A new analytical model for geometric size and forming force prediction in incremental flanging(IF)is presented in this work.The complex deformation characteristics of IF are considered in the modeling process,which ca...A new analytical model for geometric size and forming force prediction in incremental flanging(IF)is presented in this work.The complex deformation characteristics of IF are considered in the modeling process,which can accurately describe the strain and stress states in IF.Based on strain analysis,the model can predict the material thickness distribution and neck height after IF.By considering contact area,strain characteristics,material thickness changes,and friction,the model can predict specific moments and corresponding values of maximum axial forming force and maximum horizontal forming force during IF.In addition,an IF experiment involving different tool diameters,flanging diameters,and opening hole diameters is conducted.On the basis of the experimental strain paths,the strain characteristics of different deformation zones are studied,and the stable strain ratio is quantitatively described through two dimensionless parameters:relative tool diameter and relative hole diameter.Then,the changing of material thickness and forming force in IF,and the variation of minimum material thickness,neck height,maximum axial forming force,and maximum horizontal forming force with flanging parameters are studied,and the reliability of the analytical model is verified in this process.Finally,the influence of the horizontal forming force on the tool design and the fluctuation of the forming force are explained.展开更多
Selective laser melting(SLM)plays a critical role in additive manufacturing,particularly in the fabrication of complex high-precision components.This study selects the AlSi10Mg alloy for its extensive use in the aeros...Selective laser melting(SLM)plays a critical role in additive manufacturing,particularly in the fabrication of complex high-precision components.This study selects the AlSi10Mg alloy for its extensive use in the aerospace and automotive industries,which require lightweight structures with superior thermal and mechanical properties.The thermal load induces residual tensile stress,leading to a decline in the geometric accuracy of the workpiece and causing cracks that reduce the fatigue life of the alloy.The rapid movement of the laser heat source during the material formation creates a localized and inhomogeneous temperature field in the powder bed.Significant temperature gradients are generated,resulting in thermal stresses and distortions within the part,affecting the quality of the molding.Therefore,understanding the effects of processing parameters and scanning strategies on the temperature field in SLM is crucial.To address these issues,this study proposes a multiscale method for predicting the complex transient temperature field during the manufacturing process based on the heat-conduction equation.Considering the influence of temperature on the material properties,a temperature-prediction model for discontinuous scanning paths in SLM and a temperature field-calculation model for irregular scanning paths are developed.The models are validated using finite-element results and are in excellent agreement.The analytical model is then used to investigate the effects of the laser power,scanning speed,and scanning spacing on the temperature distribution.The results reveal that the peak temperature decreases exponentially with increasing scanning speed and increases linearly with increasing laser power.In addition,with increasing scanning spacing,the peak temperature of the adjacent tracks near the observation point decreases linearly.These findings are critical for optimizing the SLM-process parameters and improving the material-forming quality.展开更多
Fluid imbibition from hydraulic fractures into shale formations is mainly affected by a combination of capillary forces and viscous resistance,both of which are closely related to the pore geometry.This study establis...Fluid imbibition from hydraulic fractures into shale formations is mainly affected by a combination of capillary forces and viscous resistance,both of which are closely related to the pore geometry.This study established five self-imbibition models with idealized pore structures and conducted a comparative analysis of these models.These models include circular,square,and equilateral triangular capillaries;a triangular star-shaped cross-section formed by three tangent spherical particles;and a traditional porous medium representation method.All these models are derived based on Newton’s second law,where capillary pressure is described by the Young-Laplace equation and viscous resistance is characterized by the Hagen-Poiret equation and Darcy’s law.All derived models predict that the fluid imbibition distance is proportional to the square root of time,in accordance with the classical Lucas-Washburn law.However,different pore structures exhibit significantly different characteristic imbibition rates.Compared to the single pore model,the conventional Darcy’s law-based model for porous media predicts significantly lower imbibition rates,which is consistent with the relatively slower uptake rates in actual shale nanoscale pore networks.These findings emphasize the important role played by pore geometry in fluid imbibition dynamics and further point to the need for optimizing pore structure to extend fluid imbibition duration in shale reservoirs in practical operations.展开更多
This study develops an analytical model to evaluate the cooling performance of a porous terracotta tubular direct evaporative heat and mass exchanger. By combining energy and mass balance equations with heat and mass ...This study develops an analytical model to evaluate the cooling performance of a porous terracotta tubular direct evaporative heat and mass exchanger. By combining energy and mass balance equations with heat and mass transfer coefficients and air psychrometric correlations, the model provides insights into the impact of design and operational parameters on the exchanger cooling performance. Validated against an established numerical model, it accurately simulates cooling behavior with a Root Mean Square Deviation of 0.43 - 1.18˚C under varying inlet air conditions. The results show that tube geometry, including equivalent diameter, flatness ratio, and length significantly influences cooling outcomes. Smaller diameters enhance wet-bulb effectiveness but reduce cooling capacity, while increased flatness and length improve both. For example, extending the flatness ratio of a 15 mm diameter, 0.6 m long tube from 1 (circular) to 4 raises the exchange surface area from 0.028 to 0.037 m2, increasing wet-bulb effectiveness from 60% to 71%. Recommended diameters range from 5 mm for tubes under 0.5 m to 1 cm for tubes 0.5 to 1 m in length. Optimal air velocities depend on tube length: 1 m/s for tubes under 0.8 m, 1.5 m/s for lengths of 0.8 to 1.2 m, and up to 2 m/s for longer tubes. This model offers a practical alternative to complex numerical and CFD methods, with potential applications in cooling tower optimization for thermal and nuclear power plants and geothermal heat exchangers.展开更多
