The problem of skewness is common among clinical trials and survival data, which has been the research focus derivation and proposition of different flexible distributions. Thus, a new distribution called Extended Ray...The problem of skewness is common among clinical trials and survival data, which has been the research focus derivation and proposition of different flexible distributions. Thus, a new distribution called Extended Rayleigh Lomax distribution is constructed from Rayleigh Lomax distribution to capture the excessiveness of some survival data. We derive the new distribution by using beta logit function proposed by Jones (2004). Some statistical properties of the distribution such as density, cumulative density, reliability rate, hazard rate, reverse hazard rate, moment generating and likelihood functions;skewness, kurtosis and coefficient of variation are obtained. We also performed the expected estimation of model parameters by maximum likelihood;goodness of fit and model selection criteria, including Anderson Darling, CramerVon Misses, Kolmogorov Smirnov (KS), Akaike Information, Bayesian Information, and Consistent Akaike Information Criterion is employed to select the better distribution from those models considered in the work. The results from the statistics criteria show that the intended distribution performs well and has a good representation of the States in Nigeria’s Covid-19 death cases data than other competing models.展开更多
Cui and Zhong(2019),(Computational Statistics&Data Analysis,139,117–133)proposed a test based on the mean variance(MV)index to test independence between a categorical random variable Y with R categories and a con...Cui and Zhong(2019),(Computational Statistics&Data Analysis,139,117–133)proposed a test based on the mean variance(MV)index to test independence between a categorical random variable Y with R categories and a continuous random variable X.They ingeniously proved the asymptotic normality of the MV test statistic when R diverges to infinity,which brings many merits to the MV test,including making it more convenient for independence testing when R is large.This paper considers a new test called the integral Pearson chi-square(IPC)test,whose test statistic can be viewed as a modified MV test statistic.A central limit theorem of the martin-gale difference is used to show that the asymptotic null distribution of the standardized IPC test statistic when R is diverging is also a normal distribution,rendering the IPC test sharing many merits with the MV test.As an application of such a theoretical finding,the IPC test is extended to test independence between continuous random variables.The finite sample performance of the proposed test is assessed by Monte Carlo simulations,and a real data example is presented for illustration.展开更多
Regular vine copula provides rich models for dependence structure modeling.It combines vine structures and families of bivariate copulas to construct a number of multivariate distributions that can model a wide range ...Regular vine copula provides rich models for dependence structure modeling.It combines vine structures and families of bivariate copulas to construct a number of multivariate distributions that can model a wide range dependence patterns with different tail dependence for different pairs.Two special cases of regular vine copulas,C-vine and D-vine copulas,have been extensively investigated in the literature.We propose the Python package,pyvine,for modeling,sampling and testing a more generalized regular vine copula(R-vine for short).R-vine modeling algorithm searches for the R-vine structure which maximizes the vine tree dependence in a sequential way.The maximum likelihood estimation algorithm takes the sequential estimations as initial values and uses L-BFGS-B algorithm for the likelihood value optimization.R-vine sampling algorithm traverses all edges of the vine structure from the last tree in a recursive way and generates the marginal samples on each edge according to some nested conditions.Goodness-of-fit testing algorithm first generates Rosenblatt’s transformed data E and then tests the hypothesis H^(∗)_(0):E∼C_(⊥)by using Anderson–Darling statistic,where C_(⊥)is the independence copula.Bootstrap method is used to compute an adjusted p-value of the empirical distribution of replications of Anderson–Darling statistic.The computing of related functions of copulas such as cumulative distribution functions,Hfunctions and inverse H-functions often meets with the problem of overflow.We solve this problem by reinvestigating the following six families of bivariate copulas:Normal,Student t,Clayton,Gumbel,Frank and Joe’s copulas.Approximations of the above related functions of copulas are given when the overflow occurs in the computation.All these are implemented in a subpackage bvcopula,in which subroutines are written in Fortran and wrapped into Python and,hence,good performance is guaranteed.展开更多
文摘The problem of skewness is common among clinical trials and survival data, which has been the research focus derivation and proposition of different flexible distributions. Thus, a new distribution called Extended Rayleigh Lomax distribution is constructed from Rayleigh Lomax distribution to capture the excessiveness of some survival data. We derive the new distribution by using beta logit function proposed by Jones (2004). Some statistical properties of the distribution such as density, cumulative density, reliability rate, hazard rate, reverse hazard rate, moment generating and likelihood functions;skewness, kurtosis and coefficient of variation are obtained. We also performed the expected estimation of model parameters by maximum likelihood;goodness of fit and model selection criteria, including Anderson Darling, CramerVon Misses, Kolmogorov Smirnov (KS), Akaike Information, Bayesian Information, and Consistent Akaike Information Criterion is employed to select the better distribution from those models considered in the work. The results from the statistics criteria show that the intended distribution performs well and has a good representation of the States in Nigeria’s Covid-19 death cases data than other competing models.
基金National Natural Science Foundation of China[Grant numbers 12271286,11931001 and 11771241].
文摘Cui and Zhong(2019),(Computational Statistics&Data Analysis,139,117–133)proposed a test based on the mean variance(MV)index to test independence between a categorical random variable Y with R categories and a continuous random variable X.They ingeniously proved the asymptotic normality of the MV test statistic when R diverges to infinity,which brings many merits to the MV test,including making it more convenient for independence testing when R is large.This paper considers a new test called the integral Pearson chi-square(IPC)test,whose test statistic can be viewed as a modified MV test statistic.A central limit theorem of the martin-gale difference is used to show that the asymptotic null distribution of the standardized IPC test statistic when R is diverging is also a normal distribution,rendering the IPC test sharing many merits with the MV test.As an application of such a theoretical finding,the IPC test is extended to test independence between continuous random variables.The finite sample performance of the proposed test is assessed by Monte Carlo simulations,and a real data example is presented for illustration.
基金This work was supported by the NNSF of China(Nos.11371340,71871208).
文摘Regular vine copula provides rich models for dependence structure modeling.It combines vine structures and families of bivariate copulas to construct a number of multivariate distributions that can model a wide range dependence patterns with different tail dependence for different pairs.Two special cases of regular vine copulas,C-vine and D-vine copulas,have been extensively investigated in the literature.We propose the Python package,pyvine,for modeling,sampling and testing a more generalized regular vine copula(R-vine for short).R-vine modeling algorithm searches for the R-vine structure which maximizes the vine tree dependence in a sequential way.The maximum likelihood estimation algorithm takes the sequential estimations as initial values and uses L-BFGS-B algorithm for the likelihood value optimization.R-vine sampling algorithm traverses all edges of the vine structure from the last tree in a recursive way and generates the marginal samples on each edge according to some nested conditions.Goodness-of-fit testing algorithm first generates Rosenblatt’s transformed data E and then tests the hypothesis H^(∗)_(0):E∼C_(⊥)by using Anderson–Darling statistic,where C_(⊥)is the independence copula.Bootstrap method is used to compute an adjusted p-value of the empirical distribution of replications of Anderson–Darling statistic.The computing of related functions of copulas such as cumulative distribution functions,Hfunctions and inverse H-functions often meets with the problem of overflow.We solve this problem by reinvestigating the following six families of bivariate copulas:Normal,Student t,Clayton,Gumbel,Frank and Joe’s copulas.Approximations of the above related functions of copulas are given when the overflow occurs in the computation.All these are implemented in a subpackage bvcopula,in which subroutines are written in Fortran and wrapped into Python and,hence,good performance is guaranteed.