期刊文献+
共找到477篇文章
< 1 2 24 >
每页显示 20 50 100
Dynamic mechanical responses and debonding failure mechanisms of a bolt-resin-rock anchoring system subjected to cyclic shear loading
1
作者 Qian Yin Xinxin Nie +7 位作者 Zhigang Tao Manchao He Wenhua Zha Gang Wang Zhiqiang Yin Jiangyu Wu Linfeng Wang Yajun Ren 《International Journal of Minerals,Metallurgy and Materials》 2025年第9期2065-2078,共14页
This study investigated the mechanical responses and debonding mechanisms of a bolt-resin-rock composite anchoring sys-tem subjected to cyclic shear loading.A systematic analysis was conducted on the effects of the in... This study investigated the mechanical responses and debonding mechanisms of a bolt-resin-rock composite anchoring sys-tem subjected to cyclic shear loading.A systematic analysis was conducted on the effects of the initial normal load(Fsd),cyclic shear dis-placement amplitude(ud),frequency(f),and rock type on the shear load,normal displacement,shear wear characteristics,and strain field evolution.The experimental results showed that as Fsd increased from 7.5 to 120 kN,both the peak and residual shear loads exhibited in-creasing trends,with increments ranging from 1.98%to 35.25%and from 32.09%to 86.74%,respectively.The maximum shear load of each cycle declined over the cyclic shear cycles,with the rate of decrease slowing and stabilizing,indicating that shear wear primarily oc-curred at the initial cyclic shear stage.During cyclic shearing,the normal displacement decreased spirally with the shear displacement,im-plying continuous shear contraction.The spiral curves display sparse upwards and dense downward trends,with later cycles dominated by dynamic sliding along the pre-existing shear rupture surface,which is particularly evident in coal.The bearing capacity of the anchoring system varies with the rock type and is governed by the coal strength in coal,resin-rock bonding in sandstone#1 and sandstone#2,com-bined resin strength and resin-rock bonding in sandstone#3(sandstone#1,sandstone#2 and sandstone#3,increasing strength order),and resin strength and bolt-resin bonding in limestone.Cyclic shear loading induces anisotropic interfacial degradation,characterized by es-calating strain concentrations and predominant resin-rock interface debonding,with the damage severity modulated by the rock type. 展开更多
关键词 anchoring system anisotropic interface cyclic shear mechanical properties debonding failure strain field evolution shear wear characteristics
在线阅读 下载PDF
Shear mechanical properties and debonding failure mechanisms of bolt-resin-rock anchoring system with anisotropic interfaces
2
作者 NIE Xin-xin YIN Qian +7 位作者 TAO Zhi-gang GUO Long-ji RIABOKON Evgenii ZHU De-fu XIE Liang-fu ZHA Wen-hua WANG Lin-feng REN Ya-jun 《Journal of Central South University》 2025年第7期2535-2552,共18页
This study investigates the shear mechanical responses and debonding failure mechanisms of anchoring systems comprising three anisotropic media and two anisotropic interfaces under controlled boundary conditions of co... This study investigates the shear mechanical responses and debonding failure mechanisms of anchoring systems comprising three anisotropic media and two anisotropic interfaces under controlled boundary conditions of constant normal load(F_(s)),constant normal stiffness(K),and shear rate(v).A systematic analysis of shear mechanical properties,the evolution of maximum principal strain field,and damage characteristics along shear failure surface is presented.Results from direct shear tests demonstrate that initial shear slip diminishes with increasing F_(s)and K,attributed to the normal constraint strengthening effect,while an increase in v enhances initial shear slip due to attenuated deformation coordination and stress transfer.As F_(s)increases from 7.5 to 120 kN,K from 0 to 12 MPa/mm,and v from 0.1 to 2 mm/min,the peak shear load increases by 210.32%and 80.16%with rising F_(s)and K,respectively,while decreases by 38.57%with increasing v.Correspondingly,the shear modulus exhibits,respectively,a 135.29%and 177.06%increase with rising F_(s)and K,and a 37.03%decrease with larger v.Initial shear dilation is identified as marking the formation of shear failure surface along anisotropic interfaces,resulting from the combined shear actions at the resin bolt interface,where resin undergoes shear by bolt surface protrusions,and the resin-rock interface,where mutual shear occurs between resin and rock.With increasing F_(s)and K and decreasing v,the location of the shear failure surface shifts from the resin-rock interface to the resin-bolt interface,accompanied by a transition in failure mode from tensile rupture of resin to shear off at the resin surface. 展开更多
关键词 anchoring system anisotropic interfaces shear mechanical properties strain field evolution debonding failure
在线阅读 下载PDF