Modem analytical models for anti-monopoly laws are a core element of the application of those laws. Since the Anti-Monopoly Law of the People's Republic of China was promulgated in 2008, law enforcement and judici...Modem analytical models for anti-monopoly laws are a core element of the application of those laws. Since the Anti-Monopoly Law of the People's Republic of China was promulgated in 2008, law enforcement and judicial authorities have applied different analytical models, leading to divergent legal and regulatory outcomes as similar cases receive different verdicts. To select a suitable analytical model for China's Anti-Monopoly Law, we need to consider the possible contribution of both economic analysis and legal formalism and to learn from the mature systems and experience of foreign countries. It is also necessary to take into account such binding constraints as the current composition of China's anti-monopoly legal system, the ability of implementing agencies and the supply of economic analysis, in order to ensure complementarity between the analytical model chosen and the complexity of economic analysis and between the professionalism of implementing agencies and the cost of compliance for participants in economic activities. In terms of institutional design, the models should provide a considered explanation of the legislative aims of the law's provisions. It is necessary, therefore, to establish a processing model of behavioral classification that is based on China's national conditions, applies analytical models using normative comprehensive analysis, makes use of the distribution rule of burden of proof, improves supporting systems related to analytical models and enhances the ability of public authorities to implement the law.展开更多
Congestion is one of the well-studied problems in computer networks,which occurs when the request for network resources exceeds the buffer capacity.Many active queue management techniques such as BLUE and RED have bee...Congestion is one of the well-studied problems in computer networks,which occurs when the request for network resources exceeds the buffer capacity.Many active queue management techniques such as BLUE and RED have been proposed in the literature to control congestions in early stages.In this paper,we propose two discrete-time queueing network analytical models to drop the arrival packets in preliminary stages when the network becomes congested.The first model is based on Lambda Decreasing and it drops packets from a probability value to another higher value according to the buffer length.Whereas the second proposed model drops packets linearly based on the current queue length.We compare the performance of both our models with the original BLUE in order to decide which of these methods offers better quality of service.The comparison is done in terms of packet dropping probability,average queue length,throughput ratio,average queueing delay,and packet loss rate.展开更多
Constitutive models aimed at predicting the mechanical response of lead-core bearing devices for passive seismic isolation are discussed in this paper. The study is focused on single-degree-of-freedom models which pro...Constitutive models aimed at predicting the mechanical response of lead-core bearing devices for passive seismic isolation are discussed in this paper. The study is focused on single-degree-of-freedom models which provide a relation between the shear displacement (shear strain) and the shear force (shear stress) in elastomeric and lad-core rubber bearings. Classical Bouc-Wen model along with a numerical procedure for identification of the model constants is described. Alternatively, a constitutive relation introducing a damage variable aimed at assessing the material degradation is also considered.展开更多
There are two types of floating bridge such as discrete-pontoon floating bridges and continuous-pontoon floating bridges. Analytical models of both floating bridges subjected by raoving loads are presented to study th...There are two types of floating bridge such as discrete-pontoon floating bridges and continuous-pontoon floating bridges. Analytical models of both floating bridges subjected by raoving loads are presented to study the dynamic responses with hydrodynamic influence coefficients for different water depths. The beam theory and potential theory are introduced to produce the models. The hydrodynamic coefficients and dynamic responses of bridges are evaluated by the boundary element method and by the Galerkin method of weighted residuals, respectively. Considering causal relationship between the frequencies of the oscillation of floating bridges and the added mass coefficients, an iteration method is introduced to compute hydrodynamic frequencies. The results indicate that water depth has little influence upon the dynamic responses of both types of floating bridges, so that the effect of water depth can be neglected during the course of designing floating bridges.展开更多
A series of direct shear tests under constant normal loading conditions were carried out on specimens of bolted sandstone single-joint treated with different numbers of dryewet cycles.The experimental results show tha...A series of direct shear tests under constant normal loading conditions were carried out on specimens of bolted sandstone single-joint treated with different numbers of dryewet cycles.The experimental results show that the peak shear strength and shear stiffness of bolted sandstone joints were significantly reduced after 12 dryewet cycles.The decrease in the shear strength of rough joints is more significant than that of flat joints.Due to the decrease in the strength of the surrounding rock,the deformation characteristics of the bolts are significantly affected by the number of dryewet cycles performed.With an increase in the number of dryewet cycles,the plastic hinge length of the bolt gradually increases,resulting in an increase in the corresponding shear displacement when the bolt breaks.Compared with the tensileeshear failure mode of the bolts in flat joints,the tensileebending failure mode arises for bolts in rough joints.A shear curve model describing the whole process of bolted rock joints is established based on the deterioration of rock mechanical parameters caused by dry‒wet cycles.The model proposed considers the change in the friction angle of the joint surface with the shear displacement,which is applied to the derivation of the model by introducing the dynamic evolutionary friction angle parameter.The reasonably good agreement between a predicted curve and the corresponding experimental curve indicates that this method can effectively predict the shear strength of a bolted rock joint involving rough joint under dryewet cycling conditions.展开更多
To date,few models are available in the literature to consider the creep behavior of geosynthetics when predicting the lateral deformation(d)of geosynthetics-reinforced soil(GRS)retaining walls.In this study,a general...To date,few models are available in the literature to consider the creep behavior of geosynthetics when predicting the lateral deformation(d)of geosynthetics-reinforced soil(GRS)retaining walls.In this study,a general hyperbolic creep model was first introduced to describe the long-term deformation of geosynthetics,which is a function of elapsed time and two empirical parameters a and b.The conventional creep tests with three different tensile loads(Pr)were conducted on two uniaxial geogrids to determine their creep behavior,as well as the a-Pr and b-Pr relationships.The test results show that increasing Pr accelerates the development of creep deformation for both geogrids.Meanwhile,a and b respectively show exponential and negatively linear relationships with Pr,which were confirmed by abundant experimental data available in other studies.Based on the above creep model and relationships,an accurate and reliable analytical model was then proposed for predicting the time-dependent d of GRS walls with modular block facing,which was further validated using a relevant numerical investigation from the previous literature.Performance evaluation and comparison of the proposed model with six available prediction models were performed.Then a parametric study was carried out to evaluate the effects of wall height,vertical spacing of geogrids,unit weight and internal friction angle of backfills,and factor of safety against pullout on d at the end of construction and 5 years afterwards.The findings show that the creep effect not only promotes d but also raises the elevation of the maximum d along the wall height.Finally,the limitations and application prospects of the proposed model were discussed and analyzed.展开更多
