Deciphering high-pressure granulite-facies metamorphism and anatexis within a collisional orogeny can provide crucial constraints on geodynamic evolution and melt activity during subduction and exhumation.Combining pe...Deciphering high-pressure granulite-facies metamorphism and anatexis within a collisional orogeny can provide crucial constraints on geodynamic evolution and melt activity during subduction and exhumation.Combining petrographic observations,mineral chemistry,REE in Grt-Cpx thermobarometry,and previous work,at least four stages are suggested for the metamorphic evolution of the mafic granulites in the South Altun,including the protolith stage,the high-pressure granulite-facies stage(909-1037℃and 17.3-30 kbar),medium-pressure granulite-facies overprint(9.1-11.9 kbar and 753-816℃),and subsequent late amphibolite-greenschist-facies metamorphism.Zircon U-Pb dating shows that the mafic granulites underwent high-pressure granulite-facies metamorphism at 497.2±3.7 Ma,while the leucosome formed at 498.2±2.9 Ma.Thus,the leucosomes from the host mafic granulite may have been formed at the high-pressure granulite-facies metamorphic event.The characteristics of zircon morphology,mineral inclusions,low Th/U values,HREE enrichment,and negative Eu anomalies indicate that these zircons from the leucosome were formed from the metamorphic melts.The characteristics of whole-rock major and trace elements as well as Hf isotopic features of zircons between the leucosomes and the host mafic granulite indicate that the melt may have been generated by the partial melting of the host mafic granulite.展开更多
‘Single shot'laser-ablation split-stream(SS-LASS)technique analyzing unpolished zircon grains makes their thin rims tenable for determination,which thus offers great potential in deciphering the timing of multipl...‘Single shot'laser-ablation split-stream(SS-LASS)technique analyzing unpolished zircon grains makes their thin rims tenable for determination,which thus offers great potential in deciphering the timing of multiple and short-lived episodes of anatexis and metamorphism in deeplysubducted continental crusts.Dominated granitic gneisses in the deeply subducted continental crust undergoing considerable fluid-melt activities persist multistage growth of zircon.Therefore,a comparative study of SS-LASS and laser ablation inductively coupled plasma mass spectrometer(LA-ICP-MS)zircon dating was conducted on the granitic gneisses from the Sulu belt in this study.Zircons mostly show a core-mantle-rim structure with CL-bright rims thinner than 5μm.For LA-ICP-MS dating,relict magmatic zircon cores yield protolith ages of ca.756-747 Ma;whereas the dark mantles record synexhumation anatexis at ca.214 Ma.By contrast,according to the U-Pb dates,trace element features,zircon crystallization temperatures and geological context,SS-LASS zircon petrochronology deciphers three episodes of anatectic events,as follows:(i)the first episode of anatexis at ca.218-217 Ma dominated by phengite-breakdown melting,likely facilitating the exhumation of the UHP slice from mantle depth;(ii)the second episode of anatexis at ca.193–191 Ma indicating part of northern Dabie-Sulu belt was still“hot”because of buried in the thickened orogenic crust at that time;(iii)the third episode of anatexis(ca.162–161 Ma)consistent with the intrusion ages(ca.161–141 Ma)of the Jurassic to Cretaceous granitoids in this orogen,suggesting the initial collapse of the orogenic root of the Sulu belt occurred at Late Jurassic due to the Izanagi plate initially subducting beneath the margin of Eastern Asia.This study sheds new light upon the utilization of SS-LASS petrochronology deciphering multiple anatectic events in the deeply-subducted continental crust and supports us in better understanding the tectonic evolution of Dabie-Sulu Orogen.展开更多
