The focus of green analytical chemistry(GAC)is to minimize the negative impacts of analytical procedures on human safety,human health,and the environment.Several factors,such as the reagents used,sample collection,sam...The focus of green analytical chemistry(GAC)is to minimize the negative impacts of analytical procedures on human safety,human health,and the environment.Several factors,such as the reagents used,sample collection,sample processing,instruments,energy consumed,and the quantities of hazardous materials and waste generated during analytical procedures,need to be considered in the evaluation of the greenness of analytical assays.In this study,we propose a greenness evaluation metric for analytical methods(GEMAM).The new greenness metric is simple,flexible,and comprehensive.The evaluation criteria are based on both the 12 principles of GAC(SIGNIFICANCE)and the 10 factors of sample preparation,and the results are presented on a 0–10 scale.The GEMAM calculation process is easy to perform,and its results are easy to interpret.The output of GEMAM is a pictogram that can provide both qualitative and quantitative information based on color and number.展开更多
The chiral nature of biological systems enables their stereoselective interaction with chiral compounds. It has been well documented that the enantiomers ofa chiral drug may show differences in drug disposition especi...The chiral nature of biological systems enables their stereoselective interaction with chiral compounds. It has been well documented that the enantiomers ofa chiral drug may show differences in drug disposition especially in metabolic behavior. As a result, it is of vital importance to separate the enantiomers of a chiral drug in metabolic studies. This paper discusses enantioselective methods (include high-performance liquid chromatography, gas chromatography, capillary electrophoresis and high-performance liquid chromatography-mass spectrometry) that applied in chiral drug metabolism, using most recent examples where possible.展开更多
In the present work, the different sample collection, pretreatment and analytical methods for polycyclic aromatic hydrocarbons (PAHs) in airborne particulates is systematacially reviewed, and the applications of the...In the present work, the different sample collection, pretreatment and analytical methods for polycyclic aromatic hydrocarbons (PAHs) in airborne particulates is systematacially reviewed, and the applications of these pretreatment and analytical methods for PAHs are compared in detail. Some comments on the future expectation are also presented.展开更多
Nanoliposomes are considered to be the most successful nanoparticle drug delivery system, but their fate in vivo has not been fully understood due to lack of reliable bioanalytical methods, which seriously limits the ...Nanoliposomes are considered to be the most successful nanoparticle drug delivery system, but their fate in vivo has not been fully understood due to lack of reliable bioanalytical methods, which seriously limits the development of liposomal drugs. Hence, an overview of currently used bioanalytical methods is imperative to lay the groundwork for the need of developing a bioanalytical method for liposome measurements in vivo. Currently, major analytical methods for nanoliposomes measurement in vivo include fluorescence labeling, radiolabeling, magnetic resonance imaging(MRI), mass spectrometry and computed tomography. In this review, these bioanalytical methods are summarized, and the advantages and disadvantages of each are discussed. We provide insights into the applicability and limitations of these analytical methods in the application of nanoliposomes measurement in vivo, and highlight the recent development of instrumental analysis techniques. The review is devoted to providing a comprehensive overview of the investigation of nanoliposomes design and associated fate in vivo, promoting the development of bioanalytical techniques for nanoliposomes measurement, and understanding the pharmacokinetic behavior, effectiveness and potential toxicity of nanoliposomes in vivo.展开更多
Assessment of acid sulfate soil risk is an important step for acid sulfate soil management and its reliability depends very much on the suitability and accuracy of various analytical methods for estimating sulfide-der...Assessment of acid sulfate soil risk is an important step for acid sulfate soil management and its reliability depends very much on the suitability and accuracy of various analytical methods for estimating sulfide-derived potential acidity, actual acidity and acid-neutralizing capacity in acid sulfate soils. This paper critically reviews various analytical methods that are currently used for determination of the above parameters, as well as their implications for environmental risk assessment of acid sulfate soi1s.展开更多
Terbinafine is a new powerful antifungal agent indicated for both oral and topical treatment of myco- sessince. It is highly effective in the treatment of determatomycoses. The chemical and pharmaceutical analysis of ...Terbinafine is a new powerful antifungal agent indicated for both oral and topical treatment of myco- sessince. It is highly effective in the treatment of determatomycoses. The chemical and pharmaceutical analysis of the drug requires effective analytical methods for quality control and pharmacodynamic and pharmacokinetic studies. Ever since it was introduced as an effective antifungal agent, many methods have been developed and validated for its assay in pharmaceuticals and biological materials. This article reviews the various methods reported during the last 25 years.展开更多
Pioglitazone is an oral anti-hyperglycemic agent. It is used for the treatment of diabetes mellitus type 2. It selectively stimulates nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-gamma). I...Pioglitazone is an oral anti-hyperglycemic agent. It is used for the treatment of diabetes mellitus type 2. It selectively stimulates nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-gamma). It was the tenth-best-selling drug in the U.S. in 2008. This article examines published analytical methods reported so far in the literature for the determination of pioglitazone in biological samples and pharmaceutical formulations. They include various techniques like electrochemical methods, spectrophotometry, capillary electrophoresis, high-performance liquid chromatography, liquid chromatography-electrospray ionization-tandem mass spectrometry and high-performance thin layer chromatography.展开更多
