期刊文献+
共找到283,046篇文章
< 1 2 250 >
每页显示 20 50 100
CenterRCNN:Two-Stage Anchor-Free Object Detection Using Center Keypoint-Based Region Proposal Network
1
作者 LIU Chen LI Wenfa +1 位作者 XU Yunwen LI Dewei 《Journal of Shanghai Jiaotong university(Science)》 2025年第5期1028-1036,共9页
The classic two-stage object detection algorithms such as faster regions with convolutional neural network features(Faster RCNN)suffer from low speed and anchor hyper-parameter sensitive problems caused by dense ancho... The classic two-stage object detection algorithms such as faster regions with convolutional neural network features(Faster RCNN)suffer from low speed and anchor hyper-parameter sensitive problems caused by dense anchor mechanism in region proposal network(RPN).Recently,the anchor-free method CenterNet shows the effectiveness of perceiving and classifying object by its center.However,the severe coincidence false positive problem between confusing categories caused by the multiple binary classifiers makes it still insufficient in accuracy.We introduce a two-stage network CenterRCNN to take advantage of both and overcome their shortcomings.CenterRPN is proposed as the first stage to give proposals that incorporate the center keypoint idea into RPN to perceive foreground objects,replacing dense anchor-based RPN.Then the proposals are classified by the multi-classifier of RCNN header that focuses more on the difference between confusing categories and only outputs the maximum probability one of them.To sum up,CenterRPN can eliminate the drawbacks of dense anchor based RPN in Faster RCNN,and multi-classifier’s classification ability is better than that of multiple binary classifiers in CenterNet.The experiment demonstrates that CenterRCNN outperforms both basic algorithms in the accuracy,and the speed is improved as compared with Faster RCNN. 展开更多
关键词 anchor-free detection CenterRPN multi-classifier
原文传递
PID Steering Control Method of Agricultural Robot Based on Fusion of Particle Swarm Optimization and Genetic Algorithm
2
作者 ZHAO Longlian ZHANG Jiachuang +2 位作者 LI Mei DONG Zhicheng LI Junhui 《农业机械学报》 北大核心 2026年第1期358-367,共10页
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion... Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots. 展开更多
关键词 agricultural robot steering PID control particle swarm optimization algorithm genetic algorithm
在线阅读 下载PDF
Flood predictions from metrics to classes by multiple machine learning algorithms coupling with clustering-deduced membership degree
3
作者 ZHAI Xiaoyan ZHANG Yongyong +5 位作者 XIA Jun ZHANG Yongqiang TANG Qiuhong SHAO Quanxi CHEN Junxu ZHANG Fan 《Journal of Geographical Sciences》 2026年第1期149-176,共28页
Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting... Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting flood resource variables using single or hybrid machine learning techniques.However,class-based flood predictions have rarely been investigated,which can aid in quickly diagnosing comprehensive flood characteristics and proposing targeted management strategies.This study proposed a prediction approach of flood regime metrics and event classes coupling machine learning algorithms with clustering-deduced membership degrees.Five algorithms were adopted for this exploration.Results showed that the class membership degrees accurately determined event classes with class hit rates up to 100%,compared with the four classes clustered from nine regime metrics.The nonlinear algorithms(Multiple Linear Regression,Random Forest,and least squares-Support Vector Machine)outperformed the linear techniques(Multiple Linear Regression and Stepwise Regression)in predicting flood regime metrics.The proposed approach well predicted flood event classes with average class hit rates of 66.0%-85.4%and 47.2%-76.0%in calibration and validation periods,respectively,particularly for the slow and late flood events.The predictive capability of the proposed prediction approach for flood regime metrics and classes was considerably stronger than that of hydrological modeling approach. 展开更多
关键词 flood regime metrics class prediction machine learning algorithms hydrological model
原文传递
Equivalent Modeling with Passive Filter Parameter Clustering for Photovoltaic Power Stations Based on a Particle Swarm Optimization K-Means Algorithm
4
作者 Binjiang Hu Yihua Zhu +3 位作者 Liang Tu Zun Ma Xian Meng Kewei Xu 《Energy Engineering》 2026年第1期431-459,共29页
This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the compl... This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research. 展开更多
关键词 Photovoltaic power station multi-machine equivalentmodeling particle swarmoptimization K-means clustering algorithm
在线阅读 下载PDF
GSLDWOA: A Feature Selection Algorithm for Intrusion Detection Systems in IIoT
5
作者 Wanwei Huang Huicong Yu +3 位作者 Jiawei Ren Kun Wang Yanbu Guo Lifeng Jin 《Computers, Materials & Continua》 2026年第1期2006-2029,共24页
Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from... Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%. 展开更多
关键词 Industrial Internet of Things intrusion detection system feature selection whale optimization algorithm Gaussian mutation
在线阅读 下载PDF
Identification of small impact craters in Chang’e-4 landing areas using a new multi-scale fusion crater detection algorithm
6
作者 FangChao Liu HuiWen Liu +7 位作者 Li Zhang Jian Chen DiJun Guo Bo Li ChangQing Liu ZongCheng Ling Ying-Bo Lu JunSheng Yao 《Earth and Planetary Physics》 2026年第1期92-104,共13页
Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an... Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy. 展开更多
