The symplectic approach was utilized to derive solutions to the orthotropic micropolar plane stress problem.The Hamiltonian canonical equation was first obtained by applying Legendre’s transformation and the Hamilton...The symplectic approach was utilized to derive solutions to the orthotropic micropolar plane stress problem.The Hamiltonian canonical equation was first obtained by applying Legendre’s transformation and the Hamiltonian mixed energy variational principle.Then,by using the method of separation of variables,the eigenproblem of the corresponding homogeneous Hamiltonian canonical equation was derived.Subsequently,the corresponding eigensolutions for three kinds of homogeneous boundary conditions were derived.According to the adjoint symplectic orthogonality of the eigensolutions and expansion theorems,the solutions to this plane stress problem were expressed as a series expansion of these eigensolutions.The numerical results for the orthotropic micropolar plane stress problem under various boundary conditions were presented and validated using the finite element method,which confirmed the convergence and accuracy of the proposed approach.We also investigated the relationship between the size-dependent behaviour and material parameters using the proposed approach.Furthermore,this approach was applied to analyze lattice structures under an equivalent micropolar continuum approximation.展开更多
The double-beam system is a crucial foundational structure in industry,with extensive application contexts and significant research value.The double-beam system with damping and gyroscopic effects is termed as the dam...The double-beam system is a crucial foundational structure in industry,with extensive application contexts and significant research value.The double-beam system with damping and gyroscopic effects is termed as the damped gyroscopic double-beam system.In such systems,the orthogonality conditions of the undamped double-beam system are no longer applicable,rendering it impossible to decouple them in modal space using the modal superposition method(MSM) to obtain analytical solutions.Based on the complex modal method and state space method,this paper takes the damped pipe-in-pipe(PIP) system as an example to solve this problem.The concepts of the original system and adjoint system are introduced,and the orthogonality conditions of the damped PIP system are given in the state-space.Based on the derived orthogonality conditions,the transient and steady-state response solutions are obtained.In the numerical discussion section,the convergence and accuracy of the solutions are verified.In addition,the dynamic responses of the system under different excitations and initial conditions are studied,and the forward and reverse synchronous vibrations in the PIP system are discussed.Overall,the method presented in this paper provides a convenient way to analyze the dynamics of the damped gyroscopic double-beam system.展开更多
In practical engineering construction,multi-layered barriers containing geomembranes are extensively applied to retard the migration of pollutants.However,the associated analytical theory on pollutants diffusion still...In practical engineering construction,multi-layered barriers containing geomembranes are extensively applied to retard the migration of pollutants.However,the associated analytical theory on pollutants diffusion still needs to be further improved.In this work,general analytical solutions are derived for one-dimensional diffusion of degradable organic contaminant(DOC)in the multi-layered media containing geomembranes under a time-varying concentration boundary condition,where the variable substitution and separated variable approaches are employed.These analytical solutions with clear expressions can be used not only to study the diffusion behaviors of DOC in bottom and vertical composite barrier systems,but also to verify other complex numerical models.The proposed general analytical solutions are then fully validated via three comparative analyses,including comparisons with the experimental measurements,an existing analytical solution,and a finite-difference solution.Ultimately,the influences of different factors on the composite cutoff wall’s(CCW,which consists of two soil-bentonite layers and a geomembrane)service performance are investigated through a composite vertical barrier system as the application example.The findings obtained from this investigation can provide scientific guidance for the barrier performance evaluation and the engineering design of CCWs.This application example also exhibits the necessity and effectiveness of the developed analytical solutions.展开更多
In recent years,magneto-electro-elastic(MEE)cylindrical shells with step-wise thicknesses have shown significant potential in the field of vibration energy harvesting.To aid the design of such energy harvesting device...In recent years,magneto-electro-elastic(MEE)cylindrical shells with step-wise thicknesses have shown significant potential in the field of vibration energy harvesting.To aid the design of such energy harvesting devices,an accurate free vibration analysis of embedded MEE cylindrical shells with step-wise thicknesses is performed within the framework of symplectic mechanics.By using the Legendre transformation,a new known vector is defined to transform the higher-order partial differential governing equations into a set of lower-order ordinary differential equations.Therefore,the original vibration analysis is regarded as an eigen problem in the symplectic space,and analytical solutions can be represented by the symplectic series.In numerical examples,the new analytical solutions are compared with the existing results,and good agreement is observed.Furthermore,the effects of critical design parameters on free vibration characteristics are thoroughly investigated.All numerical results can serve as benchmarks for the development of other approximate or numerical methods.展开更多