This study proposed the newly-designed Pelagic and demersal trawls for the fishing vessels operating in Cameroonian waters in pelagic and demersal fishing grounds. The engineering performances of both trawls were inve...This study proposed the newly-designed Pelagic and demersal trawls for the fishing vessels operating in Cameroonian waters in pelagic and demersal fishing grounds. The engineering performances of both trawls were investigated using physical modelling method and analytical method based on the predicted equations. In a flume tank, a series of physical model tests based on Tauti’s law were performed to investigate the hydrodynamic and geometrical performances of both trawls and to assess the applicability of the analytical methods based on predicted equations. The results showed that in model scale, the working towing speed and door spread for the pelagic trawl were 3.5 knots and 1.85 m, respectively, and for the bottom trawl net they were 4.0 knots and 1.8 m. At that speed and door spread, the drag force, net opening height, and wing-end spread of the pelagic model trawl were 36.73 N, 0.89 m, and 0.86 m, respectively, and the swept area was 0.76 m<sup>2</sup>. Bottom trawl speed and door spread were 30.43 N, 0.38 m, and 0.45 m, respectively, and the swept area was 0.25 m<sup>2</sup>. The maximum difference between the experimental and analytical results of hydrodynamic performances was less than 56.22% and 41.45%, respectively, for pelagic and bottom trawls, the results of the geometrical performances obtained using predicted equations were close to the experimental results in the flume tank with a maximum relative error less than 12.85%. The newly developed pelagic and bottom trawls had advanced engineering performance for high catch efficiency and selectivity and could be used in commercial fishing operations in Cameroonian waters.展开更多
Buried water pipelines are vulnerable to fail or break due to excessive loading or ground displacements.Accurate evaluation of pipe performance and serviceability relies on the proper understanding of pipe-soil intera...Buried water pipelines are vulnerable to fail or break due to excessive loading or ground displacements.Accurate evaluation of pipe performance and serviceability relies on the proper understanding of pipe-soil interactions(PSI).Analytical methods are important approaches to studying PSI.However,a systematic and thorough literature review to analyze the existing research trends,technological achievements and future research opportunities is not available.This work investigates analytical methods that analyze the stress and deformation of pipes in terms of cross-sectional,transverse and longitudinal PSI problems.First,scientometric analysis is performed to acquire relevant research works from online databases and analyze the existing data of influential authors,productive research sources and frequent key word occurrence in the fields of interest.Second,a qualitative discussion is performed in the three categories of PSI:(1)cross-sectional,including ovalization and circumferential behaviours;(2)transverse,including seismic fault crossing,weak soil zones,ground settlement and pipe uplift;and(3)longitudinal.Third,six research opportunities are discussed,including the role of friction in cross-sectional deformation,combined effects of bending and compression,choice of soil reaction models and calibration of key parameters,effect of pipe flaws,soil spatial variability and behaviours of curved pipes.This study helps beginners familiarize themselves with PSI analytical methods and provides experienced researchers with ideas for future research directions.展开更多
Knowledge on the interactions between engineered nanomaterials(ENMs) and biological systems is critical both for the assessment of biological effects of ENMs and for the rational design of ENM-based products. However,...Knowledge on the interactions between engineered nanomaterials(ENMs) and biological systems is critical both for the assessment of biological effects of ENMs and for the rational design of ENM-based products. However, probing the events that occur at the nano-bio interface remains extremely challenging due to their complex and dynamic nature. So far, the understanding of mechanisms underlying nano-bio interactions has been mainly limited by the lack of proper analytical techniques with sufficient sensitivity, selectivity and resolution for characterization of nano-bio interface events. Moreover, many classic bioanalytical methods are not suitable for direct measurement of nano-bio interface interactions. These have made establishing analytical methodologies for systematic and comprehensive study of nano-bio interface one of the most focused areas in nanobiology. In this review we have discussed some representative developments regarding analytical techniques for nano-bio interface characterization, including the improvements of traditional methods and the emergence of powerful new technologies. These developments have allowed ultrasensitive, real-time analysis of interactions between ENMs and biomolecules, transformations of ENMs in biological environment, and impacts of ENMs on living systems on molecular or cellular level.展开更多
The gastrointestinal tract of felines is inhabited by an active and intricate population of microorganisms whose alteration creates disturbances in the immune response and can affect health and disease states.Studies ...The gastrointestinal tract of felines is inhabited by an active and intricate population of microorganisms whose alteration creates disturbances in the immune response and can affect health and disease states.Studies using vari‑ous analytical methods have identified peculiar trends in various illnesses,with Firmicutes being the most prevalent phylum,followed by Bacteroidetes,Proteobacteria,and Actinobacteria.However,more Firmicutes and fewer Bac‑teroidetes have been observed in cats infected with Feline coronavirus.Alterations in the composition of these gut microbiota can be solved by microbiota modification through dietary fiber,probiotics,and fecal microbiota transplan‑tation.Therefore,it is critical to understand the composition of the gut microbiota,the changes in and roles of the gut environment,and the importance of these concepts for overall health while considering the exchange of microbes between humans and domestic animals.This review provides comprehensive information on feline gut microbiota composition,modulation,and analytic methods used for characterizing the gut microbiota.展开更多