Shear mechanical responses and debonding failure mechanisms of bolt-resin-rock anchoring system under dynamic normal load boundary
3
作者 Xinxin Nie Qian Yin +5 位作者 Zhigang Tao Manchao He Gang Wang Wenhua Zha Zhaobo Li Yajun Ren 《International Journal of Mining Science and Technology》 2025年第9期1603-1625,共23页
Under external disturbances,the shear mechanical responses and debonding failure mechanisms at anisotropic interfaces of anchoring system composed of multiphase media are inherently difficult to characterize due to th... Under external disturbances,the shear mechanical responses and debonding failure mechanisms at anisotropic interfaces of anchoring system composed of multiphase media are inherently difficult to characterize due to the concealment nature of interfacial interactions.This study establishes an equivalent shear model for a bolt-resin-rock anchoring system and conducts direct shear tests under dynamic normal load(DNL)boundary from both laboratory experiments and discrete element method(DEM)simulations.The research investigates the influence of normal dynamic load amplitude(An)and rock type on shear strength parameters,elucidating the evolutionary characteristics and underlying mechanisms of shear load and normal displacement fluctuations induced by cyclic normal loading,with maximum shear load decreasing by 36.81%to 46.94%as An increases from 10%to 70%when rock type varies from coal to limestone.Through analysis of strain field evolution,the critical impact of rock type on localization of shear failure surface is revealed,with systematic summarization of differentiated wear characteristics,failure modes,and key controlling factors associated with shear failure surface.Mesoscopic investigations enabled by DEM simulations uncover the nonuniform distribution of contact force chains within the material matrix and across the anisotropic interfaces under various DNL boundaries,clarify rock type dependent crack propagation pathways,and quantitatively assess the damage extent of shear failure surface,with the anisotropic interface damage factor increasing from 34.9%to 56.6%as An rises from 10%to 70%,and decreasing from 49.6%to 23.4%as rock type varies from coal to limestone. 展开更多
关键词 anchoring structure Dynamic normal load boundary Shear mechanical responses Debonding failure Discrete element method
在线阅读 下载PDF
Vibration Characteristic of Anchoring System of Bolt and Elastic Wave Propagation Law
4
作者 王成 李义 +1 位作者 宁建国 林华长 《Journal of Beijing Institute of Technology》 EI CAS 2006年第3期258-262,共5页
Based on one-dimension wave theory, the propagation law of elastic wave along the rock bolt, rock medium and their coupling system are researched, and the attenuation law and propagation mechanism of wave in the ancho... Based on one-dimension wave theory, the propagation law of elastic wave along the rock bolt, rock medium and their coupling system are researched, and the attenuation law and propagation mechanism of wave in the anchoring system are obtained. Meanwhile, the studies on end reflection and dynamic response under load are also carried out experimentally, the relationship between anchoring length and excited wave length is obtained when the end reflection of holt emerges, and it is concluded that under the condition of bolt loaded, as the load increases, the reflection of the upper interface of anchoring segment weakens while the end reflection strengthens relatively, hence the energy attenuation increases. These results provide some important theory basis for measuring the effective anchoring length of bolt, judging the bonding quality of anchoring end and surrounding rock, and estimating the utmost load force of bolt. 展开更多
关键词 rock bolt anchoring system elastic wave
在线阅读 下载PDF
Lattice Anchoring Stabilizesα-FAPbI_(3) Perovskite for High-Performance X-Ray Detectors
5
作者 Yu-Hua Huang Su-Yan Zou +5 位作者 Cong-Yi Sheng Yu-Chuang Fang Xu-Dong Wang Wei Wei Wen-Guang Li Dai-Bin Kuang 《Nano-Micro Letters》 2026年第1期337-354,共18页
Formamidinium lead iodide(FAPbI_(3))perovskite exhibits an impressive X-ray absorption coefficient and a large carrier mobility-lifetime product(μτ),making it as a highly promising candidate for X-ray detection appl... Formamidinium lead iodide(FAPbI_(3))perovskite exhibits an impressive X-ray absorption coefficient and a large carrier mobility-lifetime product(μτ),making it as a highly promising candidate for X-ray detection application.However,the presence of larger FA^(+)cation induces to an expansion of the Pb-I octahedral framework,which unfortunately affects both the stability and charge carrier mobility of the corresponding devices.To address this challenge,we develop a novel low-dimensional(HtrzT)PbI_(3) perovskite featuring a conjugated organic cation(1H-1,2,4-Triazole-3-thiol,HtrzT^(+))which matches well with theα-FAPbI_(3) lattices in two-dimensional plane.Benefiting from the matched lattice between(HtrzT)PbI_(3) andα-FAPbI_(3),the anchored lattice enhances the Pb-I bond strength and effectively mitigates the inherent tensile strain of theα-FAPbI_(3) crystal lattice.The X-ray detector based on(HtrzT)PbI_(3)(1.0)/FAPbI_(3) device achieves a remarkable sensitivity up to 1.83×10^(5)μC Gy_(air)^(−1) cm^(−2),along with a low detection limit of 27.6 nGy_(air) s^(−1),attributed to the release of residual stress,and the enhancement in carrier mobility-lifetime product.Furthermore,the detector exhibits outstanding stability under X-ray irradiation with tolerating doses equivalent to nearly 1.17×10^(6) chest imaging doses. 展开更多