The main focus of this paper is to address a generalized(2+1)-dimensional Hirota bilinear equation utilizing the bilinear neural network method.The paper presents the periodic solutions through a single-layer model of...The main focus of this paper is to address a generalized(2+1)-dimensional Hirota bilinear equation utilizing the bilinear neural network method.The paper presents the periodic solutions through a single-layer model of[3-4-1],followed by breather,lump and their interaction solutions by using double-layer models of[3-3-2-1]and[3-3-3-1],respectively.A significant innovation introduced in this work is the computation of periodic cross-rational solutions through the design of a novel[3-(2+2)-4-1]model,where a specific hidden layer is partitioned into two segments for subsequent operations.Three-dimensional and density figures of the solutions are given alongside an analysis of the dynamics of these solutions.展开更多
This study presents a novel analytical algorithm for solving the forward position problem of a triangular platform Stewart-type parallel robot(STPR).By introducing a virtual chain and leveraging tetrahedral geometric ...This study presents a novel analytical algorithm for solving the forward position problem of a triangular platform Stewart-type parallel robot(STPR).By introducing a virtual chain and leveraging tetrahedral geometric principles,the proposed method derives analytical solutions for the position and orientation of the moving platform.The algorithm systematically addresses the nonlinearity inherent in the kinematic equations of parallel mechanisms,providing explicit expressions for the coordinates of key moving attachment points.Furthermore,the methodology is extended to general triangular platform STPRs with non-coplanar fixed attachments.Numerical validation through virtual experiments confirms the accuracy of the solutions,demonstrating that the mechanism admits eight distinct configurations for a given set of limb lengths.The results align with established kinematic principles and offer a computationally efficient alternative to iterative analytical approaches,contributing to the advancement of precision control in parallel robotic systems.展开更多
In this paper,we consider the inhomogeneous pressureless Euler equations.First,we present a class of self-similar analytical solutions to the 1D Cauchy problem and investigate the large-time behavior of the solutions,...In this paper,we consider the inhomogeneous pressureless Euler equations.First,we present a class of self-similar analytical solutions to the 1D Cauchy problem and investigate the large-time behavior of the solutions,and particularly,we obtain slant kink-wave solutions for the inhomogeneous Burgers(InhB)type equation.Next,we prove the integrability of the InhB equation in the sense of Lax pair.Furthermore,we study the spreading rate of the moving domain occupied by mass for the 1D Cauchy problem with compact support initial density.We find that the expanding domain grows exponentially in time,provided that the solutions exist and smooth at all time.Finally,we extend the corresponding results of the inhomogeneous pressureless Euler equations to the radially symmetric multi-dimensional case.展开更多
Normalizable analytic solutions of the quantum rotor problem with divergent potential are presented here as solution of the Schrödinger equation. These solutions, unknown to the literature, represent a mathematic...Normalizable analytic solutions of the quantum rotor problem with divergent potential are presented here as solution of the Schrödinger equation. These solutions, unknown to the literature, represent a mathematical advance in the description of physical phenomena described by the second derivative operator associated with a divergent interaction potential and, being analytical, guarantee the optimal interpretation of such phenomena.展开更多
Unified analytical solutions are presented for the predictions of the stresses and displacements around a circular opening based on nonqinear unified failure criterion and the elastic-brittle-plastic softening model. ...Unified analytical solutions are presented for the predictions of the stresses and displacements around a circular opening based on nonqinear unified failure criterion and the elastic-brittle-plastic softening model. Unified analytical solutions not only involve generally traditional solutions which are based on the Hock-Brown (H-B) failure criterion or the non-linear twin-shear failure criterion, but also involve other new results. The results of the radius of plastic zone, radial displacements and stresses are obviously different using three rock masses when different values of the unified failure criterion parameter or different material behavior models are used. For a given condition, the radius of plastic zone and radial displacements are reduced by increasing the unified failure criterion parameter. The latent potentialities of rock mass result from considering the effect of intermediate principal stress. It is shown that proper choices of the failure criterion and the material behavior model for rock mass are significant in the tunnel design.展开更多