The purpose of this study was to investigate the effect of bolt profile on load transfer mechanism of fully grouted bolts in jointed rocks using analytical and numerical methods. Based on the analytical method with de...The purpose of this study was to investigate the effect of bolt profile on load transfer mechanism of fully grouted bolts in jointed rocks using analytical and numerical methods. Based on the analytical method with development of methods, a new model is presented. To validate the analytical model, five different profiles modeled by ANSYS software. The profile of rock bolts T3 and T4with load transfer capacity,respectively 180 and 195 kN in the jointed rocks was selected as the optimum profiles. Finally, the selected profiles were examined in Tabas Coal Mine. FLAC analysis indicates that patterns 6+7 with2 NO flexi bolt 4 m better than other patterns within the faulted zone.展开更多
In recent times, the overall interest over Supercritical Fluid Chromatography (SFC) is truly growing within various domains but especially for pharmaceutical analysis. However, in the best of our knowledge modern SFC ...In recent times, the overall interest over Supercritical Fluid Chromatography (SFC) is truly growing within various domains but especially for pharmaceutical analysis. However, in the best of our knowledge modern SFC is not yet applied for drug quality control in the daily routine framework. Among the numerous reported SFC methods, none of them could be found to fully satisfy to all steps of the analytical method lifecycle. Thereby, the present contribution aims to provide an overview of the current and past achievements related to SFC techniques, with a targeted attention to this lifecycle and its successive steps. The included discussions were therefore structured accordingly and emphasizing the analytical method lifecycle in accord with the International Conference on Harmonisation (ICH). Recent and important scientific outputs in the field of analytical SFC, as well as instrumental evolution, qualification strategies, method development methodologies and discussions on the topic of method validation are reviewed.展开更多
On the basis of the concept of finite element methods, the rigorous analytical solutions of structural response in terms of the design variables are researched in this paper. The spatial trusses are taken as an exampl...On the basis of the concept of finite element methods, the rigorous analytical solutions of structural response in terms of the design variables are researched in this paper. The spatial trusses are taken as an example for the solution of the analytical expressions of the explicit displacements which are proved mathematically; then some conclusions are reached that are useful to structural sensitivity analysis and optimization. In the third part of the paper, a generalized geometric programming method is sugviped for the optimal model with the explicit displacement. Finally, the analytical solutions of the displacements of three trusses are given as examples.展开更多
Compared to the conventional permanent magnet synchronous machine(PMSM),the main characteristic of permanent magnet torque machine(PMTM)with high torque is that armature current is high,which has a great influence on ...Compared to the conventional permanent magnet synchronous machine(PMSM),the main characteristic of permanent magnet torque machine(PMTM)with high torque is that armature current is high,which has a great influence on magnetic circuit saturation,so this paper proposes a novel analytical method(AM)considering this problem.The key of this new AM is to consider armature reaction flux and armature leakage flux,which are closely related to output torque.Firstly,the expressions,including magnetomotive force(MMF)generated by permanent magnets(PMs)and armature windings are derived,and meanwhile slotting effect is considered by planning flux path.In addition,the expression of leakage flux density generated by armature windings are calculated,and flux density equivalence coefficient of tooth is calculated to be 2/3,which is used to solve the problem of uneven saturation of each tooth.Then,based on main flux factor and leakage flux factor proposed,an improved iteration process is proposed,and by this new process,the flux density of each yoke and tooth can be obtained,which is beneficial to obtain more accurate air-gap flux density and flux linkage.Finally,a prototype of 60-pole 54-slot is fabricated,and the performances of the electric machine,such as back electromotive force(EMF)and output torque,are calculated by this new AM and finite element method(FEM).The results of FEM and experimental test show that this new AM is good enough to calculate the performance of PMTM.展开更多
A Reynolds-Averaged Navier Stokes(RANS)-information analytical method for predicting Rotor-Stator Interaction(RSI)broadband noise is established in this paper.First,the turbulence information is deduced from RANS simu...A Reynolds-Averaged Navier Stokes(RANS)-information analytical method for predicting Rotor-Stator Interaction(RSI)broadband noise is established in this paper.First,the turbulence information is deduced from RANS simulation result.Then,the unsteady load on the stator blade is calculated using a strip theory approach based on LINearized SUBsonic unsteady flow in cascade(LINSUB)and 2-D equivalence method.In the end,the sound power of RSI broadband noise is calculated by coupling the unsteady load on the stator blade with acoustic analogy and annular duct mode.The broadband noise model part of the RANS-information analytical method is validated against the upstream sound power of an annular cascade experimental bench.Besides,the RANS-information analytical method is used in predicting RSI broadband noise of a single-stage axial fan acoustic experimental bench,the results illustrate that the RANS-information analytical method can accurately predict the RSI broadband noise in different fan working conditions.After simplification the Wave Leading Edge(WLE)stator blade,the effect of WLE stator blade on RSI broadband noise is studies.Although the simplification may bring some discrepancies,the results illustrate that the RANS-information analytical method has the capability for further studies on the broadband noise reduction with WLE stator blade.展开更多