关键词 α-FAPbI_(3)perovskite Conjugated organic cation Lattice anchoring Phase stability X-ray detectors
在线阅读 下载PDF
An epitaxial surface heterostructure anchoring approach for high-performance Ni-rich layered cathodes 被引量:1
6
作者 Weili Sun Qingqing Zhang +8 位作者 Xiao-Guang Sun Cheng Li Yongsheng Huang Wenyu Mu Junbin Tan Jianlin Li Kai Liu Shijian Zheng Sheng Dai 《Journal of Energy Chemistry》 2025年第6期158-169,I0005,共13页
Nickel-rich(Ni≥90%)layered oxides materials have emerged as a promising candidate for nextgeneration high-energy-density lithium-ion batteries(LIBs).However,their widespread application is hindered by structural fati... Nickel-rich(Ni≥90%)layered oxides materials have emerged as a promising candidate for nextgeneration high-energy-density lithium-ion batteries(LIBs).However,their widespread application is hindered by structural fatigue and lattice oxygen loss.In this work,an epitaxial surface rock-salt nanolayer is successfully developed on the LiNi_(0.9)Co_(0.1)O_(2)sub-surface via heteroatom anchoring utilizing high-valence element molybdenum modification.This in-situ formed conformal buffer phase with a thickness of 1.2 nm effectively suppresses the continuous interphase side-reactions,and thus maintains the excellent structure integrity at high voltage.Furthermore,theoretical calculations indicate that the lattice oxygen reversibility in the anion framework of the optimized sample is obviously enhanced due to the higher content of O 2p states near the Fermi level than that of the pristine one.Meanwhile,the stronger Mo-O bond further reduces cell volume alteration,which improves the bulk structure stability of modified materials.Besides,the detailed charge compensation mechanism suggests that the average oxidation state of Ni is reduced,which induces more active Li+participating in the redox reactions,boosting the cell energy density.As a result,the uniquely designed cathode materials exhibit an extraordinary discharge capacity of 245.4 mAh g^(-1)at 0.1 C,remarkable rate performance of 169.3 mAh g^(-1)at 10 C at 4.5 V,and a high capacity retention of 70.5% after 1000 cycles in full cells at a high cut-off voltage of 4.4 V.This strategy provides an valuable insight into constructing distinctive heterostructure on highperformance Ni-rich layered cathodes for LIBs. 展开更多
关键词 Ni-rich layered oxides Rock-salt nanolayer Heteroatom anchoring Lattice oxygen reversibility Lithium-ion batteries
在线阅读 下载PDF
A modified guidewire technique for managing nondeflating anchoring balloon transurethral catheters in emergency procedures
7
作者 Weiting Chen Min Tang +1 位作者 Lihui Chen Ying Liu 《World Journal of Emergency Medicine》 2025年第6期632-634,共3页
Urinary catheters are essential medical devices widely used for patients requiring urinary drainage,bladder irrigation,or precise urine output monitoring.Transurethral catheters with anchoring balloons are particularl... Urinary catheters are essential medical devices widely used for patients requiring urinary drainage,bladder irrigation,or precise urine output monitoring.Transurethral catheters with anchoring balloons are particularly prevalent among hospitalized patients,facilitating continuous urinary drainage. 展开更多
关键词 precise urine output monitoringtransurethral catheters nondeflating anchoring balloon medical devices anchoring balloons urinary drainagebladder irrigationor urinary catheters urinary drainage modified guidewire technique
暂未订购
Heteroatoms Synergistic Anchoring Vacancies in Phosphorus-Doped CoSe_(2)Enable Ultrahigh Activity and Stability in Li-S Batteries
8
作者 Xiaoya Zhou Wei Mao +4 位作者 Chengwei Ye Qi Liang Peng Wang Xuebin Wang Shaochun Tang 《Nano-Micro Letters》 2025年第12期305-318,共14页