The study of transient heat conduction in multilayered slabs is widely used in various engineering fields. In this paper, the transient heat conduction in multilayered slabs with general boundary conditions and arbitr...The study of transient heat conduction in multilayered slabs is widely used in various engineering fields. In this paper, the transient heat conduction in multilayered slabs with general boundary conditions and arbitrary heat generations is analysed. The boundary conditions are general and include various combinations of Dirichlet, Neumann or Robin boundary conditions at either surface. Moreover, arbitrary heat generations in the slabs are taken into account. The solutions are derived by basic methods, including the superposition method, separation variable method and orthogonal expansion method. The simplified double-layered analytical solution is validated by a numerical method and applied to predicting the temporal and spatial distribution of the temperature inside a landfill. It indicates the ability of the proposed analytical solutions for solving the wide range of applied transient heat conduction problems.展开更多
Chemo-mechanical coupling exists in a lot of intelligent materials including hy- drogels, biological tissues and other soft materials. These materials are able to respond to ex- ternal stimulus, such as temperature, c...Chemo-mechanical coupling exists in a lot of intelligent materials including hy- drogels, biological tissues and other soft materials. These materials are able to respond to ex- ternal stimulus, such as temperature, chemical concentration, and pH value. In this paper, a one-dimensional theoretical model for chemo-mechanical coupling is proposed for analyzing the uniaxial stress/strain state of coupling materials. Based on the chemo-mechanical coupled gov- erning equation, the displacement function and concentration function are derived and the stress and chemical potential are obtained. It is shown that the present chemo-mechanical theory can characterize the chemo-mechanical coupling behavior of intelligent materials.展开更多
The stress concentration problem in structures with a circular or elliptic hole can be investigated by analytical methods. For the problem with a rectangular hole, only approximate results are derived. This paper dedu...The stress concentration problem in structures with a circular or elliptic hole can be investigated by analytical methods. For the problem with a rectangular hole, only approximate results are derived. This paper deduces the analytical solutions to the stress concentration problem in plates with a rectangular hole under biaxial tensions. By using the U-transformation technique and the finite element method, the analytical displacement solutions of the finite element equations are derived in the series form. Therefore, the stress concentration can then be discussed easily and conveniently. For plate problem the bilinear rectangular element with four nodes is taken as an example to demonstrate the applicability of the proposed method. The stress concentration factors for various ratios of height to width of the hole are obtained.展开更多
This paper reports that an analytic method is used to calculate the load responses of the two-wire transmission line excited by a plane-wave directly in the time domain. By the frequency-domain Baum Liu-Tesehe (BLT)...This paper reports that an analytic method is used to calculate the load responses of the two-wire transmission line excited by a plane-wave directly in the time domain. By the frequency-domain Baum Liu-Tesehe (BLT) equation, the time-domain analytic solutions are obtained and expressed in an infinite geometric series. Moreover, it is shown that there exist only finite nonzero terms in the infinite geometric series if the time variate is at a finite interval. In other word, the time-domain analytic solutions are expanded in a finite geometric series indeed if the time variate is at a finite interval. The computed results are subsequently compared with transient responses obtained by using the frequency-domain BLT equation via a fast Fourier transform, and the agreement is excellent.展开更多
In this paper, the axisymmetric general solutions of transversely isotropic magnetoelectroelastic media are expressed with four harmonic displacement functions at first. Then, based on the solutions, the analytical th...In this paper, the axisymmetric general solutions of transversely isotropic magnetoelectroelastic media are expressed with four harmonic displacement functions at first. Then, based on the solutions, the analytical three-dimensional solutions are provided for a simply supported magnetoelectroelastic circular plate subjected to uniform loads. Finally, the example of circular plate is presented.展开更多