Congestion control is among primary topics in computer network in which random early detection(RED)method is one of its common techniques.Nevertheless,RED suffers from drawbacks in particular when its“average queue l...Congestion control is among primary topics in computer network in which random early detection(RED)method is one of its common techniques.Nevertheless,RED suffers from drawbacks in particular when its“average queue length”is set below the buffer’s“minimum threshold”position which makes the router buffer quickly overflow.To deal with this issue,this paper proposes two discrete-time queue analytical models that aim to utilize an instant queue length parameter as a congestion measure.This assigns mean queue length(mql)and average queueing delay smaller values than those for RED and eventually reduces buffers overflow.A comparison between RED and the proposed analytical models was conducted to identify the model that offers better performance.The proposed models outperform the classic RED in regards to mql and average queueing delay measures when congestion exists.This work also compares one of the proposed models(RED-Linear)with another analytical model named threshold-based linear reduction of arrival rate(TLRAR).The results of the mql,average queueing delay and the probability of packet loss for TLRAR are deteriorated when heavy congestion occurs,whereas,the results of our RED-Linear were not impacted and this shows superiority of our model.展开更多
The utilization of stone columns has emerged as a popular ground improvement strategy,whereas the drainage performance can be adversely hampered by clogging effect.Despite the ample progress of calculation methods for...The utilization of stone columns has emerged as a popular ground improvement strategy,whereas the drainage performance can be adversely hampered by clogging effect.Despite the ample progress of calculation methods for the consolidation of stone column-improved ground,theoretical investigations into the clogging effect have not been thoroughly explored.Furthermore,it is imperative to involve the column consolidation deformation to mitigate computational error on the consolidation of composite ground with high replacement ratios.In this context,an analytical model accounting for the initial clogging and coupled time and depth-dependent clogging of stone columns is established.Then,the resulting governing equations and analytical solutions are obtained under a new flow continuity relationship to incorporate column consolidation deformation.The accuracy and reliability of the proposed model are illustrated by degradation analysis and case studies with good agreements.Subsequently,the computed results of the current study are juxtaposed against the existing models,and an in-depth assessment of the impacts of several crucial parameters on the consolidation behavior is conducted.The results reveal that ignoring column consolidation deformation leads to an overestimate of the consolidation rate,with maximum error reaching up to 16%as the replacement ratio increases.Furthermore,the initial clogging also has a significant influence on the consolidation performance.Additionally,the increment of depth and time-clogging factors a and b will induce a noticeable retardation of the consolidation process,particularly in the later stage.展开更多
Assessing the vulnerability of a platform is crucial in its design.In fact,the results obtained from vulnerability analyses provide valuable information,leading to precise design choices or corrective solutions that e...Assessing the vulnerability of a platform is crucial in its design.In fact,the results obtained from vulnerability analyses provide valuable information,leading to precise design choices or corrective solutions that enhance the platform's chances of surviving different scenarios.Such scenarios can involve various types of threats that can affect the platform's survivability.Among such,blast waves impacting the platform's structure represent critical conditions that have not yet been studied in detail.That is,frameworks for vulnerability assessment that can deal with blast loading have not been presented yet.In this context,this work presents a fast-running engineering tool that can quantify the risk that a structure fails when it is subjected to blast loading from the detonation of high explosive-driven threats detonating at various distances from the structure itself.The tool has been implemented in an in-house software that calculates vulnerability to various impacting objects,and its capabilities have been shown through a simplified,yet realistic,case study.The novelty of this research lies in the development of an integrated computational environment capable of calculating the platform's vulnerability to blast waves,without the need for running expensive finite element simulations.In fact,the proposed tool is fully based on analytical models integrated with a probabilistic approach for vulnerability calculation.展开更多
Departing from an analytical phase transformation model, a new analytical approach to deduce transformed fraction for non-isothermal phase transformation was developed. In the new approach, the effect of the initial t...Departing from an analytical phase transformation model, a new analytical approach to deduce transformed fraction for non-isothermal phase transformation was developed. In the new approach, the effect of the initial transformation temperature and the accurate "temperature integral" approximations are incorporated to obtain an extended analytical model. Numerical approach demonstrated that the extended analytical model prediction for transformed fraction and transformation rate is in good agreement with the exact numerical calculation. The new model can describe more precisely the kinetic behavior than the original analytical model, especially for transformation with relatively high initial transformation temperature. The kinetic parameters obtained from the new model are more accurate and reasonable than those from the original analytical model.展开更多
Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a...Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.展开更多
Due to interaction among cells, it is too complex to build an exactanalytical model for the power dissipation within the cell membrane in suspensions exposed toexternal fields. An approximate equivalence method is pro...Due to interaction among cells, it is too complex to build an exactanalytical model for the power dissipation within the cell membrane in suspensions exposed toexternal fields. An approximate equivalence method is proposed to resolve this problem. Based on theeffective medium theory, the transmembrane voltage on cells in suspensions was investigated by theequivalence principle. Then the electric field in the cell membrane was determined. Finally,analytical solutions for the power dissipation within the cell membrane in suspensions exposed toexternal fields were derived according to the Joule principle. The equations show that theconductive power dissipation is predominant within the cell membrane in suspensions exposed todirect current or lower frequencies, and dielectric power dissipation prevails at high frequenciesexceeding the relaxation frequency of the exposed membrane.展开更多