Over the past decade,the swift advancement of metabolomics can be credited to significant progress in technologies such as mass spectrometry,nuclear magnetic resonance,and multivariate statistics.Currently,metabolomic...Over the past decade,the swift advancement of metabolomics can be credited to significant progress in technologies such as mass spectrometry,nuclear magnetic resonance,and multivariate statistics.Currently,metabolomics garners widespread application across diverse fields including drug research and development,early disease detection,toxicology,food and nutrition science,biology,prescription,and chinmedomics,among others.Metabolomics serves as an effective characterization technique,offering insights into physiological process alterations in vivo.These changes may result from various exogenous factors like environmental conditions,stress,medications,as well as endogenous elements including genetic and protein-based influences.The potential scientific outcomes gleaned from these insights have catalyzed the formulation of innovative methods,poised to further broaden the scope of this domain.Today,metabolomics has evolved into a valuable and widely accepted instrument in the life sciences.However,comprehensive reviews focusing on the sample preparation and analytical methodologies employed in metabolomics within the life sciences are surprisingly scant.This review aims to fill that gap,providing an overview of current trends and recent advancements in metabolomics.Particular emphasis is placed on sample preparation,sophisticated analytical techniques,and their applications in life science research.展开更多
Green analytical chemistry(GAC)focuses on mitigating the adverse effects of analytical activities on human safety,human health,and environment.In addition to the 12 principles of GAC,proper GAC tools should be develop...Green analytical chemistry(GAC)focuses on mitigating the adverse effects of analytical activities on human safety,human health,and environment.In addition to the 12 principles of GAC,proper GAC tools should be developed and employed to assess the greenness of different analytical assays.The 15 widely used GAC metrics,i.e.,national environmental methods index(NEMI),advanced NEMI,assessment of green profile(AGP),chloroform-oriented toxicity estimation scale(ChlorTox Scale),Analytical Eco-Scale,Green Certificate Modified Eco-Scale,analytical method greenness score(AMGS),green analytical procedure index(GAPI),ComplexGAPI,red-green-blue(RGB)additive color model,RGB 12 algorithm,analytical greenness calculator(AGREE),AGREE preparation(AGREEprep),HEXAGON,and blue applicability grade index(BAGI),are selected as the typical tools.This article comprehensively presents and elucidates the principles,characteristics,merits,and demerits of 15 widely used GAC tools.This review is helpful for researchers to use the current GAC metrics to assess the environmental sustainability of analytical assays.展开更多
The laboratories in the bauxite processing industry are always under a heavy workload of sample collection, analysis, and compilation of the results. After size reduction from grinding mills, the samples of bauxite ar...The laboratories in the bauxite processing industry are always under a heavy workload of sample collection, analysis, and compilation of the results. After size reduction from grinding mills, the samples of bauxite are collected after intervals of 3 to 4 hours. Large bauxite processing industries producing 1 million tons of pure aluminium can have three grinding mills. Thus, the total number of samples to be tested in one day reaches a figure of 18 to 24. The sample of bauxite ore coming from the grinding mill is tested for its particle size and composition. For testing the composition, the bauxite ore sample is first prepared by fusing it with X-ray flux. Then the sample is sent for X-ray fluorescence analysis. Afterwards, the crucibles are washed in ultrasonic baths to be used for the next testing. The whole procedure takes about 2 - 3 hours. With a large number of samples reaching the laboratory, the chances of error in composition analysis increase. In this study, we have used a composite sampling methodology to reduce the number of samples reaching the laboratory without compromising their validity. The results of the average composition of fifteen samples were measured against composite samples. The mean of difference was calculated. The standard deviation and paired t-test values were evaluated against predetermined critical values obtained using a two-tailed test. It was found from the results that paired test-t values were much lower than the critical values thus validating the composition attained through composite sampling. The composite sampling approach not only reduced the number of samples but also the chemicals used in the laboratory. The objective of improved analytical protocol to reduce the number of samples reaching the laboratory was successfully achieved without compromising the quality of analytical results.展开更多
The proximal chemical analysis (AQP) includes 5 fundamental tests, which are: determination of crude protein, determination of crude fiber, determination of humidity, determination of ashes and determination of fa...The proximal chemical analysis (AQP) includes 5 fundamental tests, which are: determination of crude protein, determination of crude fiber, determination of humidity, determination of ashes and determination of fat. This last determination can be made in two different ways, which will depend on the type of sample being treated, as well as the amount of fat expected to be obtained in the food to be analyzed. For foods with low amounts of fat the hydrolysis technique is used, which is divided into 3 phases. All the methods before being taken to the daily practice in a laboratory of food analysis either internal control, verification or third authorized must be validated, in order to obtain consistent, robust and reliable results. In those cases in which the method that will be tested differs with the method that is reported in the literature, a comparison of both methods should be made in order to ensure that both are compatible and the results will be equally reliable. In the validation, the acceptance parameters will be established for each one of the tests that are carried out in it, while at the end of it the acceptance criteria for the general method will be established. The objective of this work was to carry out the development of analytical methodology that was validatable in order to reduce analysis time by using semi-automated equipment. In the case of semi-automated equipment, this comparison of methods is carried out, as it was the case of the analysis of fat with hydrolysis, which used a hydrolysis unit and the extraction equipment using samples of finished food for animal consumption. The results obtained in the validation using the traditional method correspond to a CV less than 2%, while the results obtained using semi-automated equipment correspond to a CV less than 2% for the case of fat determination with hydrolysis.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.:81603182 and 81703607)the Fundamental Research Funds for the Central Universities,China(Grant Nos.:DUT21RC(3)057,DUT23YG226,DUT24MS018,and DUT23YG228)+1 种基金the Natural Science Foundation of Liaoning Province,China(Grant No.:2023-MSBA-018)the Open Funding of Cancer Hospital of Dalian University of Technology,China(Grant No.:2024-ZLKF-33).