关键词 impact craters Chang’e-4 landing area multi-scale automatic detection YOLO11 Fusion algorithm
在线阅读 下载PDF
一种Anchor-Free的联合模型车辆多目标跟踪算法 被引量:4
7
作者 马利 陈诗煊 牛斌 《辽宁大学学报(自然科学版)》 CAS 2021年第3期193-203,F0002,共12页
针对现有车辆跟踪算法不能很好地平衡效率与精度,存在较多ID切换、误检的问题,提出一种Anchor-Free的联合模型车辆多目标跟踪算法,通过把Anchor-Free可变卷积深度特征融合网络引入联合模型,在联合学习车辆目标检测和重识别特征嵌入的基... 针对现有车辆跟踪算法不能很好地平衡效率与精度,存在较多ID切换、误检的问题,提出一种Anchor-Free的联合模型车辆多目标跟踪算法,通过把Anchor-Free可变卷积深度特征融合网络引入联合模型,在联合学习车辆目标检测和重识别特征嵌入的基础上,以轨迹关联的方式,完成车辆多目标跟踪任务.所提出的算法在UA-DETRAC车辆数据集及KITTI-tracking数据集组合成的联合数据集上进行训练和测试,结果表明,提出的车辆多目标跟踪算法有效减少了ID切换、误检问题的出现,网络结构更简单,算法运行效率更高. 展开更多
关键词 anchor-free 联合模型 车辆跟踪
在线阅读 下载PDF
基于anchor-free的交通场景目标检测技术 被引量:9
8
作者 葛明进 孙作雷 孔薇 《计算机工程与科学》 CSCD 北大核心 2020年第4期707-713,共7页
在智能交通领域使用深度学习的方法进行目标检测已成为研究热点。当下经典的目标检测算法,无论是基于回归的单阶目标检测模型还是基于候选区域的二阶段目标检测模型,大部分是利用大量预定义的先验框anchor枚举可能的位置、尺寸和纵横比... 在智能交通领域使用深度学习的方法进行目标检测已成为研究热点。当下经典的目标检测算法,无论是基于回归的单阶目标检测模型还是基于候选区域的二阶段目标检测模型,大部分是利用大量预定义的先验框anchor枚举可能的位置、尺寸和纵横比的方法来搜索对象,往往会造成正负样本严重不均衡的问题,模型的性能和泛化能力也受到anchor自身设计的限制。针对基于anchor的目标检测算法存在的问题,利用单阶目标检测网络RetinaNet,对交通场景中的车辆、行人和骑行者建立基于anchor-free的目标检测模型,采用逐像素预测的方式处理目标检测问题,并添加中心性预测分支,提升检测性能。实验表明,与基于anchor的原RetinaNet算法相比,改进的基于anchor-free的目标检测模型算法能够对交通场景中的车辆、行人、骑行者实现更好的识别。 展开更多
关键词 智能交通 深度学习 RetinaNet anchor-free
在线阅读 下载PDF
Anchor-free的尺度自适应行人检测算法 被引量:14
9
作者 邹逸群 肖志红 +4 位作者 唐夏菲 赖普坚 汤松林 张泳祥 唐琎 《控制与决策》 EI CSCD 北大核心 2021年第2期295-302,共8页
Anchor作为行人检测算法中的初始框,可以解决行人平移问题和缓解行人尺度变化问题,目前的行人检测算法通常都基于anchor.然而,使用anchor就需要精心调整对检测性能影响非常大的anchor超参数,如anchor的尺度和高宽比等.为避免这一问题,... Anchor作为行人检测算法中的初始框,可以解决行人平移问题和缓解行人尺度变化问题,目前的行人检测算法通常都基于anchor.然而,使用anchor就需要精心调整对检测性能影响非常大的anchor超参数,如anchor的尺度和高宽比等.为避免这一问题,提出一种基于anchor-free损失函数的行人检测算法,并通过融合特征金字塔网络(FPN)所有检测分支的特征,使anchor-free行人检测算法在训练过程中不需要为FPN的每个检测分支设置有效的训练尺度范围.另外,还提出一个尺度注意力(scale attention,SA)模块,用于融合FPN所有检测分支特征的过程,使网络在检测某个尺度的行人时,能够自适应地为行人所对应的不同尺度的感兴趣区域(ROI)特征赋予合适的权重.实验结果显示,所提出的行人检测算法不仅可以实现anchor-free,从而避免anchor的超参数调整问题,而且在性能上优于其他行人检测算法,在CityPersons数据集上取得了目前最好的效果9.19%MR^(-2). 展开更多
关键词 行人检测 卷积神经网络 anchor-free 注意力机制 尺度自适应
原文传递
一种迭代聚合的高分辨率网络Anchor-free目标检测方法 被引量:4
10
作者 王新 李喆 张宏立 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2021年第12期2533-2541,共9页
针对目前Anchor-free目标检测方法CenterNet(Objects as Points)生成热力图不准确、检测精度不足的问题,提出了一种基于特征迭代聚合的高分辨率表征网络CenterNet-DHRNet。首先,引入高分辨率表征骨干网络,并用迭代聚合的方式对不同分辨... 针对目前Anchor-free目标检测方法CenterNet(Objects as Points)生成热力图不准确、检测精度不足的问题,提出了一种基于特征迭代聚合的高分辨率表征网络CenterNet-DHRNet。首先,引入高分辨率表征骨干网络,并用迭代聚合的方式对不同分辨率的特征图进行融合,提高网络的分辨率,有效减少图像在下采样过程中损失的空间语义信息。其次,使用高效通道注意力机制对高分辨率表征骨干网络的输出进行优化。最后,利用结合空洞卷积的空间金字塔池化操作增强网络对不同尺度物体的感受野。实验在PASCAL VOC数据集和KITTI数据集上进行,结果表明:CenterNet-DHRNet精度更高,满足实时检测的性能要求,具有良好的鲁棒性。 展开更多
关键词 目标检测 迭代聚合 anchor-free CenterNet 注意力机制
原文传递
多尺度特征融合的Anchor-Free轻量化舰船要害部位检测算法 被引量:9
11
作者 李晨瑄 顾佼佼 +2 位作者 王磊 钱坤 冯泽钦 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2022年第10期2006-2019,共14页