Electrocatalyst activity and stability demonstrate a“seesaw”relationship.Introducing vacancies(Vo)enhances the activity by improving reactant affinity and increasing accessible active sites.However,deficient or exce... Electrocatalyst activity and stability demonstrate a“seesaw”relationship.Introducing vacancies(Vo)enhances the activity by improving reactant affinity and increasing accessible active sites.However,deficient or excessive Vo reduces polysulfide adsorption and lowers catalytic stability.Herein,a novel“heteroatoms synergistic anchoring vacancies”strategy is proposed to address the trade-off between high activity and stability.Phosphorus-doped CoSe_(2)with remained rich selenium vacancies(P-CS-Vo-0.5)was synthesized by producing abundant selenium Vo followed by controlled P atom doping.Atomic-scale microstructure analysis elucidated a dynamic process of surface vacancy generation and the subsequent partial occupation of these vacancies by P atoms.Density functional theory simulations and in situ Raman tests revealed that the Se vacancies provide highly active catalytic sites,accelerating polysulfide conversion,while P incorporation effectively reduces the surface energy of Se vacancies and suppresses their inward migration,enhancing structural robustness.The battery with the optimal P-CS-Vo-0.5 separator delivers an initial discharge capacity of 1306.7 mAh g^(-1)at 0.2C,and maintain 5.04 mAh cm^(-2)at a high sulfur loading(5.7 mg cm^(-2),5.0μL mg^(-1)),achieving 95.1%capacity retention after 80 cycles.This strategy of modifying local atomic environments offers a new route to designing highly active and stable catalysts. 展开更多
关键词 VACANCY Heteroatomic anchoring Vacancy migration Activity/stability trade-off ELECTROCATALYSTS
在线阅读 下载PDF
Flexible switching devices with dynamic anchoring of Ag/Ag^(+) coupling for reservoir computing
9
作者 Xuefang Liu Jianyong Pan +5 位作者 Wentong Li Xiaoyu Zhang Zhe Li Beining Zheng Yang Li Jiaqi Zhang 《Journal of Energy Chemistry》 2025年第10期914-922,共9页
Memristive devices based on in-memory computing architectures offer a promising strategy for overcoming the energy bottlenecks inherent in big data systems.However,uncontrolled ion migration at the material level rema... Memristive devices based on in-memory computing architectures offer a promising strategy for overcoming the energy bottlenecks inherent in big data systems.However,uncontrolled ion migration at the material level remains a key challenge,compromising device stability and hindering practical applications.Here,we employ a chemical optimization strategy that dynamically induces the precipitation of Ag atoms under applied voltage,creating fixed atomic sites to achieve precise control over ion migration,synergistically enhancing the memory and computing capabilities of the device.Compared to unoptimized samples,the proposed device exhibits an approximately 8-fold improvement in robustness,a 3-fold enhancement in stability,high mechanical endurance,and reliable multilevel data storage capability.We further construct a device array and incorporate an efficient reservoir computing model,achieving handwritten digit recognition with an accuracy of up to 90.81%.In summary,this work proposes a dynamic Ag/Ag^(+)anchoring strategy and demonstrates a memristor-based approach that integrates storage and computation to enable energy-efficient artificial intelligence processing,offering a scalable solution for sustainable intelligence in the big data era. 展开更多
关键词 MEMRISTORS Conductive filaments Dynamic anchoring Silver-cyano coordination compounds Reservoir computing
在线阅读 下载PDF
Optimization and engineering practice of large-diameter drilling hole-anchoring hole spacing based on stress relief-support reinforcement cooperative effect
10
作者 GUO Wei-yao WANG Xiang-yu +4 位作者 YIN Li-ming ZHENG Yong-sheng JI Xin-bo LIU Guang-zhao WU Zhen 《Journal of Central South University》 2025年第10期3968-3984,共17页
Large-diameter drilling method is a prevalent method for preventing and controlling rock burst,and the spacing between the large-diameter drilling hole and anchoring hole is a critical factor influencing the roadway s... Large-diameter drilling method is a prevalent method for preventing and controlling rock burst,and the spacing between the large-diameter drilling hole and anchoring hole is a critical factor influencing the roadway stability and relief effectiveness.In this study,a mechanical model for optimal matching between the large-diameter drilling hole and anchoring hole was established following the principle of synergistic control.The influence of large-diameter drilling hole diameter on the optimal spacing under the synergistic relief effect was investigated by integrating theoretical analysis,numerical simulation,and field practice.The results suggest that the hole spacing achieved a synergistic effect in a certain range when the optimal hole spacing increased linearly with the hole diameter.For instance,when the anchoring hole diameter was 20 mm,an increase in the aperture ratio from 5 to 10 brought about an increase in the optimal spacing from 0.25 m to 0.45 m.Additionally,the vertical stress between the large-diameter drilling hole and anchor hole increased nonlinearly under the condition of constant pore ratio but varying hole spacing.Both excessively small and excessively large hole spacings were detrimental to the pressure relief effect.In the engineering practice,optimizing the hole spacing from 0.55 m to 0.45 m in the 1208 working face contributed to reducing coal body drilling cuttings and the roadway moving quantity by 33%and 19.2%,respectively.This demonstrates that the pressure relief-support reinforcement synergistic effect should be fully considered in optimization design. 展开更多