Analytical solutions for the elastic properties of a variety of binary nanotubes with arbitrary chirality are obtained through the study of systematic molecular mechanics. This molecular mechanics model is first exten...Analytical solutions for the elastic properties of a variety of binary nanotubes with arbitrary chirality are obtained through the study of systematic molecular mechanics. This molecular mechanics model is first extended to chiral binary nanotubes by introducing an additional out-of-plane inversion term into the so-called stick-spiral model, which results from the polar bonds and the buckling of binary graphitic crystals. The closed-form expressions for the longitudinal and circumferential Young's modulus and Poisson's ratio of chiral binary nanotubes are derived as functions of the tube diameter. The obtained inversion force constants are negative for all types of binary nanotubes, and the predicted tube stiffness is lower than that by the former stick-spiral model without consideration of the inversion term, reflecting the softening effect of the buckling on the elastic properties of binary nanotubes. The obtained properties are shown to be comparable to available density functional theory calculated results and to be chirality and size sensitive. The developed model and explicit solutions provide a systematic understanding of the mechanical performance of binary nanotubes consisting of III-V and II-VI group elements.展开更多
This paper first gives the general solution of two-dimensional orthotropic media expressed with two harmonic displacement functions by using the governing equations. Then, based on the general solution in the case of ...This paper first gives the general solution of two-dimensional orthotropic media expressed with two harmonic displacement functions by using the governing equations. Then, based on the general solution in the case of distinct eigenvalues, a series of beam problems, including the problem of cantilever beam under uniform loads, cantilever beam with axial load and bending moment at the free end, cantilever beam under the first, second, third and fourth power ofx tangential loads, is solved by the superposition principle and the trial-and-error methods.展开更多
In this paper, the specific solutions of orthotropic plane problems with body forces are derived. Then, based on the general solution in the case of distinct eigenvalues and the specific solution for density functiona...In this paper, the specific solutions of orthotropic plane problems with body forces are derived. Then, based on the general solution in the case of distinct eigenvalues and the specific solution for density functionally graded orthotropic media, a series of beam problem, including the problems of cantilever beam with body forces depending only on z or on x coordinate and expressed by z or x polynomial is solved by the principle of superposition and the trial-and-error method.展开更多
The electromagnetic concentrative coils are indispensable in the functional magnetic stimulation and have potential applications in nondestructive testing. In this paper, we propose a figure-8-shaped coil being compos...The electromagnetic concentrative coils are indispensable in the functional magnetic stimulation and have potential applications in nondestructive testing. In this paper, we propose a figure-8-shaped coil being composed of two arbitrary oblique elliptical coils, which can change the electromagnetic concentrative region and the magnitude of eddy current density by changing the elliptical shape and/or spread angle between two elliptical coils. Pulsed current is usually the excitation source in the functional magnetic stimulation, so in this paper we derive the analytical solutions of transient pulsed eddy current field in the time domain due to the elliptical concentrative coil placed in an arbitrary position over a half-infinite plane conductor by making use of the scale-transformation, the Laplace transform and the Fourier transform are used in our derivation. Calculation results of field distributions produced by the figure-8-shaped elliptical coil show some behaviours as follows: 1) the eddy currents are focused on the conductor under the geometric symmetric centre of figure-8-shaped coil; 2) the greater the scale factor of ellipse is, the higher the eddy current density is and the wider the concentrative area of eddy current along y axis is; 3) the maximum magnitude of eddy current density increases with the increase of spread angle. When spread angle is 180°, there are two additional reverse concentrative areas on both sides of x axis.展开更多
This paper proposes a simplified analytical solution considering non-Darcian and wellbore storage effect to investigate the pumping flow in a confined aquifer with barrier and recharge boundaries.The mathematical mode...This paper proposes a simplified analytical solution considering non-Darcian and wellbore storage effect to investigate the pumping flow in a confined aquifer with barrier and recharge boundaries.The mathematical modelling for the pumping-induced flow in aquifers with different boundaries is developed by employing image-well theory with the superposition principle,of which the non-Darcian effect is characterized by Izbash’s equation.The solutions are derived by Boltzmann and dimensionless transformations.Then,the non-Darcian effect and wellbore storage are especially investigated according to the proposed solution.The results show that the aquifer boundaries have non-negligible effects on pumping,and ignoring the wellbore storage can lead to an over-estimation of the drawdown in the first 10 minutes of pumping.The higher the degree of non-Darcian,the smaller the drawdown.展开更多
A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions o...A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions of the phonon and phason displacements are obtained further for the quasicrystal plates. In addition, the effectiveness of the approach is verified by comparison with the data of the finite integral transformation method.展开更多
基金supported by the National Key R&D Program of China (Grant No.2022YFB4201200)Technology Major Project (Grant No.J2019-IV-0019-0087)National Science and Technology Major Project (Grant No.J2019-IV-0019-0087).