Granitic gneiss(orthogneiss)and Himalayan leucogranite are widely distributed in the Himalayan orogen,but whether or not the granitic gneiss made a contribution to the Himalayan leucogranite remains unclear.In this st...Granitic gneiss(orthogneiss)and Himalayan leucogranite are widely distributed in the Himalayan orogen,but whether or not the granitic gneiss made a contribution to the Himalayan leucogranite remains unclear.In this study,we present the petrological,geochronological and geochemical results for orthogneisses and leucogranites from the Zhada area,Western Himalayas.Zhada orthogneiss is composed mainly of quartz,plagioclase,K-feldspar,biotite and muscovite,with accessory zircon and apatite.Orthogneiss zircon cathodoluminescence(CL)images show that most grains contain a core with oscillatory zoning,which indicates an igneous origin.Sensitive high-resolution ion microprobe(SHRIMP)U-Pb dating of the zircon cores in the orthogneiss shows a weighted ^(206)Pb/^(238)U age of 515±4 Ma(early Paleozoic),with sponge-like zircon rims of 17.9±0.5 Ma(Miocene).Zhada leucogranite shows^(206)Pb/^(238)U ages ranging from 19.0±0.4 Ma to 12.4±0.2 Ma,the weighted average age being 16.2±0.4 Ma.The leucogranites have a low Ca content(<1 wt%),FeOt content(<1 wt%),Rb content(67.0-402 ppm),Sr content(<56.6 ppm),Ba content(3.35-238 ppm)and Rb/Sr ratio(0.5-14.7),which are similar to the geochemical characteristics of the Himalayan leucogranite derived from muscovite dehydration partial melting of metasediments and representative of most Himalayan leucogranites.The highly variable Na_(2)O+K_(2)O(4.33 wt%-9.13 wt%),Al_(2)O_(3)(8.44 wt%-13.51 wt%),ΣREE(40.2-191.0 ppm),Rb(67.0-402 ppm)and Nb(8.23-26.4 ppm)contents,^(87)Sr/^(86)Sr(t)ratios(0.7445-0.8605)andεNd(t)values(−3.6 to−8.2)indicate that the leucogranite is derived from a heterogenetic source.The nonradiogenic Nd isotope values of the studied Zhada leucogranite and orthogneiss range from−8.2 to−3.6 and from−8.7 to−4.1,respectively.Therefore,the general mixing equation was used to perform the Sr and Nd isotope mixing calculations.The results indicate that the heterogenetic source was the Tethyan Himalayan Sequence(THS)/Higher Himalayan Crystalline(HHC)metasediments and Zhada orthogneiss.The Zhada area experienced crustal anatexis during the Miocene and the heterogenetic source of the orthogneiss and metasediment may have experienced crustal anatexis controlled by muscovite dehydration.The Zhada leucogranite inherited not only the geochemical characteristics of the Himalayan metasediment(muscovite dehydration melting),but also the trace elements and Sr-Nd isotopic characteristics of the Zhada orthogneiss.These results indicate that the Paleozoic Zhada orthogneiss was involved in crustal anatexis at 17.9±0.5 Ma(Miocene)and that the muscovite dehydration of the metasediments in the heterogenetic source produced fluid,which may have caused the orthogneiss solidus lines to decline,triggering a partial melting of the Zhada orthogneiss.It is therefore proposed that Himalayan leucogranite is a crust-derived granite rather than a S-type granite,as previously hypothesized.展开更多
Objective In recent years,hydrous silicate melts by dehydrationdriven in situ partial melting constrained from experiments and natural rocks have been increasingly recognized in UHP rocks,indicating partial melting of...Objective In recent years,hydrous silicate melts by dehydrationdriven in situ partial melting constrained from experiments and natural rocks have been increasingly recognized in UHP rocks,indicating partial melting of UHP slab.Partial melting of UHP metamorphic rocks can dramatically affect the rheology of deeply subducted crust and thus play a crucial role in accelerating the exhumation of UHP slabs.展开更多