反舰导弹对舰船要害部位的精确打击能力是精确制导武器的关键技术之一。针对反舰导弹导引头对舰船要害部位检测精度低、特征提取能力不足,预测框的处理降低检测速度等问题,提出了一种多尺度特征融合的Anchor-Free轻量化舰船要害部位检... 反舰导弹对舰船要害部位的精确打击能力是精确制导武器的关键技术之一。针对反舰导弹导引头对舰船要害部位检测精度低、特征提取能力不足,预测框的处理降低检测速度等问题,提出了一种多尺度特征融合的Anchor-Free轻量化舰船要害部位检测算法。由于舰船要害部位检测数据具有多尺度、多角度特性,引入多尺度特征融合模块,综合利用不同感受野的检测信息,优化特征提取;利用高效轻量化注意力机制改进Hourglass结构中的跨层连接,提升检测精度,降低算法总参数量;使用迁移学习有效提升算法收敛效果。在建立的舰船要害部位检测数据集和公开的PASCAL VOC数据集进行实验,检测准确率分别提升了4.41%和5.57%,分析算法参数与运算量,设计了模块消融实验,论证了所提算法的有效性。 展开更多
关键词 目标检测 anchor-free算法 注意力机制 特征融合 CenterNet 反舰导弹
原文传递
Distributed localization for anchor-free sensor networks 被引量:9
12
作者 Cui Xunxue Shan Zhiguan Liu Jianjun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第3期405-418,共14页
Geographic location of nodes is very useful in a sensor network. Previous localization algorithms assume that there exist some anchor nodes in this kind of network, and then other nodes are estimated to create their c... Geographic location of nodes is very useful in a sensor network. Previous localization algorithms assume that there exist some anchor nodes in this kind of network, and then other nodes are estimated to create their coordinates. Once there are not anchors to be deployed, those localization algorithms will be invalidated. Many papers in this field focus on anchor-based solutions. The use of anchors introduces many limitations, since anchors require external equipments such as global position system, cause additional power consumption. A novel positioning algorithm is proposed to use a virtual coordinate system based on a new concept--virtual anchor. It is executed in a distributed fashion according to the connectivity of a node and the measured distances to its neighbors. Both the adjacent member information and the ranging distance result are combined to generate the estimated position of a network, one of which is independently adopted for localization previously. At the position refinement stage the intermediate estimation of a node begins to be evaluated on its reliability for position mutation; thus the positioning optimization process of the whole network is avoided falling into a local optimal solution. Simulation results prove that the algorithm can resolve the distributed localization problem for anchor-free sensor networks, and is superior to previous methods in terms of its positioning capability under a variety of circumstances. 展开更多
关键词 anchor-free localization distributed algorithm position estimation sensor networks.
在线阅读 下载PDF
采用Anchor-Free网络结构的实时火灾检测算法 被引量:17
13
作者 晋耀 张为 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第12期2430-2436,共7页
为了解决现有的火灾检测算法中模型复杂,实时性差,检测精度较低的问题,提出快速高效的火灾检测算法.该算法采用Anchor-Free网络结构,克服了Anchor方法中超参数过多、网络结构复杂的缺点;选用MobileNetV2作为基础特征提取网络,满足了检... 为了解决现有的火灾检测算法中模型复杂,实时性差,检测精度较低的问题,提出快速高效的火灾检测算法.该算法采用Anchor-Free网络结构,克服了Anchor方法中超参数过多、网络结构复杂的缺点;选用MobileNetV2作为基础特征提取网络,满足了检测的高实时性需求;针对火焰目标的形状、尺度多变的特点,设计适合于火焰检测的分类与边框预测子网络;引入特征选择模块,在特征金字塔网络中自动选择更合适的金字塔特征层.算法在自建数据集上的检测精度达到90.1%;在公开数据集上取得了较好的检测结果,其检测速度可达24.6帧/s.实验结果表明,算法的网络模型简单,检测精度较高,检测速度较快;综合性能优于现有的其他火灾检测算法. 展开更多