文摘The symplectic approach was utilized to derive solutions to the orthotropic micropolar plane stress problem.The Hamiltonian canonical equation was first obtained by applying Legendre’s transformation and the Hamiltonian mixed energy variational principle.Then,by using the method of separation of variables,the eigenproblem of the corresponding homogeneous Hamiltonian canonical equation was derived.Subsequently,the corresponding eigensolutions for three kinds of homogeneous boundary conditions were derived.According to the adjoint symplectic orthogonality of the eigensolutions and expansion theorems,the solutions to this plane stress problem were expressed as a series expansion of these eigensolutions.The numerical results for the orthotropic micropolar plane stress problem under various boundary conditions were presented and validated using the finite element method,which confirmed the convergence and accuracy of the proposed approach.We also investigated the relationship between the size-dependent behaviour and material parameters using the proposed approach.Furthermore,this approach was applied to analyze lattice structures under an equivalent micropolar continuum approximation.
基金Project supported by the National Natural Science Foundation of China (No. 12272323)。
文摘The double-beam system is a crucial foundational structure in industry,with extensive application contexts and significant research value.The double-beam system with damping and gyroscopic effects is termed as the damped gyroscopic double-beam system.In such systems,the orthogonality conditions of the undamped double-beam system are no longer applicable,rendering it impossible to decouple them in modal space using the modal superposition method(MSM) to obtain analytical solutions.Based on the complex modal method and state space method,this paper takes the damped pipe-in-pipe(PIP) system as an example to solve this problem.The concepts of the original system and adjoint system are introduced,and the orthogonality conditions of the damped PIP system are given in the state-space.Based on the derived orthogonality conditions,the transient and steady-state response solutions are obtained.In the numerical discussion section,the convergence and accuracy of the solutions are verified.In addition,the dynamic responses of the system under different excitations and initial conditions are studied,and the forward and reverse synchronous vibrations in the PIP system are discussed.Overall,the method presented in this paper provides a convenient way to analyze the dynamics of the damped gyroscopic double-beam system.
基金Project(2023YFC3707800)supported by the National Key Research and Development Program of China。
文摘In practical engineering construction,multi-layered barriers containing geomembranes are extensively applied to retard the migration of pollutants.However,the associated analytical theory on pollutants diffusion still needs to be further improved.In this work,general analytical solutions are derived for one-dimensional diffusion of degradable organic contaminant(DOC)in the multi-layered media containing geomembranes under a time-varying concentration boundary condition,where the variable substitution and separated variable approaches are employed.These analytical solutions with clear expressions can be used not only to study the diffusion behaviors of DOC in bottom and vertical composite barrier systems,but also to verify other complex numerical models.The proposed general analytical solutions are then fully validated via three comparative analyses,including comparisons with the experimental measurements,an existing analytical solution,and a finite-difference solution.Ultimately,the influences of different factors on the composite cutoff wall’s(CCW,which consists of two soil-bentonite layers and a geomembrane)service performance are investigated through a composite vertical barrier system as the application example.The findings obtained from this investigation can provide scientific guidance for the barrier performance evaluation and the engineering design of CCWs.This application example also exhibits the necessity and effectiveness of the developed analytical solutions.
基金Project supported by the Science and Technology Plan Joint Program of Liaoning Province of China(Natural Science Foundation-Doctoral Research Launch Project)(No.2024-BSLH-027)the Fundamental Research Funds for Undergraduate Universities of Liaoning Province of China(No.LJBKY2024033)+1 种基金the National Natural Science Foundation of China(No.12472064)the Natural Science Foundation of Liaoning Province of China(No.2023-MS-118)。
文摘In recent years,magneto-electro-elastic(MEE)cylindrical shells with step-wise thicknesses have shown significant potential in the field of vibration energy harvesting.To aid the design of such energy harvesting devices,an accurate free vibration analysis of embedded MEE cylindrical shells with step-wise thicknesses is performed within the framework of symplectic mechanics.By using the Legendre transformation,a new known vector is defined to transform the higher-order partial differential governing equations into a set of lower-order ordinary differential equations.Therefore,the original vibration analysis is regarded as an eigen problem in the symplectic space,and analytical solutions can be represented by the symplectic series.In numerical examples,the new analytical solutions are compared with the existing results,and good agreement is observed.Furthermore,the effects of critical design parameters on free vibration characteristics are thoroughly investigated.All numerical results can serve as benchmarks for the development of other approximate or numerical methods.