关键词 rock burst pressure relief-support reinforcement large-diameter drilling hole anchoring hole hole spacing vertical stress
在线阅读 下载PDF
ANCHORING RCEP IN OPENNESS China’s unilateral market opening is accelerating high-level implementation of RCEP
11
作者 China Institute for Reform and Development(CIRD)research team Chi Fulin +3 位作者 Yang Rui Kuang Xianming Wang Yuehong Jin Ye 《China Report ASEAN》 2025年第5期60-61,共2页
The Regional Comprehensive Economic Partnership(RCEP)is a significant achievement in terms of Asia’s exploration and efforts toward regional economic integration.It integrates regional economic and trade cooperation ... The Regional Comprehensive Economic Partnership(RCEP)is a significant achievement in terms of Asia’s exploration and efforts toward regional economic integration.It integrates regional economic and trade cooperation mechanisms,demonstrates the determination and capabilities of Asian countries to promote open cooperation. 展开更多
关键词 unilateral market opening high level implementation OPENNESS economic trade cooperation mechanismsdemonstrates regional comprehensive economic partnership rcep regional economic partnership RCEP anchoring
在线阅读 下载PDF
Anchoring group regulation in semiconductor/molecular complex hybrid photoelectrode for photoelectrochemical water splitting
12
作者 Xiangyan Chen Fujun Niu +3 位作者 Tongxiang Ma Qingyu Li Shaopeng Wang Shaohua Shen 《Smart Molecules》 2025年第2期1-12,共12页
Rational interface engineering via regulating the anchoring groups between molecular catalysts and light-absorbing semiconductors is essential and emergent to stabilize the semiconductor/molecular complex interaction ... Rational interface engineering via regulating the anchoring groups between molecular catalysts and light-absorbing semiconductors is essential and emergent to stabilize the semiconductor/molecular complex interaction and facilitate the photocarriers transport,thus realizing highly active and stable photoelectrochemical(PEC)water splitting.In this mini review,following a showcasing of the fundamental details of hybrid PEC systems containing semiconductor photoelectrodes and molecular catalysts for water splitting,the state-of-the-art progress of anchoring group regulation at semiconductor/molecular complex interface for efficient and stable PEC water splitting,as well as its effect on charge transfer kinetics,are comprehensively reviewed.Finally,potential research directions aimed at building high-efficiency hybrid PEC water splitting systems are summarized. 展开更多
关键词 anchoring groups hybrid systems molecular catalysts photoelectrochemical water splitting semiconductor photoelectrodes
在线阅读 下载PDF
Mechanical behaviors and anchoring mechanism of coal-rock-bolt combinations under high strain rate conditions
13
作者 Fuqiang Ren Tianzuo Huang +3 位作者 Chun Zhu Murat Karakus Yalong Jiang Yuan Chang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第11期7221-7236,共16页
Understanding the mechanical properties of coal-rock-bolt(CRB)combinations at high strain rates and the anchoring mechanism of bolts is crucial for ensuring the safety of coal mining operations.However,the dynamic beh... Understanding the mechanical properties of coal-rock-bolt(CRB)combinations at high strain rates and the anchoring mechanism of bolts is crucial for ensuring the safety of coal mining operations.However,the dynamic behaviors of these combinations,especially the mechanism of action of prestressed bolts,still need to be further investigated.This study carried out split Hopkinson pressure bar(SHPB)tests on three sets of coal-rock(CR),CRB,and coal-rock-prestressed bolt(CRPB)combinations with different interface angles(β=15°,30°,45°,and 60°).The dynamic properties of the combinations were analyzed based on the stress-strain curve,energy dissipation,dynamic strength,fractal dimension of cracks,and failure mode of bolts.The test results show that a larger β will affect the stress transfer and anti-sliding ability of CR,resulting in a decrease in CR strength.The anchoring force of the bolt effectively suppresses the slip feature of CRB at the yield stage.As the strain rate increases,CRB shows a more pronounced'sudden increase'in strength,and the bolt significantly enhances its dynamic strength.The prestressed bolts enhance the dynamic strength of CRPB while weaken the effect of β.The fractal dimension of the macrocracks increases with strain rate,with smaller variations in CRB and CRPB,indicating that the bolt reduces the complexity degree of CRB and CRPB.The anchoring force of CRB depends on bolt strength,which reduces the slip along the interface.The anchoring force of CRPB balances the coal-rock slip and suppresses crack formation,resulting in a more cohesive response under dynamic load. 展开更多