文摘The focus of green analytical chemistry(GAC)is to minimize the negative impacts of analytical procedures on human safety,human health,and the environment.Several factors,such as the reagents used,sample collection,sample processing,instruments,energy consumed,and the quantities of hazardous materials and waste generated during analytical procedures,need to be considered in the evaluation of the greenness of analytical assays.In this study,we propose a greenness evaluation metric for analytical methods(GEMAM).The new greenness metric is simple,flexible,and comprehensive.The evaluation criteria are based on both the 12 principles of GAC(SIGNIFICANCE)and the 10 factors of sample preparation,and the results are presented on a 0–10 scale.The GEMAM calculation process is easy to perform,and its results are easy to interpret.The output of GEMAM is a pictogram that can provide both qualitative and quantitative information based on color and number.
基金National Natural Science Foundation of China(Grant No.30225047 and 30701038)
文摘The chiral nature of biological systems enables their stereoselective interaction with chiral compounds. It has been well documented that the enantiomers ofa chiral drug may show differences in drug disposition especially in metabolic behavior. As a result, it is of vital importance to separate the enantiomers of a chiral drug in metabolic studies. This paper discusses enantioselective methods (include high-performance liquid chromatography, gas chromatography, capillary electrophoresis and high-performance liquid chromatography-mass spectrometry) that applied in chiral drug metabolism, using most recent examples where possible.
基金Project supported by the National Natural Science Foundation of China (No. 20437020 20575073) NSFC-JSPS Joint Research Project (No. 20511140134) the Major Research Program of Chinese Academy of Sciences (KZCX3-SW-432)
文摘In the present work, the different sample collection, pretreatment and analytical methods for polycyclic aromatic hydrocarbons (PAHs) in airborne particulates is systematacially reviewed, and the applications of these pretreatment and analytical methods for PAHs are compared in detail. Some comments on the future expectation are also presented.
基金supported by the National Natural Science Foundation of China (Grant No. 81430087, 81673396, 81603182)
文摘Nanoliposomes are considered to be the most successful nanoparticle drug delivery system, but their fate in vivo has not been fully understood due to lack of reliable bioanalytical methods, which seriously limits the development of liposomal drugs. Hence, an overview of currently used bioanalytical methods is imperative to lay the groundwork for the need of developing a bioanalytical method for liposome measurements in vivo. Currently, major analytical methods for nanoliposomes measurement in vivo include fluorescence labeling, radiolabeling, magnetic resonance imaging(MRI), mass spectrometry and computed tomography. In this review, these bioanalytical methods are summarized, and the advantages and disadvantages of each are discussed. We provide insights into the applicability and limitations of these analytical methods in the application of nanoliposomes measurement in vivo, and highlight the recent development of instrumental analysis techniques. The review is devoted to providing a comprehensive overview of the investigation of nanoliposomes design and associated fate in vivo, promoting the development of bioanalytical techniques for nanoliposomes measurement, and understanding the pharmacokinetic behavior, effectiveness and potential toxicity of nanoliposomes in vivo.
文摘Assessment of acid sulfate soil risk is an important step for acid sulfate soil management and its reliability depends very much on the suitability and accuracy of various analytical methods for estimating sulfide-derived potential acidity, actual acidity and acid-neutralizing capacity in acid sulfate soils. This paper critically reviews various analytical methods that are currently used for determination of the above parameters, as well as their implications for environmental risk assessment of acid sulfate soi1s.
文摘Terbinafine is a new powerful antifungal agent indicated for both oral and topical treatment of myco- sessince. It is highly effective in the treatment of determatomycoses. The chemical and pharmaceutical analysis of the drug requires effective analytical methods for quality control and pharmacodynamic and pharmacokinetic studies. Ever since it was introduced as an effective antifungal agent, many methods have been developed and validated for its assay in pharmaceuticals and biological materials. This article reviews the various methods reported during the last 25 years.