基金supported by the National Natural Science Foundation of China under Grant No.12375006the Weimu Technology Company Limited of Hangzhou of China under Grant No.KYY-HX-20240495。
文摘The main focus of this paper is to address a generalized(2+1)-dimensional Hirota bilinear equation utilizing the bilinear neural network method.The paper presents the periodic solutions through a single-layer model of[3-4-1],followed by breather,lump and their interaction solutions by using double-layer models of[3-3-2-1]and[3-3-3-1],respectively.A significant innovation introduced in this work is the computation of periodic cross-rational solutions through the design of a novel[3-(2+2)-4-1]model,where a specific hidden layer is partitioned into two segments for subsequent operations.Three-dimensional and density figures of the solutions are given alongside an analysis of the dynamics of these solutions.
基金supported by the Opening Project of State Key Laboratory of Mechanical Transmission for Advanced Equipment(No.SKLMT-MSKFKT202330)the National Natural Science Foundation of China(No.52575022)the Jiangsu Province Postgraduate Research&Practice Innovation Program(No.KYCX25_1403)。
文摘This study presents a novel analytical algorithm for solving the forward position problem of a triangular platform Stewart-type parallel robot(STPR).By introducing a virtual chain and leveraging tetrahedral geometric principles,the proposed method derives analytical solutions for the position and orientation of the moving platform.The algorithm systematically addresses the nonlinearity inherent in the kinematic equations of parallel mechanisms,providing explicit expressions for the coordinates of key moving attachment points.Furthermore,the methodology is extended to general triangular platform STPRs with non-coplanar fixed attachments.Numerical validation through virtual experiments confirms the accuracy of the solutions,demonstrating that the mechanism admits eight distinct configurations for a given set of limb lengths.The results align with established kinematic principles and offer a computationally efficient alternative to iterative analytical approaches,contributing to the advancement of precision control in parallel robotic systems.
基金Supported by the Henan Natural Science Foundation(242300421397)the Basic Research Projects of Key Scientific Research Projects Plan in Henan Higher Education Institutions(25ZX013)+2 种基金the Scientific Research Team Plan of Zhengzhou University of Aeronautics(23ZHTD01003)the National Natural Science Foundation of China(11971475)the FLASS Internationalization and Exchange Scheme(FLASS/IE−D09/19-20−FLASS).
文摘In this paper,we consider the inhomogeneous pressureless Euler equations.First,we present a class of self-similar analytical solutions to the 1D Cauchy problem and investigate the large-time behavior of the solutions,and particularly,we obtain slant kink-wave solutions for the inhomogeneous Burgers(InhB)type equation.Next,we prove the integrability of the InhB equation in the sense of Lax pair.Furthermore,we study the spreading rate of the moving domain occupied by mass for the 1D Cauchy problem with compact support initial density.We find that the expanding domain grows exponentially in time,provided that the solutions exist and smooth at all time.Finally,we extend the corresponding results of the inhomogeneous pressureless Euler equations to the radially symmetric multi-dimensional case.
文摘Normalizable analytic solutions of the quantum rotor problem with divergent potential are presented here as solution of the Schrödinger equation. These solutions, unknown to the literature, represent a mathematical advance in the description of physical phenomena described by the second derivative operator associated with a divergent interaction potential and, being analytical, guarantee the optimal interpretation of such phenomena.
基金Project (No.SJ08E204) supported by the Natural Science Foundation of Shanxi Province,China
文摘Unified analytical solutions are presented for the predictions of the stresses and displacements around a circular opening based on nonqinear unified failure criterion and the elastic-brittle-plastic softening model. Unified analytical solutions not only involve generally traditional solutions which are based on the Hock-Brown (H-B) failure criterion or the non-linear twin-shear failure criterion, but also involve other new results. The results of the radius of plastic zone, radial displacements and stresses are obviously different using three rock masses when different values of the unified failure criterion parameter or different material behavior models are used. For a given condition, the radius of plastic zone and radial displacements are reduced by increasing the unified failure criterion parameter. The latent potentialities of rock mass result from considering the effect of intermediate principal stress. It is shown that proper choices of the failure criterion and the material behavior model for rock mass are significant in the tunnel design.