关键词 计算机视觉 目标检测 火灾检测 anchor-free 可形变卷积 特征选择模块
在线阅读 下载PDF
Current-Aided Multiple-AUV Cooperative Localization and Target Tracking in Anchor-Free Environments 被引量:4
14
作者 Yichen Li Wenbin Yu Xinping Guan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第3期792-806,共15页
In anchor-free environments,where no devices with known positions are available,the error growth of autonomous underwater vehicle(AUV)localization and target tracking is unbounded due to the lack of references and the... In anchor-free environments,where no devices with known positions are available,the error growth of autonomous underwater vehicle(AUV)localization and target tracking is unbounded due to the lack of references and the accumulated errors in inertial measurements.This paper aims to improve the localization and tracking accuracy by involving current information as extra references.We first integrate current measurements and maps with belief propagation and design a distributed current-aided message-passing scheme that theoretically solves the localization and tracking problems.Based on this scheme,we propose particle-based cooperative localization and target tracking algorithms,named CaCL and CaTT,respectively.In AUV localization,CaCL uses the current measurements to correct the predicted and transmitted position information and alleviates the impact of the accumulated errors in inertial measurements.With target tracking,the current maps are applied in CaTT to modify the position prediction of the target which is calculated through historical estimates.The effectiveness and robustness of the proposed methods are validated through various simulations by comparisons with alternative methods under different trajectories and current conditions. 展开更多
关键词 anchor-free belief propagation cooperative localization current-aided target tracking
在线阅读 下载PDF
挖掘文本框位置特性的anchor-free自然场景文本检测 被引量:3
15
作者 卢利琼 吴东 +1 位作者 吴涛 刘瑶 《计算机应用研究》 CSCD 北大核心 2021年第8期2556-2560,共5页
针对现有优秀的anchor-free文本检测方法只挖掘了文本框几何特性而没有考虑文本框位置特性且缺乏有效的过滤机制,提出了挖掘文本框位置特性的anchor-free自然场景文本检测方法。该方法以ResNet50作为卷积神经网络的主干网络,将多个不同... 针对现有优秀的anchor-free文本检测方法只挖掘了文本框几何特性而没有考虑文本框位置特性且缺乏有效的过滤机制,提出了挖掘文本框位置特性的anchor-free自然场景文本检测方法。该方法以ResNet50作为卷积神经网络的主干网络,将多个不同尺寸的特征层融合后预测文本框的几何特性和位置特性,最后辅之以二层过滤机制得到最终的检测文本框。在公开的数据集ICDAR2013和ICDAR2011上F值分别达到了0.870和0.861,证明了该方法的有效性。 展开更多
关键词 自然场景图像 文本检测 位置特性 anchor-free 卷积神经网络
在线阅读 下载PDF
基于anchor-free的光学遥感舰船关重部位检测算法 被引量:3
16
作者 张冬冬 王春平 付强 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第4期1365-1374,共10页