文摘Pioglitazone is an oral anti-hyperglycemic agent. It is used for the treatment of diabetes mellitus type 2. It selectively stimulates nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-gamma). It was the tenth-best-selling drug in the U.S. in 2008. This article examines published analytical methods reported so far in the literature for the determination of pioglitazone in biological samples and pharmaceutical formulations. They include various techniques like electrochemical methods, spectrophotometry, capillary electrophoresis, high-performance liquid chromatography, liquid chromatography-electrospray ionization-tandem mass spectrometry and high-performance thin layer chromatography.
文摘This study proposed the newly-designed Pelagic and demersal trawls for the fishing vessels operating in Cameroonian waters in pelagic and demersal fishing grounds. The engineering performances of both trawls were investigated using physical modelling method and analytical method based on the predicted equations. In a flume tank, a series of physical model tests based on Tauti’s law were performed to investigate the hydrodynamic and geometrical performances of both trawls and to assess the applicability of the analytical methods based on predicted equations. The results showed that in model scale, the working towing speed and door spread for the pelagic trawl were 3.5 knots and 1.85 m, respectively, and for the bottom trawl net they were 4.0 knots and 1.8 m. At that speed and door spread, the drag force, net opening height, and wing-end spread of the pelagic model trawl were 36.73 N, 0.89 m, and 0.86 m, respectively, and the swept area was 0.76 m<sup>2</sup>. Bottom trawl speed and door spread were 30.43 N, 0.38 m, and 0.45 m, respectively, and the swept area was 0.25 m<sup>2</sup>. The maximum difference between the experimental and analytical results of hydrodynamic performances was less than 56.22% and 41.45%, respectively, for pelagic and bottom trawls, the results of the geometrical performances obtained using predicted equations were close to the experimental results in the flume tank with a maximum relative error less than 12.85%. The newly developed pelagic and bottom trawls had advanced engineering performance for high catch efficiency and selectivity and could be used in commercial fishing operations in Cameroonian waters.
基金The authors gratefully acknowledge the Innovation and Technology Support Programme(ITSP)[Grant No.ITS/033/20FP]the Water Supplies Department of Hong Kong,China.Suggestions given by Dr.Andy Y.F.Leung are also appreciated.
文摘Buried water pipelines are vulnerable to fail or break due to excessive loading or ground displacements.Accurate evaluation of pipe performance and serviceability relies on the proper understanding of pipe-soil interactions(PSI).Analytical methods are important approaches to studying PSI.However,a systematic and thorough literature review to analyze the existing research trends,technological achievements and future research opportunities is not available.This work investigates analytical methods that analyze the stress and deformation of pipes in terms of cross-sectional,transverse and longitudinal PSI problems.First,scientometric analysis is performed to acquire relevant research works from online databases and analyze the existing data of influential authors,productive research sources and frequent key word occurrence in the fields of interest.Second,a qualitative discussion is performed in the three categories of PSI:(1)cross-sectional,including ovalization and circumferential behaviours;(2)transverse,including seismic fault crossing,weak soil zones,ground settlement and pipe uplift;and(3)longitudinal.Third,six research opportunities are discussed,including the role of friction in cross-sectional deformation,combined effects of bending and compression,choice of soil reaction models and calibration of key parameters,effect of pipe flaws,soil spatial variability and behaviours of curved pipes.This study helps beginners familiarize themselves with PSI analytical methods and provides experienced researchers with ideas for future research directions.
基金supported by the National Natural Science Foundation of China (21320102003, 31200752, 31661130152, 11435002)the National Distinguished Young Scientists Program (31325010)
文摘Knowledge on the interactions between engineered nanomaterials(ENMs) and biological systems is critical both for the assessment of biological effects of ENMs and for the rational design of ENM-based products. However, probing the events that occur at the nano-bio interface remains extremely challenging due to their complex and dynamic nature. So far, the understanding of mechanisms underlying nano-bio interactions has been mainly limited by the lack of proper analytical techniques with sufficient sensitivity, selectivity and resolution for characterization of nano-bio interface events. Moreover, many classic bioanalytical methods are not suitable for direct measurement of nano-bio interface interactions. These have made establishing analytical methodologies for systematic and comprehensive study of nano-bio interface one of the most focused areas in nanobiology. In this review we have discussed some representative developments regarding analytical techniques for nano-bio interface characterization, including the improvements of traditional methods and the emergence of powerful new technologies. These developments have allowed ultrasensitive, real-time analysis of interactions between ENMs and biomolecules, transformations of ENMs in biological environment, and impacts of ENMs on living systems on molecular or cellular level.
基金funded this manuscript for the Central Universities(Grant Nos.2662023DKPY004 and 2662021DKQD005).
文摘The gastrointestinal tract of felines is inhabited by an active and intricate population of microorganisms whose alteration creates disturbances in the immune response and can affect health and disease states.Studies using vari‑ous analytical methods have identified peculiar trends in various illnesses,with Firmicutes being the most prevalent phylum,followed by Bacteroidetes,Proteobacteria,and Actinobacteria.However,more Firmicutes and fewer Bac‑teroidetes have been observed in cats infected with Feline coronavirus.Alterations in the composition of these gut microbiota can be solved by microbiota modification through dietary fiber,probiotics,and fecal microbiota transplan‑tation.Therefore,it is critical to understand the composition of the gut microbiota,the changes in and roles of the gut environment,and the importance of these concepts for overall health while considering the exchange of microbes between humans and domestic animals.This review provides comprehensive information on feline gut microbiota composition,modulation,and analytic methods used for characterizing the gut microbiota.