关键词 Coal-rock-bolt combination Prestressed bolt High strain rates Dynamic response anchoring mechanism
在线阅读 下载PDF
Anchoring oxygen on LiNi_(0.94)Co_(0.05)Mn_(0.01)O_(2)surface by coating Ti_(x)NbB_((1−x))C_(2)boosts long-cycle stability of all-solid-state lithium batteries
14
作者 Jingchi Zhang Ze Hua +6 位作者 Ziqi Wu Xinting Cao Wen Yang Ruiwen Shao Yu Bai Zhenhua Wang Kening Sun 《Journal of Energy Chemistry》 2025年第8期183-193,共11页
To satisfy the demands of modern society for high-energy–density sulfide-based all-solid-state lithium batteries(ASSLBs),Ni-rich cathode materials have gained much attention for their high capacity and energy density... To satisfy the demands of modern society for high-energy–density sulfide-based all-solid-state lithium batteries(ASSLBs),Ni-rich cathode materials have gained much attention for their high capacity and energy density.However,their practical deployment is hindered by accelerated interface degradation and capacity decay originating from surface oxygen release and lattice oxygen activation during prolonged cycling.In this study,Ti_(x)NbB_((1−x))C_(2)was successfully coated on the surface of LiNi_(0.94)Co_(0.05)Mn_(0.01)O_(2).Density functional theory(DFT)calculations first elucidate a“point-to-point”anchoring mechanism where each surface oxygen atom coordinates with single species(Ti/Nb/B)offered by Ti_(x)NbB_((1−x))C_(2),which forms robust O–M bonds and sustain a stable interface structure.The electron energy loss spectroscopy(EELS)reveals the segregation of Ti/Nb toward subsurface layers during cycling,creating an optimized lattice oxygen coordination environment and suppressing oxygen activation.The dual oxygen stabilization mechanism dramatically improves the reversibility of phase transition and the structural stability of the Ni-rich cathode materials.Moreover,Ti_(x)NbB_((1−x))C_(2)as the protective layer decreases mechanical strain and suppresses the parasitic reactions.Consequently,the engineered cathode delivers 91%capacity retention after 1000 cycles at 0.3 C,suggesting excellent cycling stability.The research delivers a new design philosophy for the coating layer that can stabilize surface oxygen.Furthermore,the atomistic understanding of the structure–property relationship of the Ni-rich cathode materials provides valuable guidance for the future design of new cathode materials with superior structural stability in ASSLBs. 展开更多
关键词 Ni-rich cathode Ti_(x)NbB_((1−x))C_(2)coating "Point-to-point"anchoring Element segregation All-solid-state lithium batteries Long cycle stability
在线阅读 下载PDF
Glycosylphosphatidylinositol(GPI)anchoring controls cell wall integrity,immune evasion and surface localization of ChFEM1 for infection of Cochlibolus heterostrophus
15
作者 Hong Hu Tiangu Liu +5 位作者 Xinyun Xie Fuyan Li Caiyun Liu Jintao Jiang Zhigang Li Xiaolin Chen 《Journal of Integrative Agriculture》 2025年第11期4310-4323,共14页
Glycosylphosphatidylinositol(GPI)anchoring represents a fundamental post-translational modification in eukaryotic cells.In fungi,this modification facilitates diverse biological functions through protein targeting to ... Glycosylphosphatidylinositol(GPI)anchoring represents a fundamental post-translational modification in eukaryotic cells.In fungi,this modification facilitates diverse biological functions through protein targeting to the cell wall,yet research on its roles in plant pathogenic fungi remains limited.This study elucidates the function of GPI anchoring in the maize fungal pathogen Cochlibolus heterostrophus.The research demonstrates widespread accumulation of GPI-anchored proteins in hyphae,appressorium and infection hyphae of C.heterostrophus.Deletion of ChGPI7,encoding a crucial enzyme in GPI anchor biosynthesis,substantially reduced vegetative growth,conidiation,and virulence through impaired appressorium formation and invasive growth.The ΔChgpi7 mutants exhibited marked deficiencies in cell wall integrity,leading to decreased stress resistance.Both ChGPI7 deletion and hydro fluoric acid(HF)pyridine treatment eliminated cell wall GPI-anchored proteins and exposed chitin,indicating that GPI-anchored proteins shield chitin from host immune recognition.Analysis identified 124 predicted GPI-anchored proteins in C.heterostrophus,including the putative cell wall glycoprotein ChFEM1.The deletion of ChFEM1 similarly reduced virulence and compromised infection structures and cell wall integrity.Additionally,ChGPI7 influenced both the cell wall localization and protein abundance of ChFEM1.These findings demonstrate that GPI anchoring mediates cell wall integrity and immune evasion during C.heterostrophus infection. 展开更多