Ground reinforcement is crucial for tunnel construction, especially in soft rock tunnels. Existing analytical models are inadequate for predicting the ground reaction curves (GRCs) for reinforced tunnels in strain-sof...Ground reinforcement is crucial for tunnel construction, especially in soft rock tunnels. Existing analytical models are inadequate for predicting the ground reaction curves (GRCs) for reinforced tunnels in strain-softening (SS) rock masses. This study proposes a novel analytical model to determine the GRCs of SS rock masses, incorporating ground reinforcement and intermediate principal stress (IPS). The SS constitutive model captures the progressive post- peak failure, while the elastic-brittle model simulates reinforced rock masses. Nine combined states are innovatively investigated to analyze plastic zone development in natural and reinforced regions. Each region is analyzed separately, and coupled through boundary conditions at interface. Comparison with three types of existing models indicates that these models overestimate reinforcement effects. The deformation prediction errors of single geological material models may exceed 75%. Furthermore, neglecting softening and residual zones in natural regions could lead to errors over 50%. Considering the IPS can effectively utilize the rock strength to reduce tunnel deformation by at least 30%, thereby saving on reinforcement and support costs. The computational results show a satisfactory agreement with the monitoring data from a model test and two tunnel projects. The proposed model may offer valuable insights into the design and construction of reinforced tunnel engineering.展开更多
The existing analytical models for umbrella arch method(UAM)based on elastic foundation beams often overlook the influence of the surrounding soil beyond the beam edges on the shear stresses acting on the beam.Consequ...The existing analytical models for umbrella arch method(UAM)based on elastic foundation beams often overlook the influence of the surrounding soil beyond the beam edges on the shear stresses acting on the beam.Consequently,such models fail to adequately reflect the continuity characteristics of soil deformation.Leveraging the Pasternak foundation-Euler beam model,this study considers the generalized shear force on the beam to account for the influence of soil outside the beam ends on the shear stress.An analytical model for the deformation and internal forces of finite-length beams subjected to arbitrary loads is derived based on the initial parameter method under various conditions.The mechanical model of the elastic foundation beam for advanced umbrella arch under typical tunnel excavation cycles is established,yielding analytical solutions for the longitudinal response of the umbrella arch.The reliability of the analytical model is verified with the existing test data.The improved model addresses anomalies in existing models,such as abnormal upward deformation in the loosened segment and maximum deflection occurring within the soil mass.Additionally,dimensionless characteristic parameters reflecting the relative stiffness between the umbrella arch structure and the foundation soil are proposed.Results indicate that the magnitude of soil characteristic parameters significantly influences the deformation and internal forces of the umbrella arch.Within common ranges of soil values,the maximum deformation and internal forces of the umbrella arch under semi-logarithmic coordinates exhibit nearly linear decay with decreasing soil characteristic parameters.The impact of tunnel excavation height on the stress of unsupported sections of the umbrella arch is minor,but it is more significant for umbrella arch buried within the soil mass.Conversely,the influence of tunnel excavation advance on the umbrella arch is opposite.展开更多
Magnetization convenience is crucial consideration for design of valve magnetic actuators.The existing repulsive-magnetic-coupling of 2D maglev valve is not oriented to the integral-magnetization-processes,resulting i...Magnetization convenience is crucial consideration for design of valve magnetic actuators.The existing repulsive-magnetic-coupling of 2D maglev valve is not oriented to the integral-magnetization-processes,resulting in the high assembly cost.This paper presents a novel tractive-magnetic-coupling(TMC)and its application on a 2D electro-hydraulic proportional flow valve(2D-EHPFV),whose configuration not only fulfill the requirements of 2D valve,but also oriented to integral-magnetization-process.To investigate the output torque of TMC,a detailed analytical model considering leakage flux,edge effect and tooth magnetic saturation is formulated based on the equivalent magnetic circuit method.To facilitate the magnetic saturation calculation,a special magnetic permeability database is established for tooth region of TMC using Ansoft/Maxwell software.Prototype of TMC is machined and an exclusive experimental platform is built.Torque-displacement characteristics under different working airgap and tooth number are measured.The experimental results are in good agreement with the analytical results,which verifies the correctness of the analytical model.Then the TMC is integrated into the 2D-EHPFV by replacing the repulsive-magnetic-coupling.Prototype of 2D-EHPFV is designed and manufactured to test the no-load flow characteristics,load flow characteristics,leakage characteristics,frequency characteristics and step response.Under working pressure of 15 MPa,the maximum no-load flow rate is 82.2 L/min with the hysteresis of 2.6%,and the amplitude and phase frequency width is 21.6 Hz,and 28.9 Hz.The detailed experimental results show that TMC can be applied to 2D valves to form 2D-EHPFV,which can reduce hysteresis and cost,and improve response speed.展开更多
The interaction between regular waves and an oscillating wave energy converter(WEC)in front of a vertical seawall is investigated using a 2D analytical model.A three-degree of freedom(DOF)WEC and a WEC hinged to the s...The interaction between regular waves and an oscillating wave energy converter(WEC)in front of a vertical seawall is investigated using a 2D analytical model.A three-degree of freedom(DOF)WEC and a WEC hinged to the seawall(constrained to pitch mode)are considered to examine the influence of the DOF of the WEC on the wave energy extraction performance.Results show that the piston-mode water resonance in the gap and the coupled WEC and water column resonant motion significantly influence the wave energy extraction efficiency.At low frequency,the case with a 3-DOF WEC has a broader high-efficiency bandwidth than that with a heaving WEC.However,3-DOF WEC exhibits worse performance at high frequencies.The frequency response of the wave energy capture width ratio(CWR)for the pitching WEC case shows a trimodal trend under the specified conditions.It showcases the best overall wave energy extraction performance in terms of the high-efficiency bandwidth.Furthermore,a parametric study indicates that the gap distance between the WEC and the seawall has tremendous effects on the CWR of both cases.As the position of the hinge point of the pitching WEC changes,the CWR at the low and high frequencies shows opposite trends.展开更多
基金supported in part by financial support from the National Key R&D Program of China(No.2023YFB3407003)the National Natural Science Foundation of China(No.52375378).