文摘The purpose of this study was to investigate the effect of bolt profile on load transfer mechanism of fully grouted bolts in jointed rocks using analytical and numerical methods. Based on the analytical method with development of methods, a new model is presented. To validate the analytical model, five different profiles modeled by ANSYS software. The profile of rock bolts T3 and T4with load transfer capacity,respectively 180 and 195 kN in the jointed rocks was selected as the optimum profiles. Finally, the selected profiles were examined in Tabas Coal Mine. FLAC analysis indicates that patterns 6+7 with2 NO flexi bolt 4 m better than other patterns within the faulted zone.
文摘In recent times, the overall interest over Supercritical Fluid Chromatography (SFC) is truly growing within various domains but especially for pharmaceutical analysis. However, in the best of our knowledge modern SFC is not yet applied for drug quality control in the daily routine framework. Among the numerous reported SFC methods, none of them could be found to fully satisfy to all steps of the analytical method lifecycle. Thereby, the present contribution aims to provide an overview of the current and past achievements related to SFC techniques, with a targeted attention to this lifecycle and its successive steps. The included discussions were therefore structured accordingly and emphasizing the analytical method lifecycle in accord with the International Conference on Harmonisation (ICH). Recent and important scientific outputs in the field of analytical SFC, as well as instrumental evolution, qualification strategies, method development methodologies and discussions on the topic of method validation are reviewed.
文摘On the basis of the concept of finite element methods, the rigorous analytical solutions of structural response in terms of the design variables are researched in this paper. The spatial trusses are taken as an example for the solution of the analytical expressions of the explicit displacements which are proved mathematically; then some conclusions are reached that are useful to structural sensitivity analysis and optimization. In the third part of the paper, a generalized geometric programming method is sugviped for the optimal model with the explicit displacement. Finally, the analytical solutions of the displacements of three trusses are given as examples.
基金supported in part by the National Natural Science Foundation of China under Grant 52125701.
文摘Compared to the conventional permanent magnet synchronous machine(PMSM),the main characteristic of permanent magnet torque machine(PMTM)with high torque is that armature current is high,which has a great influence on magnetic circuit saturation,so this paper proposes a novel analytical method(AM)considering this problem.The key of this new AM is to consider armature reaction flux and armature leakage flux,which are closely related to output torque.Firstly,the expressions,including magnetomotive force(MMF)generated by permanent magnets(PMs)and armature windings are derived,and meanwhile slotting effect is considered by planning flux path.In addition,the expression of leakage flux density generated by armature windings are calculated,and flux density equivalence coefficient of tooth is calculated to be 2/3,which is used to solve the problem of uneven saturation of each tooth.Then,based on main flux factor and leakage flux factor proposed,an improved iteration process is proposed,and by this new process,the flux density of each yoke and tooth can be obtained,which is beneficial to obtain more accurate air-gap flux density and flux linkage.Finally,a prototype of 60-pole 54-slot is fabricated,and the performances of the electric machine,such as back electromotive force(EMF)and output torque,are calculated by this new AM and finite element method(FEM).The results of FEM and experimental test show that this new AM is good enough to calculate the performance of PMTM.
基金co-supported by the National Science and Technology Major Project,China(No.2017-Ⅱ-0008-0022)the National Natural Science Foundation of China(Nos.51936010 and 51776174)。
文摘A Reynolds-Averaged Navier Stokes(RANS)-information analytical method for predicting Rotor-Stator Interaction(RSI)broadband noise is established in this paper.First,the turbulence information is deduced from RANS simulation result.Then,the unsteady load on the stator blade is calculated using a strip theory approach based on LINearized SUBsonic unsteady flow in cascade(LINSUB)and 2-D equivalence method.In the end,the sound power of RSI broadband noise is calculated by coupling the unsteady load on the stator blade with acoustic analogy and annular duct mode.The broadband noise model part of the RANS-information analytical method is validated against the upstream sound power of an annular cascade experimental bench.Besides,the RANS-information analytical method is used in predicting RSI broadband noise of a single-stage axial fan acoustic experimental bench,the results illustrate that the RANS-information analytical method can accurately predict the RSI broadband noise in different fan working conditions.After simplification the Wave Leading Edge(WLE)stator blade,the effect of WLE stator blade on RSI broadband noise is studies.Although the simplification may bring some discrepancies,the results illustrate that the RANS-information analytical method has the capability for further studies on the broadband noise reduction with WLE stator blade.
基金supported by the Science Foundation of Heilongjiang Administration of Traditional Chinese Medicine(No.2018-21).