针对基于深度学习的遥感舰船检测算法存在精细化程度不足、检测效率低的问题,提出一种基于anchor-free的光学遥感舰船关重部位检测算法。所提算法以全卷积的单阶段目标检测(FCOS)算法为基准,在主干网络中引入全局上下文模块,提高网络的... 针对基于深度学习的遥感舰船检测算法存在精细化程度不足、检测效率低的问题,提出一种基于anchor-free的光学遥感舰船关重部位检测算法。所提算法以全卷积的单阶段目标检测(FCOS)算法为基准,在主干网络中引入全局上下文模块,提高网络的特征表达能力;为更好地描述目标的方向性,在预测阶段构建了具有方向表征能力的回归分支;对中心度函数进行优化,使其具备方向感知和自适应能力。实验结果表明:在自建舰船关重部位数据集和HRSC2016上,所提算法的平均精度(AP)比FCOS算法有显著提升;与其他算法相比,所提算法在检测速度和检测精度上均表现优越,具有较高的检测效率。 展开更多
关键词 深度学习 遥感图像 anchor-free 舰船检测 关重部位检测 全卷积单阶段检测
原文传递
可重叠抑制的Anchor-free目标检测算法
17
作者 汤毅 王坤阳 +1 位作者 张宽 滕国伟 《电视技术》 2020年第9期66-72,共7页
针对Anchor-base目标检测算法的预定义边界框尺度、长宽比固定和需要预先设计的缺陷,提出了一种新的重叠抑制Anchor-free目标检测算法。该算法舍弃了预定义边界框生成,选择直接回归预测特征层上像素点到对象边界框四边的距离,摆脱了预... 针对Anchor-base目标检测算法的预定义边界框尺度、长宽比固定和需要预先设计的缺陷,提出了一种新的重叠抑制Anchor-free目标检测算法。该算法舍弃了预定义边界框生成,选择直接回归预测特征层上像素点到对象边界框四边的距离,摆脱了预定义边界框的尺度和长宽比限制,可以实现对任意形状的目标对象的识别和边界框回归。在边界框回归时,将周围重叠遮挡对象的影响考虑在内,在边界框回归损失函数中增加与重叠对象边界框之间距离成反比的辅助损失函数,使对象的预测边界框尽可能远离周围重叠遮挡对象的预测边界框和边界框真实值。实验结果表明,提出的Anchor-free目标检测算法能够显著提升极端形状对象和重叠遮挡对象的检测鲁棒性。 展开更多
关键词 anchor-free 重叠抑制 目标检测算法 鲁棒性
在线阅读 下载PDF
基于Anchor-free的交通标志检测 被引量:4
18
作者 范红超 李万志 章超权 《地球信息科学学报》 CSCD 北大核心 2020年第1期88-99,共12页
交通标志检测是自动驾驶中的重要研究方向,实时准确地从街景图像中检测交通标志对实现自动驾驶及智慧城市的发展具有重要意义。传统的算法基于颜色、形状特征进行检测,只能提取特定种类的交通标志,算法无法同时检测不同类型的交通标志... 交通标志检测是自动驾驶中的重要研究方向,实时准确地从街景图像中检测交通标志对实现自动驾驶及智慧城市的发展具有重要意义。传统的算法基于颜色、形状特征进行检测,只能提取特定种类的交通标志,算法无法同时检测不同类型的交通标志。基于图像特征+机器学习分类器的算法需要人工设计特征,算法速度较慢。主流的基于深度学习的方法多基于先验框,在网络设计上引入了额外的超参数,且在训练过程中产生过量的冗余边界框,容易造成正负样本不平衡。本文受Anchor-free思想的启发,引用YOLO检测器直接回归物体边界框的思路,提出一种基于Anchor-free的实时交通标志检测网络AF-TSD(Anchor-free Traffic Sign Detection)。AF-TSD摒弃了先验框的设计,并引入自适应采样位置可变卷积与注意力机制,大大提高网络的特征表达能力。本文开展大量对比实验,实验结果表明本文提出的AF-TSD交通标志检测网络速度接近主流算法,但精度优于主流算法,在德国GTSDB交通标志检测数据集上取得了96.80%的精度,检测速度平均单张图片32 ms,达到实时检测的要求。 展开更多
关键词 众源地理信息数据 交通标志检测 卷积神经网络 可变形卷积 注意力机制 anchor-free AF-TSD
原文传递
基于Anchor-free的孪生网络目标跟踪算法
19
作者 苑侗侗 杨文柱 +1 位作者 李前 王玉霞 《计算机应用与软件》 北大核心 2023年第12期176-183,216,共9页
基于anchor-free的目标预测方法相较于anchor-based方法速度更快,故设计一种基于anchor-free的孪生网络目标跟踪算法(AFSN)。通过对特征图、预测结果进行双重融合来提升跟踪效果,由深至浅对特征图进行堆叠融合,利用多层特征图进行目标预... 基于anchor-free的目标预测方法相较于anchor-based方法速度更快,故设计一种基于anchor-free的孪生网络目标跟踪算法(AFSN)。通过对特征图、预测结果进行双重融合来提升跟踪效果,由深至浅对特征图进行堆叠融合,利用多层特征图进行目标预测,融合多个预测结果来稳定跟踪效果。采用anchor-free的目标预测方法,直接在像素点上进行目标类别的预测和边界框回归,避免了需设计大量锚点包围盒的问题。在GOT-10K数据集上,该算法的平均重叠率(AO)和成功率(SR_(0.75))相较于SiamRPN++算法提高了4.9和9.9百分点,算法处理速度可达每秒37帧。 展开更多
关键词 目标跟踪 孪生网络 anchor-free 双重融合
在线阅读 下载PDF
Anchor-free目标检测算法综述 被引量:4
20
作者 陈恒星 刘一鸣 《机电工程技术》 2024年第8期7-12,共6页
目标检测作为计算机视觉领域的基础,其研究价值对于推动人工智能发展具有重要意义。长期以来,许多学者都致力于提升目标检测算法效率及性能的研究,无锚点(anchor-free)的目标检测深度学习算法以尺度灵活、鲁棒性强等优势,开始逐渐广泛... 目标检测作为计算机视觉领域的基础,其研究价值对于推动人工智能发展具有重要意义。长期以来,许多学者都致力于提升目标检测算法效率及性能的研究,无锚点(anchor-free)的目标检测深度学习算法以尺度灵活、鲁棒性强等优势,开始逐渐广泛应用于目标检测任务。介绍了目标检测领域中卷积神经网络和Transformer两种经典的网络架构;以核心网络架构为分类标准,分别介绍了基于卷积神经网络和基于Transformer的anchor-free目标检测深度学习算法,总结了这些算法的改进点和优缺点,并对该方向的未来发展及应用做出展望。 展开更多
关键词 目标检测 anchor-free 卷积神经网络 TRANSFORMER
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部