Metamorphic processes are closely associated with the formation and evolution of the crust and highly related to petrogenesis and mineralization processes. Dynamic systematic analysis indicates that regional metamorph...Metamorphic processes are closely associated with the formation and evolution of the crust and highly related to petrogenesis and mineralization processes. Dynamic systematic analysis indicates that regional metamorphism-migmatization-metamorphic anatexis process is a temperature-pressure progressive process. Metamorphic anatexis process is a critical part with its unique pressure/temperature and thermodynamic, dynamic and geochemical characteristics. The concept of metamorphic anatexis system (MAS) introduced by the author includes the essential factors of material resources, energy resources, process format, material transportation and concentration, occurring time and location. Based on the essential factors of MAS, metamorphic anatexis process-related granitic rocks and deposit cases are discussed on their petrogenesis and/or mineralizaion mechanisms. The discussion points out that granites in the Ailaoshan and Yunkai metamorphic zones are of metamorphic anatexis origin. The genesis of pegmatite ore deposits in metamorphic zones and shear zone gold deposits in shear zones are highly related to metamorphic anatexis process. The study of metamorphism process involved in ore formation and material transport is a hot subject concerned by the international geological circles. Thorough investigations into the relationships between metamorphic anatexis and petrogenesis-meneralization processes are of great importance not only in geological theory, but also in industrial practice.展开更多
The Berere HTHP Complex belt in Maevatanana area of north–central Madagascar formed in the^2.5 Ga orogeny and underwent high temperature(up to 1050℃)and high pressure(up to 11.5 kbar)granulite facies metamorphism.Th...The Berere HTHP Complex belt in Maevatanana area of north–central Madagascar formed in the^2.5 Ga orogeny and underwent high temperature(up to 1050℃)and high pressure(up to 11.5 kbar)granulite facies metamorphism.Then a widespread anatexis took place and numerous widely distributed felsic leucosomes formed.The majority of these leucosomes are parallel to the schistosity of the complex or are present as stockworks,as thin layers,or as lenses at different scales in the host rocks.Here,we report new petrographic data,zircon LA-ICP-MS U-Pb ages,and Lu–Hf isotopic data for felsic leucosomes within this complex.Anatexis,as identified by the petrological study of felsic leucosomes in the field and in thin sections,involved initial ternary feldspar exsolving to produce antiperthite and a quartz+plagioclase±K-feldspar+sericite mineral assemblage around feldspar grain boundaries.Dissolution is apparent along muscovite grain boundaries,and residual sericite is present around the margins of feldspar and quartz,all suggesting that anatexis was driven by reactions involving muscovite.Zircon U–Pb dating indicates that the felsic leucosomes within the complex formed at 2467–2369 Ma.The majority of samples have positiveεHf(t)values,although a few have negative values,suggesting their formation from magmas predominantly sourced from the depleted mantle,possibly with the involvement of minor amounts of crustal materials.Two-stage Hf model ages andεHf(t)values for these samples are consistent with those for gneisses of the basement,indicating that the felsic leucosomes were formed by the anatexis of gneisses and both of their protolith formed during the formation of continental crust in Meso-Neoarchean(ca.3.1–2.7 Ga).As such,the crystallization age of the felsic leucosome(~2.4 Ga)represents the timing of regional anatexis and a change to post-orogenic tectonism.And this anatexis is also corresponds to the thermal event in Dharwar craton in India which has a pronounced similar Precambrian geology with Madagascar,providing an important constraints on the correlation of the two continental fragments.展开更多
The Higher Himalayan Crystallines(HHC), in western Garhwal, Uttarakhand are located in a regionalscale intracontinental ductile shear zone(15-20 km wide) bounded by the Main Central Thrust at the base, and the South T...The Higher Himalayan Crystallines(HHC), in western Garhwal, Uttarakhand are located in a regionalscale intracontinental ductile shear zone(15-20 km wide) bounded by the Main Central Thrust at the base, and the South Tibetan Detachment System at the top. The migmatite zone in the centre has the highest grade of metamorphism in the NW Himalayas and show evidence of flowage. Zircons extracted from samples of metasediment, migmatite, biotite