期刊文献+
共找到3,368篇文章
< 1 2 169 >
每页显示 20 50 100
Predictive Analytics for Customer Behavior Prediction in Artificial Intelligence
1
作者 Murat Basal Khouloud Moulai Anıl Cetin 《Economics World》 2025年第2期142-154,共13页
This study evaluates the use of predictive analytics to forecast customer turnover in subscription-based Services in order to develop a predictive model to help small and medium-sized enterprises manage customer churn... This study evaluates the use of predictive analytics to forecast customer turnover in subscription-based Services in order to develop a predictive model to help small and medium-sized enterprises manage customer churn in the face of digital disruption.The research uses a quantitative approach focusing on empirical customer data to accurately predict buying trends and adapt marketing techniques.Demand forecasts in the health sector are important,as in every sector.In particular,the material forecast and stock forecasting of the purchasing unit of hospitals are among the areas that receive significant attention.Four classifiers(Random Forest,Logistic Regression,Gradient Boosting and XGBoost)are trained and evaluated using various performance indicators as part of a systematic approach involving Kaggle data collection,preparation and model selection.The results show excellent accuracy in predicting customer attrition,but there are limitations in precision and recall,indicating room for improvement.Confusion matrices provide information about the performance of each classifier,allowing for continuous improvement of predictive analytics techniques.Ethical concerns are rigorously addressed throughout the work process to guarantee appropriate data and machine learning methodologies.The proposals emphasize the proactive use of predictive analytics to identify at-risk customers and implement targeted retention strategies.Incorporating new data sources,improving customer experience,and utilizing collaborative churn management methods are recommended to increase forecast accuracy and business outcomes.Finally,this research provides important insights into the usefulness of predictive analytics for customer churn forecasting as well as practical recommendations for businesses seeking to increase customer retention and reduce churn risk.By leveraging empirical research findings and implementing ethical and rigorous churn control strategies,businesses can achieve long-term success in today’s changing market environment. 展开更多
关键词 artificial intelligence customer behavior health sector PREDICTION analytics
在线阅读 下载PDF
Advanced Predictive Analytics for Green Energy Systems: An IPSS System Perspective
2
作者 Lei Shen Chutong Zhang +4 位作者 Yuwei Ge Shanyun Gu Qiang Gao Wei Li Jie Ji 《Energy Engineering》 2025年第4期1581-1602,共22页
The rapid development and increased installed capacity of new energy sources such as wind and solar power pose new challenges for power grid fault diagnosis.This paper presents an innovative framework,the Intelligent ... The rapid development and increased installed capacity of new energy sources such as wind and solar power pose new challenges for power grid fault diagnosis.This paper presents an innovative framework,the Intelligent Power Stability and Scheduling(IPSS)System,which is designed to enhance the safety,stability,and economic efficiency of power systems,particularly those integrated with green energy sources.The IPSS System is distinguished by its integration of a CNN-Transformer predictive model,which leverages the strengths of Convolutional Neural Networks(CNN)for local feature extraction and Transformer architecture for global dependency modeling,offering significant potential in power safety diagnostics.TheIPSS System optimizes the economic and stability objectives of the power grid through an improved Zebra Algorithm,which aims tominimize operational costs and grid instability.Theperformance