关键词 Cochlibolus heterostrophus GPI anchor immune evasion cell wall integrity cell wall protein fungal infection
在线阅读 下载PDF
Bearing characteristics of anchor box beam support system in deep thick roof coal roadway and its application
16
作者 WANG Qi WANG Ming-zi +1 位作者 JIANG Bei XU Chuan-jie 《Journal of Central South University》 2025年第5期1887-1902,共16页
Considering the characteristics of deep thick top coal roadway,in which the high ground stress,coal seam with low strength,and a large range of surrounding rock fragmentation,the pressure relief anchor box beam suppor... Considering the characteristics of deep thick top coal roadway,in which the high ground stress,coal seam with low strength,and a large range of surrounding rock fragmentation,the pressure relief anchor box beam support system with high strength is developed.The high-strength bearing characteristics and coupling yielding support mechanism of this support system are studied by the mechanical tests of composite members and the combined support system.The test results show that under the coupling effect of support members,the peak stress of the box-shaped support beam in the anchor box beam is reduced by 21.9%,and the average deformation is increased by 135.0%.The ultimate bending bearing capacity of the box-shaped support beam is 3.5 times that of traditional channel beam.The effective compressive stress zone applied by the high prestressed cable is expanded by 26.4%.On this basis,the field support comparison test by the anchor channel beam,the anchor I-shaped beam and the anchor box beam are carried out.Compared with those of the previous two,the surrounding rock convergence of the latter is decreased by 41.2%and 22.2%,respectively.The field test verifies the effectiveness of the anchor box beam support system. 展开更多
关键词 thick roof coal roadway anchor box beam bearing characteristics combined support field application
在线阅读 下载PDF
Anchoring eccentricity features and rectifying devices for resin grouted bolt/cable bolt 被引量:12
17
作者 Shaowei Liu Deyin He +2 位作者 Housheng Jia Mengxiong Fu Biao Hou 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第5期1059-1073,共15页
The anchoring eccentricity of the bolt and cable bolt is a common problem in geotechnical support engineering and affects the ability of the bolt and cable bolt to control the rock mass to a certain extent.This paper ... The anchoring eccentricity of the bolt and cable bolt is a common problem in geotechnical support engineering and affects the ability of the bolt and cable bolt to control the rock mass to a certain extent.This paper reports on numerical simulation and laboratory experiments conducted to clarify the effect of eccentricity on the anchoring quality of the bolt and cable bolt,and to establish an effective solution strategy.The results reveal that the anchoring eccentricity causes unbalanced stress distribution and the uncoordinated deformation of the resin layer,which results in higher stress and greater deformation of the resin layer at the near side of the rod body.Additionally,as the degree of anchoring eccentricity increases,the effect becomes more significant,and the resin layer of the anchoring system becomes more likely to undergo preferential failure locally,which weakens the load-bearing performance of the anchoring system.This paper develops an innovative bolt anchoring rectifying device(B-ARD)and cable bolt anchoring rectifying device(C-ARD)on the basis of the structural characteristics of the bolt and cable bolt to better ensure the anchoring effect of them.The working effects of these two devices were verified in detailed experiments and analysis.The experimental results show that the anchoring rectifying devices(ARD)improve and ensure the anchoring concentricity of the bolt and cable bolt,which will help improve the supporting performance of them.The paper provides a convenient and effective method for improving the anchoring concentricity of the bolt and cable bolt,and provides a concept and reference for technical research on improving the effect of roof bolting. 展开更多
关键词 anchoring eccentricity features Rectifying device Roof bolting anchoring system performance
在线阅读 下载PDF
A Reconfigurable Omnidirectional Triboelectric Whisker Sensor Array for Versatile Human–Machine–Environment Interaction
18
作者 Weichen Wang Jiaqi Zhu +9 位作者 Hongfa Zhao Fei Yao Yuzhu Zhang Xiankuan Qian Mingrui Shu Zhigang Wu Minyi Xu Hongya Geng Wenbo Ding Juntian Qu 《Nano-Micro Letters》 2026年第3期121-140,共20页