文摘A new analytical model for geometric size and forming force prediction in incremental flanging(IF)is presented in this work.The complex deformation characteristics of IF are considered in the modeling process,which can accurately describe the strain and stress states in IF.Based on strain analysis,the model can predict the material thickness distribution and neck height after IF.By considering contact area,strain characteristics,material thickness changes,and friction,the model can predict specific moments and corresponding values of maximum axial forming force and maximum horizontal forming force during IF.In addition,an IF experiment involving different tool diameters,flanging diameters,and opening hole diameters is conducted.On the basis of the experimental strain paths,the strain characteristics of different deformation zones are studied,and the stable strain ratio is quantitatively described through two dimensionless parameters:relative tool diameter and relative hole diameter.Then,the changing of material thickness and forming force in IF,and the variation of minimum material thickness,neck height,maximum axial forming force,and maximum horizontal forming force with flanging parameters are studied,and the reliability of the analytical model is verified in this process.Finally,the influence of the horizontal forming force on the tool design and the fluctuation of the forming force are explained.
基金supported by National Natural Science Foundation of the China Youth Program(Grant No.52205485)Sichuan Youth Fund Program of China(Grant No.2025ZNSFSC1275)the Young Scientific Research Team Cultivation Program of SUES(Grant No.QNTD202112)。
文摘Selective laser melting(SLM)plays a critical role in additive manufacturing,particularly in the fabrication of complex high-precision components.This study selects the AlSi10Mg alloy for its extensive use in the aerospace and automotive industries,which require lightweight structures with superior thermal and mechanical properties.The thermal load induces residual tensile stress,leading to a decline in the geometric accuracy of the workpiece and causing cracks that reduce the fatigue life of the alloy.The rapid movement of the laser heat source during the material formation creates a localized and inhomogeneous temperature field in the powder bed.Significant temperature gradients are generated,resulting in thermal stresses and distortions within the part,affecting the quality of the molding.Therefore,understanding the effects of processing parameters and scanning strategies on the temperature field in SLM is crucial.To address these issues,this study proposes a multiscale method for predicting the complex transient temperature field during the manufacturing process based on the heat-conduction equation.Considering the influence of temperature on the material properties,a temperature-prediction model for discontinuous scanning paths in SLM and a temperature field-calculation model for irregular scanning paths are developed.The models are validated using finite-element results and are in excellent agreement.The analytical model is then used to investigate the effects of the laser power,scanning speed,and scanning spacing on the temperature distribution.The results reveal that the peak temperature decreases exponentially with increasing scanning speed and increases linearly with increasing laser power.In addition,with increasing scanning spacing,the peak temperature of the adjacent tracks near the observation point decreases linearly.These findings are critical for optimizing the SLM-process parameters and improving the material-forming quality.
文摘Fluid imbibition from hydraulic fractures into shale formations is mainly affected by a combination of capillary forces and viscous resistance,both of which are closely related to the pore geometry.This study established five self-imbibition models with idealized pore structures and conducted a comparative analysis of these models.These models include circular,square,and equilateral triangular capillaries;a triangular star-shaped cross-section formed by three tangent spherical particles;and a traditional porous medium representation method.All these models are derived based on Newton’s second law,where capillary pressure is described by the Young-Laplace equation and viscous resistance is characterized by the Hagen-Poiret equation and Darcy’s law.All derived models predict that the fluid imbibition distance is proportional to the square root of time,in accordance with the classical Lucas-Washburn law.However,different pore structures exhibit significantly different characteristic imbibition rates.Compared to the single pore model,the conventional Darcy’s law-based model for porous media predicts significantly lower imbibition rates,which is consistent with the relatively slower uptake rates in actual shale nanoscale pore networks.These findings emphasize the important role played by pore geometry in fluid imbibition dynamics and further point to the need for optimizing pore structure to extend fluid imbibition duration in shale reservoirs in practical operations.
文摘This study develops an analytical model to evaluate the cooling performance of a porous terracotta tubular direct evaporative heat and mass exchanger. By combining energy and mass balance equations with heat and mass transfer coefficients and air psychrometric correlations, the model provides insights into the impact of design and operational parameters on the exchanger cooling performance. Validated against an established numerical model, it accurately simulates cooling behavior with a Root Mean Square Deviation of 0.43 - 1.18˚C under varying inlet air conditions. The results show that tube geometry, including equivalent diameter, flatness ratio, and length significantly influences cooling outcomes. Smaller diameters enhance wet-bulb effectiveness but reduce cooling capacity, while increased flatness and length improve both. For example, extending the flatness ratio of a 15 mm diameter, 0.6 m long tube from 1 (circular) to 4 raises the exchange surface area from 0.028 to 0.037 m2, increasing wet-bulb effectiveness from 60% to 71%. Recommended diameters range from 5 mm for tubes under 0.5 m to 1 cm for tubes 0.5 to 1 m in length. Optimal air velocities depend on tube length: 1 m/s for tubes under 0.8 m, 1.5 m/s for lengths of 0.8 to 1.2 m, and up to 2 m/s for longer tubes. This model offers a practical alternative to complex numerical and CFD methods, with potential applications in cooling tower optimization for thermal and nuclear power plants and geothermal heat exchangers.