基金Projects(41530637,41877222,41702290)supported by the National Natural Science Foundation of China
文摘The study of transient heat conduction in multilayered slabs is widely used in various engineering fields. In this paper, the transient heat conduction in multilayered slabs with general boundary conditions and arbitrary heat generations is analysed. The boundary conditions are general and include various combinations of Dirichlet, Neumann or Robin boundary conditions at either surface. Moreover, arbitrary heat generations in the slabs are taken into account. The solutions are derived by basic methods, including the superposition method, separation variable method and orthogonal expansion method. The simplified double-layered analytical solution is validated by a numerical method and applied to predicting the temporal and spatial distribution of the temperature inside a landfill. It indicates the ability of the proposed analytical solutions for solving the wide range of applied transient heat conduction problems.
基金The project supported by the National Natural Science Foundation of China(Nos.10872011 and 11172012)the Municipal Natural Science Foundation of Beijing(No.3092006)
文摘Chemo-mechanical coupling exists in a lot of intelligent materials including hy- drogels, biological tissues and other soft materials. These materials are able to respond to ex- ternal stimulus, such as temperature, chemical concentration, and pH value. In this paper, a one-dimensional theoretical model for chemo-mechanical coupling is proposed for analyzing the uniaxial stress/strain state of coupling materials. Based on the chemo-mechanical coupled gov- erning equation, the displacement function and concentration function are derived and the stress and chemical potential are obtained. It is shown that the present chemo-mechanical theory can characterize the chemo-mechanical coupling behavior of intelligent materials.
基金supported by the National Natural Science Foundation of China (No.10772202)the Chinese PostdoctoralScience Foundation (No.20060400757).
文摘The stress concentration problem in structures with a circular or elliptic hole can be investigated by analytical methods. For the problem with a rectangular hole, only approximate results are derived. This paper deduces the analytical solutions to the stress concentration problem in plates with a rectangular hole under biaxial tensions. By using the U-transformation technique and the finite element method, the analytical displacement solutions of the finite element equations are derived in the series form. Therefore, the stress concentration can then be discussed easily and conveniently. For plate problem the bilinear rectangular element with four nodes is taken as an example to demonstrate the applicability of the proposed method. The stress concentration factors for various ratios of height to width of the hole are obtained.
基金Project supported by the China Postdoctoral Science Foundation(Grant No 20080431399)the National Natural Science Foundation of China (Grant No 60572135)
文摘This paper reports that an analytic method is used to calculate the load responses of the two-wire transmission line excited by a plane-wave directly in the time domain. By the frequency-domain Baum Liu-Tesehe (BLT) equation, the time-domain analytic solutions are obtained and expressed in an infinite geometric series. Moreover, it is shown that there exist only finite nonzero terms in the infinite geometric series if the time variate is at a finite interval. In other word, the time-domain analytic solutions are expanded in a finite geometric series indeed if the time variate is at a finite interval. The computed results are subsequently compared with transient responses obtained by using the frequency-domain BLT equation via a fast Fourier transform, and the agreement is excellent.
文摘In this paper, the axisymmetric general solutions of transversely isotropic magnetoelectroelastic media are expressed with four harmonic displacement functions at first. Then, based on the solutions, the analytical three-dimensional solutions are provided for a simply supported magnetoelectroelastic circular plate subjected to uniform loads. Finally, the example of circular plate is presented.