Developing effective,versatile,and high-precision sensing interfaces remains a crucial challenge in human-machine-environment interaction applications.Despite progress in interaction-oriented sensing skins,limitations... Developing effective,versatile,and high-precision sensing interfaces remains a crucial challenge in human-machine-environment interaction applications.Despite progress in interaction-oriented sensing skins,limitations remain in unit-level reconfiguration,multiaxial force and motion sensing,and robust operation across dynamically changing or irregular surfaces.Herein,we develop a reconfigurable omnidirectional triboelectric whisker sensor array(RO-TWSA)comprising multiple sensing units that integrate a triboelectric whisker structure(TWS)with an untethered hydro-sealing vacuum sucker(UHSVS),enabling reversibly portable deployment and omnidirectional perception across diverse surfaces.Using a simple dual-triangular electrode layout paired with MXene/silicone nanocomposite dielectric layer,the sensor unit achieves precise omnidirectional force and motion sensing with a detection threshold as low as 0.024 N and an angular resolution of 5°,while the UHSVS provides reliable and reversible multi-surface anchoring for the sensor units by involving a newly designed hydrogel combining high mechanical robustness and superior water absorption.Extensive experiments demonstrate the effectiveness of RO-TWSA across various interactive scenarios,including teleoperation,tactile diagnostics,and robotic autonomous exploration.Overall,RO-TWSA presents a versatile and high-resolution tactile interface,offering new avenues for intelligent perception and interaction in complex real-world environments. 展开更多
关键词 Reconfigurable sensor array Interaction interface Tactile perception Omnidirectional sensor Reversible anchoring
在线阅读 下载PDF
Anchoring effect and energy-absorbing support mechanism of large deformation bolt 被引量:18
19
作者 ZHAO Tong-bin XING Ming-lu +2 位作者 GUO Wei-yao WANG Cun-wen WANG Bo 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期572-581,共10页
To research the anchoring effect of large deformation bolt,tensile and drawing models are established.Then,the evolution laws of drawing force,bolt axial force and interfacial shear stress are analyzed.Additionally,th... To research the anchoring effect of large deformation bolt,tensile and drawing models are established.Then,the evolution laws of drawing force,bolt axial force and interfacial shear stress are analyzed.Additionally,the influence of structure element position on the anchoring effect of large deformation bolt is discussed.At last,the energy-absorbing support mechanism is discussed.Results show that during the drawing process of normal bolt,drawing force,bolt axial force and interfacial shear stress all gradually increase as increasing the drawing displacement,but when the large deformation bolt enters the structural deformation stage,these three values will keep stable;when the structure element of large deformation bolt approaches the drawing end,the fluctuation range of drawing force decreases,the distributions of bolt axial force and interfacial shear stress of anchorage section are steady and the increasing rate of interfacial shear stress decreases,which are advantageous for keeping the stress stability of the anchorage body.During the working process of large deformation bolt,the strain of bolt body is small,the working resistance is stable and the distributions of bolt axial force and interfacial shear stress are steady.When a rock burst event occurs,the bolt and bonding interface cannot easily break,which weakens the dynamic disaster degree. 展开更多
关键词 rock burst large deformation bolt numerical simulation pull-out test anchoring effect energy-absorbing mechanism
在线阅读 下载PDF
Anchoring Depth Research of Anti-Slide Piles of Anchor Bar in Soil 被引量:6
20
作者 Xunchang Li,Yuming Men School of Geological Engineering and Surveying Engineering,Chang’an University,Xi’an 710054,China. 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期182-182,共1页
The model test result of earth force in the side of anti-slide pile of anchor bars was introduced.There are three groups of the tests.The loads were on the back side of the slope in two groups.The other one was loaded... The model test result of earth force in the side of anti-slide pile of anchor bars was introduced.There are three groups of the tests.The loads were on the back side of the slope in two groups.The other one was loaded just behind the pile by the jack.In order to get the force of the soil,some earth-pressure boxes were used to get the earth pressure on the side of the piles.The part of the max pressure and the earth pressure was mainly focused under the slip line 展开更多
关键词 anti-slide PILE of ANCHOR BAR model test anchoring DEPTH SLIP line
在线阅读 下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部