granite and in situ partial melt(tourmaline-bearing leucogranite) along the Bhagirathi Valley, preserve U-Pb isotopic evidence of magmatic history, magma source and effects of the Himalayan orogeny in the region. Three distinct periods of zircon growth in the leucogranite record the episodic influx of magma between 46 Ma and 20 Ma indicating a time span of more than 25 Ma between the onset of fluid-fluxed partial melting in the mid-crustal intracontinental shear zone and the emplacement of the magma into the upper crust in a post-collisional extensional setting. Metamorphic zircon growth was initiated about 46 Ma, when the partial melts were generated as the migmatite zone was exhumed.展开更多
Partially migmatized rocks, banded migmatites, augen-banded migmatites and gneissic migmatites are developed successively from Xindong to Yunlu, Gaozhou, Guangdong Province in the Yunkai Caledonian orogenic belt at th...Partially migmatized rocks, banded migmatites, augen-banded migmatites and gneissic migmatites are developed successively from Xindong to Yunlu, Gaozhou, Guangdong Province in the Yunkai Caledonian orogenic belt at the border between Guangdong and Guangxi. Mass-balance calculations, statistical analysis of the textural relations and mineralogical and geochemical studies of the migmatites and the study of the metamorphlc setting of the Yunlu area indicate that the migmatites in the study area were primarily formed by anatexis without remarkable introduction of foreign components such as K, Na and Si and removal of Ca, Fe, Mg, etc.展开更多
Higher Himalayan Crystalline(HHC) complex of the Sikkim Himalaya predominantly consists of high-grade pelitic migmatites.In this study,reaction textures,mineral/bulk rare earth elements (REE),trace element partiti...Higher Himalayan Crystalline(HHC) complex of the Sikkim Himalaya predominantly consists of high-grade pelitic migmatites.In this study,reaction textures,mineral/bulk rare earth elements (REE),trace element partition coefficients and trace element zoning profiles in garnet are used to demonstrate a complex petrogenetic process during crustal anatexis.With the help of equilibrium REE and trace element partitioning model,it is shown that strong enrichment of Effective Bulk Composition(EBC) is responsible for the zoning in garnet in these rocks.The data strongly support disequilibrium element partitioning and suggest that the anatectic melts associated with mafic selvedges are likely produced by disequilibrium melting because of fast melt segregation process.展开更多
基金financially supported by the Basic Foundation of Tianjin University of Commercethe Fund from the Key Laboratory of Continental Dynamics of Ministry of Natural Resources(J2306)。
文摘Deciphering high-pressure granulite-facies metamorphism and anatexis within a collisional orogeny can provide crucial constraints on geodynamic evolution and melt activity during subduction and exhumation.Combining petrographic observations,mineral chemistry,REE in Grt-Cpx thermobarometry,and previous work,at least four stages are suggested for the metamorphic evolution of the mafic granulites in the South Altun,including the protolith stage,the high-pressure granulite-facies stage(909-1037℃and 17.3-30 kbar),medium-pressure granulite-facies overprint(9.1-11.9 kbar and 753-816℃),and subsequent late amphibolite-greenschist-facies metamorphism.Zircon U-Pb dating shows that the mafic granulites underwent high-pressure granulite-facies metamorphism at 497.2±3.7 Ma,while the leucosome formed at 498.2±2.9 Ma.Thus,the leucosomes from the host mafic granulite may have been formed at the high-pressure granulite-facies metamorphic event.The characteristics of zircon morphology,mineral inclusions,low Th/U values,HREE enrichment,and negative Eu anomalies indicate that these zircons from the leucosome were formed from the metamorphic melts.The characteristics of whole-rock major and trace elements as well as Hf isotopic features of zircons between the leucosomes and the host mafic granulite indicate that the melt may have been generated by the partial melting of the host mafic granulite.
