effectiveness of proposed system has been validated using case studies conducted on standard power system networks.展开更多
基金Supported by the National Natural Science Foundation of China(51877070,U20A20198,51577048)the Natural Science Foundation of Hebei Province of China(E2024208079).
文摘To increase the transmission efficiency of a wireless power transmission system while ensuring high stability and low cost,a two-degree-of-freedom two-sided control strategy to control the phase-shift duty ratio of the triggered pulse of the primary inverter and the angle between the resonant current and the AC voltage of the secondary side is proposed.The control strategy does not require additional DC-DC converters and components,and only some parameters of the basic circuit can be adjusted.The zero-voltage switching(ZVS)of all the MOSFETs in the system can be achieved by adjusting the shift duty ratio and power angle,and the current and voltage on the load side can be adjusted in real time.First,the basic principle of the two-sided control and the relationship of the phase angle are analyzed,and the operating range is determined by analyzing the operating modes on both sides.Second,the power loss of each link is analyzed,and the best operating point is determined.Subsequently,the system structure and the control strategy of the proposed method are presented.The two-sided control strategy is verified experimentally,which shows that the system can achieve the ZVS of all the MOSFETs while maintaining a constant current output.
基金supported in part by the National Natural Science Foundation of China under Grant 51307045in part by the Natural Science Foundation of Heilongjiang Province of China under Grant LH2019E075in part by the Fundamental Research Funds for the Heilongjiang Province Universities under Grant KJCX201915。
文摘The d-axis inductance(Ld)of the negative-salient permanent magnet synchronous motor(NSPMSM)is larger than the q-axis inductance(Lq).Compared with the traditional motor,the NSPMSM has the characteristics of a high overload capacity,wide speed range,and preventing permanent magnet demagnetization.Positive d-axis current(id)is applied to control positive reluctance torque when running at base speed.When the motor is running at high speed,a relatively small id can achieve speed expansion and effectively expand the motor flux-weakening range.The use of a magnetic bridge to increase the Ld and a W-type permanent magnet to reduce the Lq is proposed in this article as a novel NSPMSM rotor structure.Firstly,the working principle of the NSPMSM was determined according to the equivalent magnetic circuit.Secondly,using the finite element method,the influence of motor structure on torque and speed performance of NSPMSM was analyzed,and the motor structure was optimized.Thirdly,the effect of the internal power factor angle on the performance of the two motors is analyzed.Finally,the short circuit simulation and analysis verified that the NSPMSM has a stronger short circuit current suppression ability without sacrificing overload ability.
基金supported by the 2013 Doctoral Innovation Funds of Southwest Jiaotong Universitythe Fundamental Research Funds for the Central Universities,the National Key Technology R&D Program of China (2009BAG12A01-C09)the High-Speed Railway Basic Research Fund Key Project (U1234208)
文摘To study the unsteady aerodynamic loads of high-speed trains in fluctuating crosswinds, the fluctuating winds of a moving point shifting with high-speed trains are calculated in this paper based on Cooper theory and harmonic superposition method. The computational fluid dynamics method is used to obtain the aerodynamic load coefficients at different mean yaw angles, and the aero- dynamic admittance function is introduced to calculate unsteady aerodynamic loads of high-speed trains in fluctuating winds. Using this method, the standard deviation and maximum value of the aerodynamic force (moment) are simulated. The results show that when the train speed is fixed, the varying mean wind speeds have large impact on the fluctuating value of the wind speeds and aerodynamic loads; in contrast, when the wind speed is fixed, the varying train speeds have little impact on the fluctuating value of the wind speeds or aerodynamic loads. The ratio of standard deviation to 0.SpKU2, or maximum value to 0.5pKU2, can be expressed as the function of mean yaw angle. The peak factors of the side force and roll moment are the same ( - 3.28), the peak factor of the lift force is - 3.33, and the peak factors of the yaw moment and pitch moment are also the same (- 3.77).
文摘Remote monitoring of transmission lines of a power system is significant for improved reliability and stability during fault conditions and protection system breakdowns.This paper proposes a smart backup monitoring system for detecting and classifying the type of transmission line fault occurred in a power grid.In contradiction to conventional methods,transmission line fault occurred at any locality within power grid can be identified and classified using measurements from phasor measurement unit(PMU)at one of the generator buses.This minimal requirement makes the proposed methodology ideal for providing backup protection.Spectral analysis of equivalent power factor angle(EPFA)variation has been adopted for detecting the occurrence of fault that occurred anywhere in the grid.Classification of the type of fault occurred is achieved from the spectral coefficients with the aid of artificial intelligence.The proposed system can considerably assist system protection center(SPC)in fault localization and to restore the line at the earliest.Effectiveness of proposed system has been validated using case studies conducted on standard power system networks.