期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于k样本Anderson-Darling检验的混杂铺层层合板挖补修理后拉伸性能研究 被引量:3
1
作者 刘遂 关志东 +3 位作者 郭霞 薛斌 席国芬 蔡婧 《航空材料学报》 EI CAS CSCD 北大核心 2013年第1期86-92,共7页
对挖补修理后的平面编织混杂铺层层合板的拉伸性能进行了试验研究,使用k-样本Anderson-Darling检验对试验结果进行分析,研究挖补斜度、不同修理方法以及初始损伤直径对修理效果的影响。试验结果表明:挖补修理可以较好地恢复层板的拉伸... 对挖补修理后的平面编织混杂铺层层合板的拉伸性能进行了试验研究,使用k-样本Anderson-Darling检验对试验结果进行分析,研究挖补斜度、不同修理方法以及初始损伤直径对修理效果的影响。试验结果表明:挖补修理可以较好地恢复层板的拉伸强度。对穿透挖补修理,挖补斜度大于1:20后,修理试件的拉伸强度可以恢复至完好板的水平;对半穿透挖补修理,挖补斜度大于1:10即可保证修理试件的拉伸强度达到完好板水平。此外,仅改变初始损伤直径不会对修理试件的拉伸性能造成明显影响。 展开更多
关键词 挖补修理 混杂铺层 拉伸强度 破坏模式 k样本andersondarling检验
在线阅读 下载PDF
衰落信道下基于拟合优度检验的认知无线电频谱检测 被引量:9
2
作者 沈雷 王海泉 《电路与系统学报》 CSCD 北大核心 2010年第3期30-34,共5页
本文提出衰落信道下一种基于拟合优度检验的认知无线电频谱检测方法,采用Anderson-Darling(AD)检验代替传统的假设检验,通过计算接收到信道数据样本的分布函数与经验分布函数之间的Anderson-darling距离,并与备选的门限值比较,实现频谱... 本文提出衰落信道下一种基于拟合优度检验的认知无线电频谱检测方法,采用Anderson-Darling(AD)检验代替传统的假设检验,通过计算接收到信道数据样本的分布函数与经验分布函数之间的Anderson-darling距离,并与备选的门限值比较,实现频谱检测。论文分析了衰落信道下AD检测虚警概率和平均检测概率下界。理论分析和仿真结果表明,在低信噪比,小样本条件下,AD检测比传统的能量检测具有更好的性能。 展开更多
关键词 拟合优度检验 anderson.darling检测 认知无线电 频谱检测 能量检测
在线阅读 下载PDF
认知无线电中基于拟合优度的多天线协作频谱检测 被引量:3
3
作者 沈雷 王海泉 赵知劲 《电路与系统学报》 CSCD 北大核心 2010年第5期79-84,共6页
本文提出一种噪声方差未知时,基于拟合优度的多天线协作频谱检测方法。通过计算多个天线采样样本均值和方差比的分布函数与经验分布函数之间的Anderson-darling(AD)距离,并与备选的门限值比较,实现频谱检测。论文分析了衰落信道下,基于A... 本文提出一种噪声方差未知时,基于拟合优度的多天线协作频谱检测方法。通过计算多个天线采样样本均值和方差比的分布函数与经验分布函数之间的Anderson-darling(AD)距离,并与备选的门限值比较,实现频谱检测。论文分析了衰落信道下,基于AD检验的协作频谱检测的虚警概率和检测概率下界。理论分析和仿真结果表明,基于AD检验的协作检测比基于随机矩阵的协作检测具有更好的性能,特别是在低信噪比和小样本条件下。 展开更多
关键词 拟合优度检验 andersondarling协作检测 认知无线电 随机矩阵协作检测
在线阅读 下载PDF
工艺因素对修理后蜂窝夹芯结构侧压性能的影响 被引量:1
4
作者 刘遂 关志东 +3 位作者 郭霞 孙凯 刘卫平 孔娇月 《复合材料学报》 EI CAS CSCD 北大核心 2013年第3期177-183,共7页
对三种方法修理后复合材料蜂窝夹芯板的侧压性能进行了试验研究,结果表明,不同修理方法均可以有效恢复试件的侧压强度,所有试件侧压强度恢复率均在完好板强度的79%之上。使用k样本Anderson-Darling检验方法对试验结果进行分析,比较固化... 对三种方法修理后复合材料蜂窝夹芯板的侧压性能进行了试验研究,结果表明,不同修理方法均可以有效恢复试件的侧压强度,所有试件侧压强度恢复率均在完好板强度的79%之上。使用k样本Anderson-Darling检验方法对试验结果进行分析,比较固化温度及固化设备等工艺因素对修理后试件力学性能的影响。结果表明:使用中温固化材料完成修理不会对修理结构的力学性能造成明显影响,同时使用热压罐完成修理区域固化通常可以改善修理后试件的力学性能,但改善程度与试件修理区域的有效高度密切相关;此外修理时要尽量避免非对称结构引起的附加弯矩对承载能力造成的不利影响。 展开更多
关键词 蜂窝夹芯结构 挖补修理 侧压强度 工艺因素 k样本andersondarling检验
原文传递
Parametric Modeling Approach to Covid-19 Pandemic Data
5
作者 Nofiu Idowu Badmus Olanrewaju Faweya Sikiru Ajibade Ige 《Open Journal of Statistics》 2023年第1期61-73,共13页
The problem of skewness is common among clinical trials and survival data, which has been the research focus derivation and proposition of different flexible distributions. Thus, a new distribution called Extended Ray... The problem of skewness is common among clinical trials and survival data, which has been the research focus derivation and proposition of different flexible distributions. Thus, a new distribution called Extended Rayleigh Lomax distribution is constructed from Rayleigh Lomax distribution to capture the excessiveness of some survival data. We derive the new distribution by using beta logit function proposed by Jones (2004). Some statistical properties of the distribution such as density, cumulative density, reliability rate, hazard rate, reverse hazard rate, moment generating and likelihood functions;skewness, kurtosis and coefficient of variation are obtained. We also performed the expected estimation of model parameters by maximum likelihood;goodness of fit and model selection criteria, including Anderson Darling, CramerVon Misses, Kolmogorov Smirnov (KS), Akaike Information, Bayesian Information, and Consistent Akaike Information Criterion is employed to select the better distribution from those models considered in the work. The results from the statistics criteria show that the intended distribution performs well and has a good representation of the States in Nigeria’s Covid-19 death cases data than other competing models. 展开更多
关键词 anderson darling Cramer-von Mises Covid-19 Kolmogorov Smirnov Link Function Survival Analysis
在线阅读 下载PDF
A distribution-free test of independence based on a modified mean variance index
6
作者 Weidong Ma Fei Ye +1 位作者 Jingsong Xiao Ying Yang 《Statistical Theory and Related Fields》 CSCD 2023年第3期235-259,共25页