of the predictive model is comprehensively evaluated using key metrics such as Root Mean Square Error(RMSE),Mean Absolute Percentage Error(MAPE),and Coefficient of Determination(R2).Experimental results demonstrate the superiority of the CNN-Transformer model,with the lowest RMSE and MAE values of 0.0063 and 0.00421,respectively,on the training set,and an R2 value approaching 1,at 0.99635,indicating minimal prediction error and strong data interpretability.On the test set,the model maintains its excellence with the lowest RMSE and MAE values of 0.009 and 0.00673,respectively,and an R2 value of 0.97233.The IPSS System outperforms other models in terms of prediction accuracy and explanatory power and validates its effectiveness in economic and stability analysis through comparative studies with other optimization algorithms.The system’s efficacy is further supported by experimental results,highlighting the proposed scheme’s capability to reduce operational costs and enhance system stability,making it a valuable contribution to the field of green energy systems. 展开更多
关键词 Advanced predictive analytics green energy systems IPSS system CNN-transformer predictivemodel economic and stability optimization improved zebra algorithm
在线阅读 下载PDF
RETRACTION:Challenges and Opportunities of Big Data Analytics in Healthcare
3
《Health Care Science》 2025年第2期161-161,共1页
RETRACTION:P.Goyal and R.Malviya,“Challenges and Opportunities of Big Data Analytics in Healthcare,”Health Care Science 2,no.5(2023):328-338,https://doi.org/10.1002/hcs2.66.The above article,published online on 4 Oc... RETRACTION:P.Goyal and R.Malviya,“Challenges and Opportunities of Big Data Analytics in Healthcare,”Health Care Science 2,no.5(2023):328-338,https://doi.org/10.1002/hcs2.66.The above article,published online on 4 October 2023 in Wiley Online Library(wileyonlinelibrary.com),has been retracted by agreement between the journal Editor-in-Chief,Zongjiu Zhang;Tsinghua University Press;and John Wiley&Sons Ltd. 展开更多
关键词 big data analytics RETRACTION healthcare
在线阅读 下载PDF
EOS Data Analytics推出“收获希望”计划支持乌克兰农民
4
作者 王毅平(编译) 王应宽(审校) 《农业工程技术》 2025年第26期14-14,共1页
为了应对乌克兰持续不断的战争带来的严峻挑战,EOS Data Analytics推出了“收获希望”计划,该计划旨在关注席卷乌克兰农业部门的危机。这个综合网页设有一张交互式地图,展示了2021—2024年乌克兰主要作物的历史和预测产量。此外,该倡议... 为了应对乌克兰持续不断的战争带来的严峻挑战,EOS Data Analytics推出了“收获希望”计划,该计划旨在关注席卷乌克兰农业部门的危机。这个综合网页设有一张交互式地图,展示了2021—2024年乌克兰主要作物的历史和预测产量。此外,该倡议还介绍了乌克兰农业的现状及其对全球粮食安全的影响。出于支持乌克兰农民的承诺,该公司将在2024年向他们免费提供EOSDA作物监测服务,作为“收获希望”计划的一部分。该平台将帮助农民克服逆境,并确保乌克兰农业部门的可持续未来。 展开更多
关键词 EOS Data analytics 收获希望
在线阅读 下载PDF
Model Analytics辅助的智能放疗计划建模 被引量:6
5
作者 王美娇 李莎 +4 位作者 岳海振 弓健 项小羽 郭文 张艺宝 《中国医学物理学杂志》 CSCD 2017年第9期870-873,共4页
目的:利用瓦里安公司开发的Model Analytics(MA)工具减少人工处理RapidPlan模型离群值的繁琐和主观因素导致模型构成的不确定性,评估MA工具在效率、改善统计学参数及模型优化效果等方面的表现。方法:(1)选取81例优质计划导入RapidPlan... 目的:利用瓦里安公司开发的Model Analytics(MA)工具减少人工处理RapidPlan模型离群值的繁琐和主观因素导致模型构成的不确定性,评估MA工具在效率、改善统计学参数及模型优化效果等方面的表现。方法:(1)选取81例优质计划导入RapidPlan系统并建立初始模型;(2)将初始模型上传MA进行自动分析统计,根据报告提示对离群值进行批量统计学确认,比较模型验证前后统计学指标的变化;(3)利用20例测试病例评估统计学确认前后Rapid Plan模型的剂量学表现,并与原临床计划比较。结果:MA只需几分钟便可得到构成模型计划的几何学、剂量学等特征统计,5轮分析共找出8个股骨头剂量学离群值,分别高于各自预测范围上限的11.11%、5.88%、5.56%、5.56%、5.00%、5.26%、5.56%和5.88%,R^2由0.32提高至0.45;仅用一轮分析便找出所有3个膀胱几何和剂量学离群值,其中几何离群值分别高于均值62.22%或低于均值55.35%,剂量学离群值高于预测范围上限3.33%,处理完离群值后,R^2由0.35升至0.37。测试计划表明,Rapid Plan计划质量显著优于人工计划(P<0.05),使用验证前后的模型可分别降低股骨头剂量23.15%和27.55%,降低膀胱剂量8.14%和6.79%。结论:使用MA工具可快速获取模型构成计划的整体描述,并准确查找出模型中的离群值,从而提高智能放疗计划建模的效率,但统计学确认对模型的剂量学表现影响不大。 展开更多
关键词 智能计划 RapidPlan MODEL analytics 机器学习 建模
暂未订购
国外图书馆Google Analytics应用研究述评 被引量:4
6
作者 黄晴珊 朱伟丽 《图书与情报》 CSSCI 北大核心 2013年第6期89-94,共6页
文章以Library,Information Science & Technology Abstracts数据库为信息来源,对采集到的Google Analytics应用相关文献从定量分析、研究主题、研究特色三个角度进行分析。提出图书馆应在加强Google Analytics应用的同时,注意与其... 文章以Library,Information Science & Technology Abstracts数据库为信息来源,对采集到的Google Analytics应用相关文献从定量分析、研究主题、研究特色三个角度进行分析。提出图书馆应在加强Google Analytics应用的同时,注意与其它方式结合,以掌握用户需求特点,实现科学决策。 展开更多