文摘Modem analytical models for anti-monopoly laws are a core element of the application of those laws. Since the Anti-Monopoly Law of the People's Republic of China was promulgated in 2008, law enforcement and judicial authorities have applied different analytical models, leading to divergent legal and regulatory outcomes as similar cases receive different verdicts. To select a suitable analytical model for China's Anti-Monopoly Law, we need to consider the possible contribution of both economic analysis and legal formalism and to learn from the mature systems and experience of foreign countries. It is also necessary to take into account such binding constraints as the current composition of China's anti-monopoly legal system, the ability of implementing agencies and the supply of economic analysis, in order to ensure complementarity between the analytical model chosen and the complexity of economic analysis and between the professionalism of implementing agencies and the cost of compliance for participants in economic activities. In terms of institutional design, the models should provide a considered explanation of the legislative aims of the law's provisions. It is necessary, therefore, to establish a processing model of behavioral classification that is based on China's national conditions, applies analytical models using normative comprehensive analysis, makes use of the distribution rule of burden of proof, improves supporting systems related to analytical models and enhances the ability of public authorities to implement the law.
文摘Congestion is one of the well-studied problems in computer networks,which occurs when the request for network resources exceeds the buffer capacity.Many active queue management techniques such as BLUE and RED have been proposed in the literature to control congestions in early stages.In this paper,we propose two discrete-time queueing network analytical models to drop the arrival packets in preliminary stages when the network becomes congested.The first model is based on Lambda Decreasing and it drops packets from a probability value to another higher value according to the buffer length.Whereas the second proposed model drops packets linearly based on the current queue length.We compare the performance of both our models with the original BLUE in order to decide which of these methods offers better quality of service.The comparison is done in terms of packet dropping probability,average queue length,throughput ratio,average queueing delay,and packet loss rate.
文摘Constitutive models aimed at predicting the mechanical response of lead-core bearing devices for passive seismic isolation are discussed in this paper. The study is focused on single-degree-of-freedom models which provide a relation between the shear displacement (shear strain) and the shear force (shear stress) in elastomeric and lad-core rubber bearings. Classical Bouc-Wen model along with a numerical procedure for identification of the model constants is described. Alternatively, a constitutive relation introducing a damage variable aimed at assessing the material degradation is also considered.
基金the National Natural Science Foundation of China (Grant No. 50379026).
文摘There are two types of floating bridge such as discrete-pontoon floating bridges and continuous-pontoon floating bridges. Analytical models of both floating bridges subjected by raoving loads are presented to study the dynamic responses with hydrodynamic influence coefficients for different water depths. The beam theory and potential theory are introduced to produce the models. The hydrodynamic coefficients and dynamic responses of bridges are evaluated by the boundary element method and by the Galerkin method of weighted residuals, respectively. Considering causal relationship between the frequencies of the oscillation of floating bridges and the added mass coefficients, an iteration method is introduced to compute hydrodynamic frequencies. The results indicate that water depth has little influence upon the dynamic responses of both types of floating bridges, so that the effect of water depth can be neglected during the course of designing floating bridges.
基金the Natural Science Foundation of China(Grant Nos.42302314 and 52078427)the Open foundation of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Grant No.SKLGP2022K001).
文摘A series of direct shear tests under constant normal loading conditions were carried out on specimens of bolted sandstone single-joint treated with different numbers of dryewet cycles.The experimental results show that the peak shear strength and shear stiffness of bolted sandstone joints were significantly reduced after 12 dryewet cycles.The decrease in the shear strength of rough joints is more significant than that of flat joints.Due to the decrease in the strength of the surrounding rock,the deformation characteristics of the bolts are significantly affected by the number of dryewet cycles performed.With an increase in the number of dryewet cycles,the plastic hinge length of the bolt gradually increases,resulting in an increase in the corresponding shear displacement when the bolt breaks.Compared with the tensileeshear failure mode of the bolts in flat joints,the tensileebending failure mode arises for bolts in rough joints.A shear curve model describing the whole process of bolted rock joints is established based on the deterioration of rock mechanical parameters caused by dry‒wet cycles.The model proposed considers the change in the friction angle of the joint surface with the shear displacement,which is applied to the derivation of the model by introducing the dynamic evolutionary friction angle parameter.The reasonably good agreement between a predicted curve and the corresponding experimental curve indicates that this method can effectively predict the shear strength of a bolted rock joint involving rough joint under dryewet cycling conditions.
基金This research work was financially supported by the National Natural Science Foundation of China(Grant Nos.52078182 and 41877255)the Tianjin Municipal Natural Science Foundation(Grant No.20JCYBJC00630).Their financial support is gratefully acknowledged.
文摘To date,few models are available in the literature to consider the creep behavior of geosynthetics when predicting the lateral deformation(d)of geosynthetics-reinforced soil(GRS)retaining walls.In this study,a general hyperbolic creep model was first introduced to describe the long-term deformation of geosynthetics,which is a function of elapsed time and two empirical parameters a and b.The conventional creep tests with three different tensile loads(Pr)were conducted on two uniaxial geogrids to determine their creep behavior,as well as the a-Pr and b-Pr relationships.The test results show that increasing Pr accelerates the development of creep deformation for both geogrids.Meanwhile,a and b respectively show exponential and negatively linear relationships with Pr,which were confirmed by abundant experimental data available in other studies.Based on the above creep model and relationships,an accurate and reliable analytical model was then proposed for predicting the time-dependent d of GRS walls with modular block facing,which was further validated using a relevant numerical investigation from the previous literature.Performance evaluation and comparison of the proposed model with six available prediction models were performed.Then a parametric study was carried out to evaluate the effects of wall height,vertical spacing of geogrids,unit weight and internal friction angle of backfills,and factor of safety against pullout on d at the end of construction and 5 years afterwards.The findings show that the creep effect not only promotes d but also raises the elevation of the maximum d along the wall height.Finally,the limitations and application prospects of the proposed model were discussed and analyzed.