基金supported by National Natural Science Foundation of China(Nos.42072228,42102060,41902036,41572182)China Postdoctoral Science Foundation(No.2021M692983)+4 种基金the Chinese Ministry of Education(No.BP0719022)the Most Special Fund(Nos.MSFGPMR02-3,MSFGPMR30)Open funds from the State Key Laboratory of Geological Processes and Mineral ResourcesChina University of Geosciences(Nos.GPMR201703,GPMR201704 and GPMR201903)the Fundamental Research Funds for National University(No.CUG-G1323511572)。
文摘‘Single shot'laser-ablation split-stream(SS-LASS)technique analyzing unpolished zircon grains makes their thin rims tenable for determination,which thus offers great potential in deciphering the timing of multiple and short-lived episodes of anatexis and metamorphism in deeplysubducted continental crusts.Dominated granitic gneisses in the deeply subducted continental crust undergoing considerable fluid-melt activities persist multistage growth of zircon.Therefore,a comparative study of SS-LASS and laser ablation inductively coupled plasma mass spectrometer(LA-ICP-MS)zircon dating was conducted on the granitic gneisses from the Sulu belt in this study.Zircons mostly show a core-mantle-rim structure with CL-bright rims thinner than 5μm.For LA-ICP-MS dating,relict magmatic zircon cores yield protolith ages of ca.756-747 Ma;whereas the dark mantles record synexhumation anatexis at ca.214 Ma.By contrast,according to the U-Pb dates,trace element features,zircon crystallization temperatures and geological context,SS-LASS zircon petrochronology deciphers three episodes of anatectic events,as follows:(i)the first episode of anatexis at ca.218-217 Ma dominated by phengite-breakdown melting,likely facilitating the exhumation of the UHP slice from mantle depth;(ii)the second episode of anatexis at ca.193–191 Ma indicating part of northern Dabie-Sulu belt was still“hot”because of buried in the thickened orogenic crust at that time;(iii)the third episode of anatexis(ca.162–161 Ma)consistent with the intrusion ages(ca.161–141 Ma)of the Jurassic to Cretaceous granitoids in this orogen,suggesting the initial collapse of the orogenic root of the Sulu belt occurred at Late Jurassic due to the Izanagi plate initially subducting beneath the margin of Eastern Asia.This study sheds new light upon the utilization of SS-LASS petrochronology deciphering multiple anatectic events in the deeply-subducted continental crust and supports us in better understanding the tectonic evolution of Dabie-Sulu Orogen.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.42072114,41503006)the Deep Resources Exploration and Mining,the National Key R&D Program of China(Grant No.2018YFC0604106)+1 种基金the Chinese Geological Survey(Grant No.DD20190167)the China Scholarship Council(Grant No.201808110080).
文摘Granitic gneiss(orthogneiss)and Himalayan leucogranite are widely distributed in the Himalayan orogen,but whether or not the granitic gneiss made a contribution to the Himalayan leucogranite remains unclear.In this study,we present the petrological,geochronological and geochemical results for orthogneisses and leucogranites from the Zhada area,Western Himalayas.Zhada orthogneiss is composed mainly of quartz,plagioclase,K-feldspar,biotite and muscovite,with accessory zircon and apatite.Orthogneiss zircon cathodoluminescence(CL)images show that most grains contain a core with oscillatory zoning,which indicates an igneous origin.Sensitive high-resolution ion microprobe(SHRIMP)U-Pb dating of the zircon cores in the orthogneiss shows a weighted ^(206)Pb/^(238)U age of 515±4 Ma(early Paleozoic),with sponge-like zircon rims of 17.9±0.5 Ma(Miocene).Zhada leucogranite shows^(206)Pb/^(238)U ages ranging from 19.0±0.4 Ma to 12.4±0.2 Ma,the weighted average age being 16.2±0.4 Ma.The leucogranites have a low Ca content(<1 wt%),FeOt content(<1 wt%),Rb content(67.0-402 ppm),Sr content(<56.6 ppm),Ba content(3.35-238 ppm)and Rb/Sr ratio(0.5-14.7),which are similar to the geochemical