关键词 GOOGLE analytics 网站分析 图书馆网站 国外图书馆
在线阅读 下载PDF
开放课程的开放性效果研究:基于Google Analytics的分析 被引量:12
7
作者 马红亮 《现代远距离教育》 CSSCI 2012年第4期70-74,共5页
近年来许多国内外高校纷纷将自己的课程向社会开放,然而这些开放课程的开放性效果具体如何,则需要进行多方面的评价。在众多评价方式中,Google Analytics为评价开放课程非直接教学对象的用户访问情况提供了一种全面的流量分析。应用Goog... 近年来许多国内外高校纷纷将自己的课程向社会开放,然而这些开放课程的开放性效果具体如何,则需要进行多方面的评价。在众多评价方式中,Google Analytics为评价开放课程非直接教学对象的用户访问情况提供了一种全面的流量分析。应用Google Analytics分析"教育技术学开放教育资源"网站的研究分别从网站级别和课程级别两个层次探讨了开放课程开放性效果评价的指标体系,最后得出:(1)在整个网站层次,Google Analyt-ics可用于评价开放课程开放性效果的关键指标包括访问次数、每次访问页数、网站平均停留时间、跳出率;(2)在具体课程层次,Google Analytics可用于评价开放课程开放性效果的关键指标则是浏览量和唯一身份的浏览量。 展开更多
关键词 GOOGLE analytics 开放教育资源 开放课程 评价 指标 流量
在线阅读 下载PDF
Google Analytics在教育网站评价中的应用研究——以“教育技术学开放教育资源”网站为例 被引量:2
8
作者 马红亮 孟庆喜 《中国医学教育技术》 2012年第4期415-420,共6页
以基于Moodle的"教育技术学开放教育资源"网站为例,利用Google Analytics对该网站的受众群体、网站内容以及流量来源进行了多种维度的分析。指出:①Google Analytics能够为定量评价教育网站提供非常丰富的各类流量数据,但评... 以基于Moodle的"教育技术学开放教育资源"网站为例,利用Google Analytics对该网站的受众群体、网站内容以及流量来源进行了多种维度的分析。指出:①Google Analytics能够为定量评价教育网站提供非常丰富的各类流量数据,但评价需要综合应用不同维度、不同层次的数据进行综合分析;②在这些丰富的数据中,网站内容分析方面的数据对于以课程为中心的教育网站而言,具有十分重要的价值。 展开更多
关键词 Google analytics 教育网站 MOODLE 开放教育资源 评价
在线阅读 下载PDF
欧特克携手Dodge Data & Analytics发布《中国BIM应用价值研究报告》 被引量:7
9
作者 宁忠意 《中外建筑》 2015年第6期19-21,共3页
4月27日,全球二维和三维设计、工程及娱乐软件的领导者欧特克有限公司("欧特克"或"Autodesk")与Dodge Data&Analytics在上海国金中心的利思卡尔顿酒店共同发布了最新的《中国BIM应用价值研究报告》。欧特克与Dodge Data&Analyt... 4月27日,全球二维和三维设计、工程及娱乐软件的领导者欧特克有限公司("欧特克"或"Autodesk")与Dodge Data&Analytics在上海国金中心的利思卡尔顿酒店共同发布了最新的《中国BIM应用价值研究报告》。欧特克与Dodge Data&Analytics(DD&A)的高层管理人员出席了活动并发表了演讲,与参会者分享了BIM技术在中国市场的最新应用和发展趋势。同时,他们还与媒体朋友共同探讨如何深化BIM应用在中国的普及, 展开更多
关键词 DODGE DATA 欧特克 BIM analytics 研究报告 卡尔顿 三维设计 AUTODESK 管理人员 二次开发
原文传递
融合Google Analytics完善中小型B2C电子商务网站BI功能 被引量:1
10
作者 王刚 《电子商务》 2010年第5期60-61,共2页
本文先分析了中小型B2C电子商务网站BI功能现状,指出造成当前BI应用功能较弱的原因。在此基础上,介绍了中小型B2C电子商务网站适用的免费BI工具GoogleAnalytics的性质、获取方法以及在网站管理、网站营销和网站设计技术改进三方面的应... 本文先分析了中小型B2C电子商务网站BI功能现状,指出造成当前BI应用功能较弱的原因。在此基础上,介绍了中小型B2C电子商务网站适用的免费BI工具GoogleAnalytics的性质、获取方法以及在网站管理、网站营销和网站设计技术改进三方面的应用功能,着重介绍了"跟踪电子商务交易"功能的现实意义,为中小型B2C电子商务网站完善BI功能提供了一个低成本、低技术门槛的选择。 展开更多
关键词 GOOGLE analytics B2C 电子商务网站 BI
在线阅读 下载PDF
Web Analytics中的隐私保护问题
11
作者 李慧 罗玮 《中国电子商务》 2010年第8期56-56,共1页
Web Analytics作为基于数据的的对网站建设与优化的量化分析,数据在Web Analytics中占有很地位。而这些私人性很强的数据如何才能很好的保护其隐私性,这是一个值得我们关注的问题。
关键词 WEB analytics 数据 隐私 Cookfes
在线阅读 下载PDF
Using Factor Analysis to Determine the Factors Impacting Learning Python for Non-Technical Business Analytics Graduate Students
12
作者 Sameh Shamroukh Teray Johnson 《Journal of Data Analysis and Information Processing》 2023年第4期512-535,共24页
This pioneering research represents a unique and singular study conducted within the United States, with a specific focus on non-technical graduate students pursuing degrees in business analytics. The primary impetus ... This pioneering research represents a unique and singular study conducted within the United States, with a specific focus on non-technical graduate students pursuing degrees in business analytics. The primary impetus behind this study stems from the escalating demand for data-driven professionals, the diverse academic backgrounds of students, the imperative for adaptable pedagogical methods, the ever-evolving landscape of curriculum designs, and the overarching commitment to fostering educational equity. To investigate these multifaceted dynamics, we employed a data collection method that included the distribution of an online survey on platforms such as LinkedIn. Our survey reached and engaged 74 graduate students actively pursuing degrees in Business Analytics within the United States. This comprehensive research is the first and only one of its kind conducted in this context, and it serves as a vanguard exploration into the challenges and influences that shape the learning journey of Python among non-technical graduate Business Analytics students. The analytical insights derived from this research underscore the pivotal role of hands-on learning strategies, exemplified by practice exercises and assignments. Moreover, the study highlights the positive and constructive influence of collaboration and peer support in the process of learning Python. These invaluable findings significantly augment the existing body of knowledge in the field of business analytics. Furthermore, they offer an essential resource for educators and institutions seeking to optimize the educational experiences of non-technical students as they acquire essential Python skills. 展开更多