文摘Over the past decade,the swift advancement of metabolomics can be credited to significant progress in technologies such as mass spectrometry,nuclear magnetic resonance,and multivariate statistics.Currently,metabolomics garners widespread application across diverse fields including drug research and development,early disease detection,toxicology,food and nutrition science,biology,prescription,and chinmedomics,among others.Metabolomics serves as an effective characterization technique,offering insights into physiological process alterations in vivo.These changes may result from various exogenous factors like environmental conditions,stress,medications,as well as endogenous elements including genetic and protein-based influences.The potential scientific outcomes gleaned from these insights have catalyzed the formulation of innovative methods,poised to further broaden the scope of this domain.Today,metabolomics has evolved into a valuable and widely accepted instrument in the life sciences.However,comprehensive reviews focusing on the sample preparation and analytical methodologies employed in metabolomics within the life sciences are surprisingly scant.This review aims to fill that gap,providing an overview of current trends and recent advancements in metabolomics.Particular emphasis is placed on sample preparation,sophisticated analytical techniques,and their applications in life science research.
基金supported by the National Natural Science Foundation of China(Grant Nos.:81603182 and 81703607)the Fundamental Research Funds for the Central Universities,China(Grant Nos.:DUT24MS018,DUT23YG228,DUT21RC(3)057)+1 种基金the Open funding of Cancer Hospital of Dalian University of Technology,China(Grant No.:2024-ZLKF-33)the Natural Science Foundation of Liaoning Province,China(Grant No.:2023-MSBA-018).
文摘Green analytical chemistry(GAC)focuses on mitigating the adverse effects of analytical activities on human safety,human health,and environment.In addition to the 12 principles of GAC,proper GAC tools should be developed and employed to assess the greenness of different analytical assays.The 15 widely used GAC metrics,i.e.,national environmental methods index(NEMI),advanced NEMI,assessment of green profile(AGP),chloroform-oriented toxicity estimation scale(ChlorTox Scale),Analytical Eco-Scale,Green Certificate Modified Eco-Scale,analytical method greenness score(AMGS),green analytical procedure index(GAPI),ComplexGAPI,red-green-blue(RGB)additive color model,RGB 12 algorithm,analytical greenness calculator(AGREE),AGREE preparation(AGREEprep),HEXAGON,and blue applicability grade index(BAGI),are selected as the typical tools.This article comprehensively presents and elucidates the principles,characteristics,merits,and demerits of 15 widely used GAC tools.This review is helpful for researchers to use the current GAC metrics to assess the environmental sustainability of analytical assays.
文摘The laboratories in the bauxite processing industry are always under a heavy workload of sample collection, analysis, and compilation of the results. After size reduction from grinding mills, the samples of bauxite are collected after intervals of 3 to 4 hours. Large bauxite processing industries producing 1 million tons of pure aluminium can have three grinding mills. Thus, the total number of samples to be tested in one day reaches a figure of 18 to 24. The sample of bauxite ore coming from the grinding mill is tested for its particle size and composition. For testing the composition, the bauxite ore sample is first prepared by fusing it with X-ray flux. Then the sample is sent for X-ray fluorescence analysis. Afterwards, the crucibles are washed in ultrasonic baths to be used for the next testing. The whole procedure takes about 2 - 3 hours. With a large number of samples reaching the laboratory, the chances of error in composition analysis increase. In this study, we have used a composite sampling methodology to reduce the number of samples reaching the laboratory without compromising their validity. The results of the average composition of fifteen samples were measured against composite samples. The mean of difference was calculated. The standard deviation and paired t-test values were evaluated against predetermined critical values obtained using a two-tailed test. It was found from the results that paired test-t values were much lower than the critical values thus validating the composition attained through composite sampling. The composite sampling approach not only reduced the number of samples but also the chemicals used in the laboratory. The objective of improved analytical protocol to reduce the number of samples reaching the laboratory was successfully achieved without compromising the quality of analytical results.
文摘The proximal chemical analysis (AQP) includes 5 fundamental tests, which are: determination of crude protein, determination of crude fiber, determination of humidity, determination of ashes and determination of fat. This last determination can be made in two different ways, which will depend on the type of sample being treated, as well as the amount of fat expected to be obtained in the food to be analyzed. For foods with low amounts of fat the hydrolysis technique is used, which is divided into 3 phases. All the methods before being taken to the daily practice in a laboratory of food analysis either internal control, verification or third authorized must be validated, in order to obtain consistent, robust and reliable results. In those cases in which the method that will be tested differs with the method that is reported in the literature, a comparison of both methods should be made in order to ensure that both are compatible and the results will be equally reliable. In the validation, the acceptance parameters will be established for each one of the tests that are carried out in it, while at the end of it the acceptance criteria for the general method will be established. The objective of this work was to carry out the development of analytical methodology that was validatable in order to reduce analysis time by using semi-automated equipment. In the case of semi-automated equipment, this comparison of methods is carried out, as it was the case of the analysis of fat with hydrolysis, which used a hydrolysis unit and the extraction equipment using samples of finished food for animal consumption. The results obtained in the validation using the traditional method correspond to a CV less than 2%, while the results obtained using semi-automated equipment correspond to a CV less than 2% for the case of fat determination with hydrolysis.