characteristics of the Himalayan leucogranite derived from muscovite dehydration partial melting of metasediments and representative of most Himalayan leucogranites.The highly variable Na_(2)O+K_(2)O(4.33 wt%-9.13 wt%),Al_(2)O_(3)(8.44 wt%-13.51 wt%),ΣREE(40.2-191.0 ppm),Rb(67.0-402 ppm)and Nb(8.23-26.4 ppm)contents,^(87)Sr/^(86)Sr(t)ratios(0.7445-0.8605)andεNd(t)values(−3.6 to−8.2)indicate that the leucogranite is derived from a heterogenetic source.The nonradiogenic Nd isotope values of the studied Zhada leucogranite and orthogneiss range from−8.2 to−3.6 and from−8.7 to−4.1,respectively.Therefore,the general mixing equation was used to perform the Sr and Nd isotope mixing calculations.The results indicate that the heterogenetic source was the Tethyan Himalayan Sequence(THS)/Higher Himalayan Crystalline(HHC)metasediments and Zhada orthogneiss.The Zhada area experienced crustal anatexis during the Miocene and the heterogenetic source of the orthogneiss and metasediment may have experienced crustal anatexis controlled by muscovite dehydration.The Zhada leucogranite inherited not only the geochemical characteristics of the Himalayan metasediment(muscovite dehydration melting),but also the trace elements and Sr-Nd isotopic characteristics of the Zhada orthogneiss.These results indicate that the Paleozoic Zhada orthogneiss was involved in crustal anatexis at 17.9±0.5 Ma(Miocene)and that the muscovite dehydration of the metasediments in the heterogenetic source produced fluid,which may have caused the orthogneiss solidus lines to decline,triggering a partial melting of the Zhada orthogneiss.It is therefore proposed that Himalayan leucogranite is a crust-derived granite rather than a S-type granite,as previously hypothesized.
基金financially supported by the National Nature Science Foundation of China (grant No.41572053)
文摘Objective In recent years,hydrous silicate melts by dehydrationdriven in situ partial melting constrained from experiments and natural rocks have been increasingly recognized in UHP rocks,indicating partial melting of UHP slab.Partial melting of UHP metamorphic rocks can dramatically affect the rheology of deeply subducted crust and thus play a crucial role in accelerating the exhumation of UHP slabs.
基金This research was jointly sponsored by the National Natural Science Foundation of China (Nos. 49673189 and 49873018) ;the Special Project Foundation for Doctoral Programs of the National Education Commission (No. 98055807).
文摘Metamorphic processes are closely associated with the formation and evolution of the crust and highly related to petrogenesis and mineralization processes. Dynamic systematic analysis indicates that regional metamorphism-migmatization-metamorphic anatexis process is a temperature-pressure progressive process. Metamorphic anatexis process is a critical part with its unique pressure/temperature and thermodynamic, dynamic and geochemical characteristics. The concept of metamorphic anatexis system (MAS) introduced by the author includes the essential factors of material resources, energy resources, process format, material transportation and concentration, occurring time and location. Based on the essential factors of MAS, metamorphic anatexis process-related granitic rocks and deposit cases are discussed on their petrogenesis and/or mineralizaion mechanisms. The discussion points out that granites in the Ailaoshan and Yunkai metamorphic zones are of metamorphic anatexis origin. The genesis of pegmatite ore deposits in metamorphic zones and shear zone gold deposits in shear zones are highly related to metamorphic anatexis process. The study of metamorphism process involved in ore formation and material transport is a hot subject concerned by the international geological circles. Thorough investigations into the relationships between metamorphic anatexis and petrogenesis-meneralization processes are of great importance not only in geological theory, but also in industrial practice.