关键词 PYTHON Data analytics Factor Analysis Business analytics PROGRAMMING
在线阅读 下载PDF
Similarity Intelligence:Similarity Based Reasoning,Computing,and Analytics
13
作者 Zhaohao Sun 《Journal of Computer Science Research》 2023年第3期1-14,共14页
Similarity has been playing an important role in computer science,artificial intelligence(AI)and data science.However,similarity intelligence has been ignored in these disciplines.Similarity intelligence is a process ... Similarity has been playing an important role in computer science,artificial intelligence(AI)and data science.However,similarity intelligence has been ignored in these disciplines.Similarity intelligence is a process of discovering intelligence through similarity.This article will explore similarity intelligence,similarity-based reasoning,similarity computing and analytics.More specifically,this article looks at the similarity as an intelligence and its impact on a few areas in the real world.It explores similarity intelligence accompanying experience-based intelligence,knowledge-based intelligence,and data-based intelligence to play an important role in computer science,AI,and data science.This article explores similarity-based reasoning(SBR)and proposes three similarity-based inference rules.It then examines similarity computing and analytics,and a multiagent SBR system.The main contributions of this article are:1)Similarity intelligence is discovered from experience-based intelligence consisting of data-based intelligence and knowledge-based intelligence.2)Similarity-based reasoning,computing and analytics can be used to create similarity intelligence.The proposed approach will facilitate research and development of similarity intelligence,similarity computing and analytics,machine learning and case-based reasoning. 展开更多
关键词 Similarity intelligence Similarity computing Similarity analytics Similarity-based reasoning Big data analytics Artificial intelligence Intelligent agents
在线阅读 下载PDF
开放课程中的学习行为分析:来自Google Analytics的证据 被引量:14
14
作者 罗恒 杨婷婷 +1 位作者 伊丽莎.理查德森 左明章 《中国电化教育》 CSSCI 北大核心 2017年第10期8-14,31,共8页
开放课程是开放教育资源运动的重要组成部分,对促进社会知识传播、推动教育全球化、实现教育公平有着重要意义。然而目前人们对开放课程中学习者社群及其学习行为的认识不够客观、全面和深入,缺乏基于实证数据的结论与发现。针对该研究... 开放课程是开放教育资源运动的重要组成部分,对促进社会知识传播、推动教育全球化、实现教育公平有着重要意义。然而目前人们对开放课程中学习者社群及其学习行为的认识不够客观、全面和深入,缺乏基于实证数据的结论与发现。针对该研究需求,该文利用Google Analytics网站流量分析工具对宾夕法尼亚州立大学一门开放课程中长达六年的网站流量数据进行了收集与分析,通过对学习者特征、在线学习行为和技术设备使用情况的统计和可视化呈现,揭示了高校开放课程中学习者社群和学习行为总体特点和衍变趋势。同时该文也探讨了利用Google Analytics工具进行学习行为分析的利弊。该文中呈现的在线学习行为统计结论能增进人们对开放课程这种新兴教学情境的了解,指导人们对在线课程网站和资源进行有针对性地评价与修改。 展开更多
关键词 开放课程 学习行为分析 网站流量分析 学习分析 GOOGLE analytics
在线阅读 下载PDF
Sales Prediction and Product Recommendation Model Through User Behavior Analytics 被引量:3
15
作者 Xian Zhao Pantea Keikhosrokiani 《Computers, Materials & Continua》 SCIE EI 2022年第2期3855-3874,共20页