基金supported by the 973 Program (Grants 2013CB932604, 2012CB933403)a project funded by the Priority Academic Program Development of Jiangsu Higher Education InstitutionsJiangsu Innovation Program for Graduate Education (Grant CXZZ12_0140)
文摘Analytical solutions for the elastic properties of a variety of binary nanotubes with arbitrary chirality are obtained through the study of systematic molecular mechanics. This molecular mechanics model is first extended to chiral binary nanotubes by introducing an additional out-of-plane inversion term into the so-called stick-spiral model, which results from the polar bonds and the buckling of binary graphitic crystals. The closed-form expressions for the longitudinal and circumferential Young's modulus and Poisson's ratio of chiral binary nanotubes are derived as functions of the tube diameter. The obtained inversion force constants are negative for all types of binary nanotubes, and the predicted tube stiffness is lower than that by the former stick-spiral model without consideration of the inversion term, reflecting the softening effect of the buckling on the elastic properties of binary nanotubes. The obtained properties are shown to be comparable to available density functional theory calculated results and to be chirality and size sensitive. The developed model and explicit solutions provide a systematic understanding of the mechanical performance of binary nanotubes consisting of III-V and II-VI group elements.
文摘This paper first gives the general solution of two-dimensional orthotropic media expressed with two harmonic displacement functions by using the governing equations. Then, based on the general solution in the case of distinct eigenvalues, a series of beam problems, including the problem of cantilever beam under uniform loads, cantilever beam with axial load and bending moment at the free end, cantilever beam under the first, second, third and fourth power ofx tangential loads, is solved by the superposition principle and the trial-and-error methods.
基金Project (Nos. 10432030 and 10472102) supported by the NationalNatural Science Foundation of China
文摘In this paper, the specific solutions of orthotropic plane problems with body forces are derived. Then, based on the general solution in the case of distinct eigenvalues and the specific solution for density functionally graded orthotropic media, a series of beam problem, including the problems of cantilever beam with body forces depending only on z or on x coordinate and expressed by z or x polynomial is solved by the principle of superposition and the trial-and-error method.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50807001)
文摘The electromagnetic concentrative coils are indispensable in the functional magnetic stimulation and have potential applications in nondestructive testing. In this paper, we propose a figure-8-shaped coil being composed of two arbitrary oblique elliptical coils, which can change the electromagnetic concentrative region and the magnitude of eddy current density by changing the elliptical shape and/or spread angle between two elliptical coils. Pulsed current is usually the excitation source in the functional magnetic stimulation, so in this paper we derive the analytical solutions of transient pulsed eddy current field in the time domain due to the elliptical concentrative coil placed in an arbitrary position over a half-infinite plane conductor by making use of the scale-transformation, the Laplace transform and the Fourier transform are used in our derivation. Calculation results of field distributions produced by the figure-8-shaped elliptical coil show some behaviours as follows: 1) the eddy currents are focused on the conductor under the geometric symmetric centre of figure-8-shaped coil; 2) the greater the scale factor of ellipse is, the higher the eddy current density is and the wider the concentrative area of eddy current along y axis is; 3) the maximum magnitude of eddy current density increases with the increase of spread angle. When spread angle is 180°, there are two additional reverse concentrative areas on both sides of x axis.
基金supported by the National Natural Science Foundation of China (Grant Numbers41807197, 2017YFC0405900, and 51469002)the Natural Science Foundation of Guangxi (Grant Numbers 2017GXNSFBA198087, 2018GXNSFAA138042, and GuiKeAB17195073)Hebei Highlevel Talent Funding Project (B2018003016)。
文摘This paper proposes a simplified analytical solution considering non-Darcian and wellbore storage effect to investigate the pumping flow in a confined aquifer with barrier and recharge boundaries.The mathematical modelling for the pumping-induced flow in aquifers with different boundaries is developed by employing image-well theory with the superposition principle,of which the non-Darcian effect is characterized by Izbash’s equation.The solutions are derived by Boltzmann and dimensionless transformations.Then,the non-Darcian effect and wellbore storage are especially investigated according to the proposed solution.The results show that the aquifer boundaries have non-negligible effects on pumping,and ignoring the wellbore storage can lead to an over-estimation of the drawdown in the first 10 minutes of pumping.The higher the degree of non-Darcian,the smaller the drawdown.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12261064 and 11861048)the Natural Science Foundation of Inner Mongolia,China (Grant Nos.2021MS01004 and 2022QN01008)the High-level Talents Scientific Research Start-up Foundation of Inner Mongolia University (Grant No.10000-21311201/165)。
文摘A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions of the phonon and phason displacements are obtained further for the quasicrystal plates. In addition, the effectiveness of the approach is verified by comparison with the data of the finite integral transformation method.