基金funded by the National Key R&D Program of China(grant numbers 2019YFC0605202 and 2019YFC0605203)Geological Survey Project grants from the China Geological Survey(grant numbers 12120113102100,DD20160056)+3 种基金Research Program of Department of Land and Resources of Hunan Province(grant number 2018-02)the Chinese National Non-Profit Institute Research Grant of CAGS-IMR(grant number IMRKK1927)the National Natural Science Foundation of China(41872096)the Chinese National Non-profit Institute Research Grant of CAGS(JYYWF201814)。
文摘The Berere HTHP Complex belt in Maevatanana area of north–central Madagascar formed in the^2.5 Ga orogeny and underwent high temperature(up to 1050℃)and high pressure(up to 11.5 kbar)granulite facies metamorphism.Then a widespread anatexis took place and numerous widely distributed felsic leucosomes formed.The majority of these leucosomes are parallel to the schistosity of the complex or are present as stockworks,as thin layers,or as lenses at different scales in the host rocks.Here,we report new petrographic data,zircon LA-ICP-MS U-Pb ages,and Lu–Hf isotopic data for felsic leucosomes within this complex.Anatexis,as identified by the petrological study of felsic leucosomes in the field and in thin sections,involved initial ternary feldspar exsolving to produce antiperthite and a quartz+plagioclase±K-feldspar+sericite mineral assemblage around feldspar grain boundaries.Dissolution is apparent along muscovite grain boundaries,and residual sericite is present around the margins of feldspar and quartz,all suggesting that anatexis was driven by reactions involving muscovite.Zircon U–Pb dating indicates that the felsic leucosomes within the complex formed at 2467–2369 Ma.The majority of samples have positiveεHf(t)values,although a few have negative values,suggesting their formation from magmas predominantly sourced from the depleted mantle,possibly with the involvement of minor amounts of crustal materials.Two-stage Hf model ages andεHf(t)values for these samples are consistent with those for gneisses of the basement,indicating that the felsic leucosomes were formed by the anatexis of gneisses and both of their protolith formed during the formation of continental crust in Meso-Neoarchean(ca.3.1–2.7 Ga).As such,the crystallization age of the felsic leucosome(~2.4 Ga)represents the timing of regional anatexis and a change to post-orogenic tectonism.And this anatexis is also corresponds to the thermal event in Dharwar craton in India which has a pronounced similar Precambrian geology with Madagascar,providing an important constraints on the correlation of the two continental fragments.
文摘The Higher Himalayan Crystallines(HHC), in western Garhwal, Uttarakhand are located in a regionalscale intracontinental ductile shear zone(15-20 km wide) bounded by the Main Central Thrust at the base, and the South Tibetan Detachment System at the top. The migmatite zone in the centre has the highest grade of metamorphism in the NW Himalayas and show evidence of flowage. Zircons extracted from samples of metasediment, migmatite, biotite granite and in situ partial melt(tourmaline-bearing leucogranite) along the Bhagirathi Valley, preserve U-Pb isotopic evidence of magmatic history, magma source and effects of the Himalayan orogeny in the region. Three distinct periods of zircon growth in the leucogranite record the episodic influx of magma between 46 Ma and 20 Ma indicating a time span of more than 25 Ma between the onset of fluid-fluxed partial melting in the mid-crustal intracontinental shear zone and the emplacement of the magma into the upper crust in a post-collisional extensional setting. Metamorphic zircon growth was initiated about 46 Ma, when the partial melts were generated as the migmatite zone was exhumed.
文摘Partially migmatized rocks, banded migmatites, augen-banded migmatites and gneissic migmatites are developed successively from Xindong to Yunlu, Gaozhou, Guangdong Province in the Yunkai Caledonian orogenic belt at the border between Guangdong and Guangxi. Mass-balance calculations, statistical analysis of the textural relations and mineralogical and geochemical studies of the migmatites and the study of the metamorphlc setting of the Yunlu area indicate that the migmatites in the study area were primarily formed by anatexis without remarkable introduction of foreign components such as K, Na and Si and removal of Ca, Fe, Mg, etc.
文摘Higher Himalayan Crystalline(HHC) complex of the Sikkim Himalaya predominantly consists of high-grade pelitic migmatites.In this study,reaction textures,mineral/bulk rare earth elements (REE),trace element partition coefficients and trace element zoning profiles in garnet are used to demonstrate a complex petrogenetic process during crustal anatexis.With the help of equilibrium REE and trace element partitioning model,it is shown that strong enrichment of Effective Bulk Composition(EBC) is responsible for the zoning in garnet in these rocks.The data strongly support disequilibrium element partitioning and suggest that the anatectic melts associated with mafic selvedges are likely produced by disequilibrium melting because of fast melt segregation process.