The COVID-19 has brought us unprecedented difficulties and thousands of companies have closed down.The general public has responded to call of the government to stay at home.Offline retail stores have been severely af... The COVID-19 has brought us unprecedented difficulties and thousands of companies have closed down.The general public has responded to call of the government to stay at home.Offline retail stores have been severely affected.Therefore,in order to transform a traditional offline sales model to the B2C model and to improve the shopping experience,this study aims to utilize historical sales data for exploring,building sales prediction and recommendation models.A novel data science life-cycle and process model with Recency,Frequency,and Monetary(RFM)analysis method with the combination of various analytics algorithms are utilized in this study for sales prediction and product recommendation through user behavior analytics.RFM analysis method is utilized for segmenting customer levels in the company to identify the importance of each level.For the purchase prediction model,XGBoost and Random Forest machine learning algorithms are used to build prediction models and 5-fold Cross-Validation method is utilized to evaluate their.For the product recommendation model,the association rules theory and Apriori algorithm are used to complete basket analysis and recommend products according to the outcomes.Moreover,some suggestions are proposed for the marketing department according to the outcomes.Overall,the XGBoost model achieved better performance and better accuracy with F1-score around 0.789.The proposed recommendation model provides good recommendation results and sales combinations for improving sales and market responsiveness.Furthermore,it recommend specific products to new customers.This study offered a very practical and useful business transformation case that assists companies in similar situations to transform their business models. 展开更多
关键词 Business transformation behavior analytics customer segmentation sales prediction product recommendation
在线阅读 下载PDF
Toward Data-Driven Digital Therapeutics Analytics:Literature Review and Research Directions 被引量:3
16
作者 Uichin Lee Gyuwon Jung +5 位作者 Eun-Yeol Ma Jin San Kim Heepyung Kim Jumabek Alikhanov Youngtae Noh Heeyoung Kim 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第1期42-66,共25页
With the advent of digital therapeutics(DTx),the development of software as a medical device(SaMD)for mobile and wearable devices has gained significant attention in recent years.Existing DTx evaluations,such as rando... With the advent of digital therapeutics(DTx),the development of software as a medical device(SaMD)for mobile and wearable devices has gained significant attention in recent years.Existing DTx evaluations,such as randomized clinical trials,mostly focus on verifying the effectiveness of DTx products.To acquire a deeper understanding of DTx engagement and behavioral adherence,beyond efficacy,a large amount of contextual and interaction data from mobile and wearable devices during field deployment would be required for analysis.In this work,the overall flow of the data-driven DTx analytics is reviewed to help researchers and practitioners to explore DTx datasets,to investigate contextual patterns associated with DTx usage,and to establish the(causal)relationship between DTx engagement and behavioral adherence.This review of the key components of datadriven analytics provides novel research directions in the analysis of mobile sensor and interaction datasets,which helps to iteratively improve the receptivity of existing DTx. 展开更多
关键词 Causal inference data-driven analytics framework digital therapeutics(DTx) mobile and wearable data technical and behavioral engagement
在线阅读 下载PDF
Big Data Analytics in Telecommunications: Literature Review and Architecture Recommendations 被引量:6
17
作者 Hira Zahid Tariq Mahmood +1 位作者 Ahsan Morshed Timos Sellis 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第1期18-38,共21页