文摘Congestion control is among primary topics in computer network in which random early detection(RED)method is one of its common techniques.Nevertheless,RED suffers from drawbacks in particular when its“average queue length”is set below the buffer’s“minimum threshold”position which makes the router buffer quickly overflow.To deal with this issue,this paper proposes two discrete-time queue analytical models that aim to utilize an instant queue length parameter as a congestion measure.This assigns mean queue length(mql)and average queueing delay smaller values than those for RED and eventually reduces buffers overflow.A comparison between RED and the proposed analytical models was conducted to identify the model that offers better performance.The proposed models outperform the classic RED in regards to mql and average queueing delay measures when congestion exists.This work also compares one of the proposed models(RED-Linear)with another analytical model named threshold-based linear reduction of arrival rate(TLRAR).The results of the mql,average queueing delay and the probability of packet loss for TLRAR are deteriorated when heavy congestion occurs,whereas,the results of our RED-Linear were not impacted and this shows superiority of our model.
基金funding support from the National Natural Science Foundation of China(Grant Nos.52178373 and 51878657).
文摘The utilization of stone columns has emerged as a popular ground improvement strategy,whereas the drainage performance can be adversely hampered by clogging effect.Despite the ample progress of calculation methods for the consolidation of stone column-improved ground,theoretical investigations into the clogging effect have not been thoroughly explored.Furthermore,it is imperative to involve the column consolidation deformation to mitigate computational error on the consolidation of composite ground with high replacement ratios.In this context,an analytical model accounting for the initial clogging and coupled time and depth-dependent clogging of stone columns is established.Then,the resulting governing equations and analytical solutions are obtained under a new flow continuity relationship to incorporate column consolidation deformation.The accuracy and reliability of the proposed model are illustrated by degradation analysis and case studies with good agreements.Subsequently,the computed results of the current study are juxtaposed against the existing models,and an in-depth assessment of the impacts of several crucial parameters on the consolidation behavior is conducted.The results reveal that ignoring column consolidation deformation leads to an overestimate of the consolidation rate,with maximum error reaching up to 16%as the replacement ratio increases.Furthermore,the initial clogging also has a significant influence on the consolidation performance.Additionally,the increment of depth and time-clogging factors a and b will induce a noticeable retardation of the consolidation process,particularly in the later stage.
文摘Assessing the vulnerability of a platform is crucial in its design.In fact,the results obtained from vulnerability analyses provide valuable information,leading to precise design choices or corrective solutions that enhance the platform's chances of surviving different scenarios.Such scenarios can involve various types of threats that can affect the platform's survivability.Among such,blast waves impacting the platform's structure represent critical conditions that have not yet been studied in detail.That is,frameworks for vulnerability assessment that can deal with blast loading have not been presented yet.In this context,this work presents a fast-running engineering tool that can quantify the risk that a structure fails when it is subjected to blast loading from the detonation of high explosive-driven threats detonating at various distances from the structure itself.The tool has been implemented in an in-house software that calculates vulnerability to various impacting objects,and its capabilities have been shown through a simplified,yet realistic,case study.The novelty of this research lies in the development of an integrated computational environment capable of calculating the platform's vulnerability to blast waves,without the need for running expensive finite element simulations.In fact,the proposed tool is fully based on analytical models integrated with a probabilistic approach for vulnerability calculation.
基金Projects (09-QZ-2008, 24-TZ-2009) supported by the Free Research Fund of State Key Laboratory of Solidification Processing, ChinaProject (B08040) supported by the Program of Introducing Talents of Discipline to Universities, China+3 种基金Projects (51071127, 51134011) supported by the National Natural Science Foundation of ChinaProject (JC200801) supported by the Fundamental Research Fund of Northwestern Polytechnical University, ChinaProject (51125002) supported by the National Science Foundation for Distinguished Young Scholars, ChinaProject (2011CB610403) supported by the National Basic Research Program of China
文摘Departing from an analytical phase transformation model, a new analytical approach to deduce transformed fraction for non-isothermal phase transformation was developed. In the new approach, the effect of the initial transformation temperature and the accurate "temperature integral" approximations are incorporated to obtain an extended analytical model. Numerical approach demonstrated that the extended analytical model prediction for transformed fraction and transformation rate is in good agreement with the exact numerical calculation. The new model can describe more precisely the kinetic behavior than the original analytical model, especially for transformation with relatively high initial transformation temperature. The kinetic parameters obtained from the new model are more accurate and reasonable than those from the original analytical model.
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2024-9/1).
文摘Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.
文摘Due to interaction among cells, it is too complex to build an exactanalytical model for the power dissipation within the cell membrane in suspensions exposed toexternal fields. An approximate equivalence method is proposed to resolve this problem. Based on theeffective medium theory, the transmembrane voltage on cells in suspensions was investigated by theequivalence principle. Then the electric field in the cell membrane was determined. Finally,analytical solutions for the power dissipation within the cell membrane in suspensions exposed toexternal fields were derived according to the Joule principle. The equations show that theconductive power dissipation is predominant within the cell membrane in suspensions exposed todirect current or lower frequencies, and dielectric power dissipation prevails at high frequenciesexceeding the relaxation frequency of the exposed membrane.