Cui and Zhong(2019),(Computational Statistics&Data Analysis,139,117–133)proposed a test based on the mean variance(MV)index to test independence between a categorical random variable Y with R categories and a con... Cui and Zhong(2019),(Computational Statistics&Data Analysis,139,117–133)proposed a test based on the mean variance(MV)index to test independence between a categorical random variable Y with R categories and a continuous random variable X.They ingeniously proved the asymptotic normality of the MV test statistic when R diverges to infinity,which brings many merits to the MV test,including making it more convenient for independence testing when R is large.This paper considers a new test called the integral Pearson chi-square(IPC)test,whose test statistic can be viewed as a modified MV test statistic.A central limit theorem of the martin-gale difference is used to show that the asymptotic null distribution of the standardized IPC test statistic when R is diverging is also a normal distribution,rendering the IPC test sharing many merits with the MV test.As an application of such a theoretical finding,the IPC test is extended to test independence between continuous random variables.The finite sample performance of the proposed test is assessed by Monte Carlo simulations,and a real data example is presented for illustration. 展开更多
关键词 Test of independence asymptotic null distribution mean variance index k-sample anderson darling test statistic concentration type inequality
原文传递
pyvine:The Python Package for Regular Vine Copula Modeling,Sampling and Testing
7
作者 Zhenfei Yuan Taizhong Hu 《Communications in Mathematics and Statistics》 SCIE 2021年第1期53-86,共34页
Regular vine copula provides rich models for dependence structure modeling.It combines vine structures and families of bivariate copulas to construct a number of multivariate distributions that can model a wide range ... Regular vine copula provides rich models for dependence structure modeling.It combines vine structures and families of bivariate copulas to construct a number of multivariate distributions that can model a wide range dependence patterns with different tail dependence for different pairs.Two special cases of regular vine copulas,C-vine and D-vine copulas,have been extensively investigated in the literature.We propose the Python package,pyvine,for modeling,sampling and testing a more generalized regular vine copula(R-vine for short).R-vine modeling algorithm searches for the R-vine structure which maximizes the vine tree dependence in a sequential way.The maximum likelihood estimation algorithm takes the sequential estimations as initial values and uses L-BFGS-B algorithm for the likelihood value optimization.R-vine sampling algorithm traverses all edges of the vine structure from the last tree in a recursive way and generates the marginal samples on each edge according to some nested conditions.Goodness-of-fit testing algorithm first generates Rosenblatt’s transformed data E and then tests the hypothesis H^(∗)_(0):E∼C_(⊥)by using Anderson–Darling statistic,where C_(⊥)is the independence copula.Bootstrap method is used to compute an adjusted p-value of the empirical distribution of replications of Anderson–Darling statistic.The computing of related functions of copulas such as cumulative distribution functions,Hfunctions and inverse H-functions often meets with the problem of overflow.We solve this problem by reinvestigating the following six families of bivariate copulas:Normal,Student t,Clayton,Gumbel,Frank and Joe’s copulas.Approximations of the above related functions of copulas are given when the overflow occurs in the computation.All these are implemented in a subpackage bvcopula,in which subroutines are written in Fortran and wrapped into Python and,hence,good performance is guaranteed. 展开更多
关键词 Regular vine copula Dependence structure Multivariate modeling Multivariate sampling Rosenblatt’s transformation andersondarling test Bivariate copula PYTHON
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部