This paper focuses on facilitating state-of-the-art applications of big data analytics(BDA) architectures and infrastructures to telecommunications(telecom) industrial sector.Telecom companies are dealing with terabyt... This paper focuses on facilitating state-of-the-art applications of big data analytics(BDA) architectures and infrastructures to telecommunications(telecom) industrial sector.Telecom companies are dealing with terabytes to petabytes of data on a daily basis. Io T applications in telecom are further contributing to this data deluge. Recent advances in BDA have exposed new opportunities to get actionable insights from telecom big data. These benefits and the fast-changing BDA technology landscape make it important to investigate existing BDA applications to telecom sector. For this, we initially determine published research on BDA applications to telecom through a systematic literature review through which we filter 38 articles and categorize them in frameworks, use cases, literature reviews, white papers and experimental validations. We also discuss the benefits and challenges mentioned in these articles. We find that experiments are all proof of concepts(POC) on a severely limited BDA technology stack(as compared to the available technology stack), i.e.,we did not find any work focusing on full-fledged BDA implementation in an operational telecom environment. To facilitate these applications at research-level, we propose a state-of-the-art lambda architecture for BDA pipeline implementation(called Lambda Tel) based completely on open source BDA technologies and the standard Python language, along with relevant guidelines.We discovered only one research paper which presented a relatively-limited lambda architecture using the proprietary AWS cloud infrastructure. We believe Lambda Tel presents a clear roadmap for telecom industry practitioners to implement and enhance BDA applications in their enterprises. 展开更多
关键词 Big data analytics BDA pipeline BDA technology stack lambda architecture python systematic literature review telecommunications
在线阅读 下载PDF
Big Data Analytics in Healthcare——A Systematic Literature Review and Roadmap for Practical Implementation 被引量:2
18
作者 Sohail Imran Tariq Mahmood +1 位作者 Ahsan Morshed Timos Sellis 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第1期1-22,共22页
The advent of healthcare information management systems(HIMSs)continues to produce large volumes of healthcare data for patient care and compliance and regulatory requirements at a global scale.Analysis of this big da... The advent of healthcare information management systems(HIMSs)continues to produce large volumes of healthcare data for patient care and compliance and regulatory requirements at a global scale.Analysis of this big data allows for boundless potential outcomes for discovering knowledge.Big data analytics(BDA)in healthcare can,for instance,help determine causes of diseases,generate effective diagnoses,enhance Qo S guarantees by increasing efficiency of the healthcare delivery and effectiveness and viability of treatments,generate accurate predictions of readmissions,enhance clinical care,and pinpoint opportunities for cost savings.However,BDA implementations in any domain are generally complicated and resource-intensive with a high failure rate and no roadmap or success strategies to guide the practitioners.In this paper,we present a comprehensive roadmap to derive insights from BDA in the healthcare(patient care)domain,based on the results of a systematic literature review.We initially determine big data characteristics for healthcare and then review BDA applications to healthcare in academic research focusing particularly on No SQL databases.We also identify the limitations and challenges of these applications and justify the potential of No SQL databases to address these challenges and further enhance BDA healthcare research.We then propose and describe a state-of-the-art BDA architecture called Med-BDA for healthcare domain which solves all current BDA challenges and is based on the latest zeta big data paradigm.We also present success strategies to ensure the working of Med-BDA along with outlining the major benefits of BDA applications to healthcare.Finally,we compare our work with other related literature reviews across twelve hallmark features to justify the novelty and importance of our work.The aforementioned contributions of our work are collectively unique and clearly present a roadmap for clinical administrators,practitioners and professionals to successfully implement BDA initiatives in their organizations. 展开更多