基金Projects(52208382, 52278387, 51738002) supported by the National Natural Science Foundation of ChinaProject(2022YJS072) supported by the Fundamental Research Funds for the Central Universities,China。
文摘Ground reinforcement is crucial for tunnel construction, especially in soft rock tunnels. Existing analytical models are inadequate for predicting the ground reaction curves (GRCs) for reinforced tunnels in strain-softening (SS) rock masses. This study proposes a novel analytical model to determine the GRCs of SS rock masses, incorporating ground reinforcement and intermediate principal stress (IPS). The SS constitutive model captures the progressive post- peak failure, while the elastic-brittle model simulates reinforced rock masses. Nine combined states are innovatively investigated to analyze plastic zone development in natural and reinforced regions. Each region is analyzed separately, and coupled through boundary conditions at interface. Comparison with three types of existing models indicates that these models overestimate reinforcement effects. The deformation prediction errors of single geological material models may exceed 75%. Furthermore, neglecting softening and residual zones in natural regions could lead to errors over 50%. Considering the IPS can effectively utilize the rock strength to reduce tunnel deformation by at least 30%, thereby saving on reinforcement and support costs. The computational results show a satisfactory agreement with the monitoring data from a model test and two tunnel projects. The proposed model may offer valuable insights into the design and construction of reinforced tunnel engineering.
基金Projects(52008403,52378421)supported by the National Natural Science Foundation of ChinaProject(2022-Key-10)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(202207)supported by the Hunan Provincial Transportation Science and Technology,China。
文摘The existing analytical models for umbrella arch method(UAM)based on elastic foundation beams often overlook the influence of the surrounding soil beyond the beam edges on the shear stresses acting on the beam.Consequently,such models fail to adequately reflect the continuity characteristics of soil deformation.Leveraging the Pasternak foundation-Euler beam model,this study considers the generalized shear force on the beam to account for the influence of soil outside the beam ends on the shear stress.An analytical model for the deformation and internal forces of finite-length beams subjected to arbitrary loads is derived based on the initial parameter method under various conditions.The mechanical model of the elastic foundation beam for advanced umbrella arch under typical tunnel excavation cycles is established,yielding analytical solutions for the longitudinal response of the umbrella arch.The reliability of the analytical model is verified with the existing test data.The improved model addresses anomalies in existing models,such as abnormal upward deformation in the loosened segment and maximum deflection occurring within the soil mass.Additionally,dimensionless characteristic parameters reflecting the relative stiffness between the umbrella arch structure and the foundation soil are proposed.Results indicate that the magnitude of soil characteristic parameters significantly influences the deformation and internal forces of the umbrella arch.Within common ranges of soil values,the maximum deformation and internal forces of the umbrella arch under semi-logarithmic coordinates exhibit nearly linear decay with decreasing soil characteristic parameters.The impact of tunnel excavation height on the stress of unsupported sections of the umbrella arch is minor,but it is more significant for umbrella arch buried within the soil mass.Conversely,the influence of tunnel excavation advance on the umbrella arch is opposite.
基金Supported by National Natural Science Foundation of China(Grant Nos.51975524,52375067)Zhejiang Provincial Natural Science Foundation of China(Grant No.Y23E050014).
文摘Magnetization convenience is crucial consideration for design of valve magnetic actuators.The existing repulsive-magnetic-coupling of 2D maglev valve is not oriented to the integral-magnetization-processes,resulting in the high assembly cost.This paper presents a novel tractive-magnetic-coupling(TMC)and its application on a 2D electro-hydraulic proportional flow valve(2D-EHPFV),whose configuration not only fulfill the requirements of 2D valve,but also oriented to integral-magnetization-process.To investigate the output torque of TMC,a detailed analytical model considering leakage flux,edge effect and tooth magnetic saturation is formulated based on the equivalent magnetic circuit method.To facilitate the magnetic saturation calculation,a special magnetic permeability database is established for tooth region of TMC using Ansoft/Maxwell software.Prototype of TMC is machined and an exclusive experimental platform is built.Torque-displacement characteristics under different working airgap and tooth number are measured.The experimental results are in good agreement with the analytical results,which verifies the correctness of the analytical model.Then the TMC is integrated into the 2D-EHPFV by replacing the repulsive-magnetic-coupling.Prototype of 2D-EHPFV is designed and manufactured to test the no-load flow characteristics,load flow characteristics,leakage characteristics,frequency characteristics and step response.Under working pressure of 15 MPa,the maximum no-load flow rate is 82.2 L/min with the hysteresis of 2.6%,and the amplitude and phase frequency width is 21.6 Hz,and 28.9 Hz.The detailed experimental results show that TMC can be applied to 2D valves to form 2D-EHPFV,which can reduce hysteresis and cost,and improve response speed.
基金supported by the Key R&D Program of Shandong Province,China(No.2021ZLGX04)the National Natural Science Foundation of China(No.52171284)。
文摘The interaction between regular waves and an oscillating wave energy converter(WEC)in front of a vertical seawall is investigated using a 2D analytical model.A three-degree of freedom(DOF)WEC and a WEC hinged to the seawall(constrained to pitch mode)are considered to examine the influence of the DOF of the WEC on the wave energy extraction performance.Results show that the piston-mode water resonance in the gap and the coupled WEC and water column resonant motion significantly influence the wave energy extraction efficiency.At low frequency,the case with a 3-DOF WEC has a broader high-efficiency bandwidth than that with a heaving WEC.However,3-DOF WEC exhibits worse performance at high frequencies.The frequency response of the wave energy capture width ratio(CWR)for the pitching WEC case shows a trimodal trend under the specified conditions.It showcases the best overall wave energy extraction performance in terms of the high-efficiency bandwidth.Furthermore,a parametric study indicates that the gap distance between the WEC and the seawall has tremendous effects on the CWR of both cases.As the position of the hinge point of the pitching WEC changes,the CWR at the low and high frequencies shows opposite trends.