关键词 Big data analytics(BDA) big data architecture healthcare NoSQL data stores patient care ROADMAP systematic literature review
在线阅读 下载PDF
Systemic risk management and investment analysis with financial network analytics:research opportunities and challenges 被引量:3
19
作者 Daning Hu Gerhard Schwabe Xiao Li 《Financial Innovation》 2015年第1期2-10,共9页
Recent economic crises like the 2008 financial tsunami has demonstrated a critical need for better understanding of the topologies and various economic,social,and technical mechanisms of the increasingly interconnecte... Recent economic crises like the 2008 financial tsunami has demonstrated a critical need for better understanding of the topologies and various economic,social,and technical mechanisms of the increasingly interconnected global financial system.Such a system largely relies on the interconnectedness of various financial entities such as banks,firms,and investors through complex financial relationships such as interbank payment networks,investment relations,or supply chains.A network-based perspective or approach is needed to study various financial networks in order to improve or extend financial theories,as well as develop business applications.Moreover,with the advance of big data related technologies,and the availability of huge amounts of financial and economic network data,advanced computing technologies and data analytics that can comprehend such big data are also needed.We referred this approach as financial network analytics.We suggest that it will enable stakeholders better understand the network dynamics within the interconnected global financial system and help designing financial policies such as managing and monitoring banking systemic risk,as well as developing intelligent business applications like banking advisory systems.In this paper,we review the existing research about financial network analytics and then discuss its main research challenges from the economic,social,and technological perspectives. 展开更多
关键词 Financial network analytics Risk management Investment analysis
在线阅读 下载PDF
A Wide Learning Approach for Interpretable Feature Recommendation for 1-D Sensor Data in IoT Analytics 被引量:1
20
作者 Snehasis Banerjee Tanushyam Chattopadhyay Utpal Garain 《International Journal of Automation and computing》 EI CSCD 2019年第6期800-811,共12页
This paper presents a state of the art machine learning-based approach for automation of a varied class of Internet of things(Io T) analytics problems targeted on 1-dimensional(1-D) sensor data. As feature recommendat... This paper presents a state of the art machine learning-based approach for automation of a varied class of Internet of things(Io T) analytics problems targeted on 1-dimensional(1-D) sensor data. As feature recommendation is a major bottleneck for general Io Tbased applications, this paper shows how this step can be successfully automated based on a Wide Learning architecture without sacrificing the decision-making accuracy, and thereby reducing the development time and the cost of hiring expensive resources for specific problems. Interpretation of meaningful features is another contribution of this research. Several data sets from different real-world applications are considered to realize the proof-of-concept. Results show that the interpretable feature recommendation techniques are quite effective for the problems at hand in terms of performance and drastic reduction in development time. 展开更多
关键词 FEATURE engineering sensor data analysis Internet of things(IoT)analytics interpretable LEARNING automation
原文传递
上一页 1 2 169 下一页 到第
使用帮助 返回顶部