Monitoring and evaluating the health parameters of marine gas turbine engine help in developing predictive control techniques and maintenance schedules.Because the health parameters are unmeasurable,researchers estima...Monitoring and evaluating the health parameters of marine gas turbine engine help in developing predictive control techniques and maintenance schedules.Because the health parameters are unmeasurable,researchers estimate them only based on the available measurement parameters.Kalman filter-based approaches are the most commonly used estimation approaches;how-ever,the conventional Kalman filter-based approaches have a poor robustness to the model uncertainty,and their ability to track the mutation condition is influenced by historical data.Therefore,in this paper,an improved Kalman filter-based algorithm called the strong tracking extended Kalman filter(STEKF)approach is proposed to estimate the gas turbine health parameters.The analytical expressions of Jacobian matrixes are deduced by non-equilibrium point analytical linearization to address the problem of the conventional approaches.The proposed approach was used to estimate the health parameters of a two-shaft marine gas turbine engine in the simulation environment and was compared with the extended Kalman filter(EKF)and the unscented Kalman filter(UKF).The results show that the STEKF approach not only has a computation cost similar to that of the EKF approach but also outperforms the EKF approach when the health parameters change abruptly and the noise mean value is not zero.展开更多
After the linear analytical method of unsteady flow theory is further improved,an innovative and faster algorithm is introduced.The water storage in a confined aquifer is derived from the water transmissivity coeffici...After the linear analytical method of unsteady flow theory is further improved,an innovative and faster algorithm is introduced.The water storage in a confined aquifer is derived from the water transmissivity coefficient and the water-pressure conductivity coefficient.The water transmissivity coefficient is approximated by a Taylorseries expansion of drawdown,and the water-pressure conductivity coefficient is obtained by the average drawdown.In this algorithm,the distance of the observation points from the pumping well must be short.When the distance is as short as the radius of the main pumping well,the data of the drawdown difference between the sidewall and the center of pumping well are difficult to measure,but the same results can be achieved based on the assumption that the drawdown difference approximates to the drawdown of the observation wells at a radial distance from the pumping well according to the algorithm.Without the help of charts,this algorithm is more concise and efficient,which has been verified by the test of water pumping project in Tianjin Binhai International Airport.展开更多
In this paper, some properties of solutions of linear differential equations f^(k)+A(z)f = 0 and f(k)+ A(z)f = F(z) are discussed. Our results are a generalization of the original results.
An algorithm for calculating gravity effect of three-dimensional (3D) linear density distribution is presented in this paper. The linear continuous density distribution is represented with 3D grid model, which has a ...An algorithm for calculating gravity effect of three-dimensional (3D) linear density distribution is presented in this paper. The linear continuous density distribution is represented with 3D grid model, which has a resemblance to the velocity model used in some seismic tomography codes. The consensus in representation method of density model and velocity model facilitates the seismic-gravity-integrated interpretation or simultaneous inversion. The numerical test of synthetic data shows that although the analytical gravity formula for linear density distribution is more complex than that for piecewise constant density distribution, it takes less time to calculate the gravity effect with linear density model than that with piecewise constant density model. In addition, this method is used in the integrated interpretation of 3D seismological tomography and gravity data in Dabie Mountain area.展开更多
文摘Monitoring and evaluating the health parameters of marine gas turbine engine help in developing predictive control techniques and maintenance schedules.Because the health parameters are unmeasurable,researchers estimate them only based on the available measurement parameters.Kalman filter-based approaches are the most commonly used estimation approaches;how-ever,the conventional Kalman filter-based approaches have a poor robustness to the model uncertainty,and their ability to track the mutation condition is influenced by historical data.Therefore,in this paper,an improved Kalman filter-based algorithm called the strong tracking extended Kalman filter(STEKF)approach is proposed to estimate the gas turbine health parameters.The analytical expressions of Jacobian matrixes are deduced by non-equilibrium point analytical linearization to address the problem of the conventional approaches.The proposed approach was used to estimate the health parameters of a two-shaft marine gas turbine engine in the simulation environment and was compared with the extended Kalman filter(EKF)and the unscented Kalman filter(UKF).The results show that the STEKF approach not only has a computation cost similar to that of the EKF approach but also outperforms the EKF approach when the health parameters change abruptly and the noise mean value is not zero.
基金Supported by Major State Basic Research Development Program of China("973" Program,No.2010CB732106)
文摘After the linear analytical method of unsteady flow theory is further improved,an innovative and faster algorithm is introduced.The water storage in a confined aquifer is derived from the water transmissivity coefficient and the water-pressure conductivity coefficient.The water transmissivity coefficient is approximated by a Taylorseries expansion of drawdown,and the water-pressure conductivity coefficient is obtained by the average drawdown.In this algorithm,the distance of the observation points from the pumping well must be short.When the distance is as short as the radius of the main pumping well,the data of the drawdown difference between the sidewall and the center of pumping well are difficult to measure,but the same results can be achieved based on the assumption that the drawdown difference approximates to the drawdown of the observation wells at a radial distance from the pumping well according to the algorithm.Without the help of charts,this algorithm is more concise and efficient,which has been verified by the test of water pumping project in Tianjin Binhai International Airport.
基金Supported by the National Natural Science Foundation of China(Grant Nos.1130123211171119)+1 种基金the Youth Science Foundation of Education Bureau of Jiangxi Province(Grant No.GJJ12207)the Natural Science Foundation of Jiangxi Province(Grant No.20132BAB211009)
文摘In this paper, some properties of solutions of linear differential equations f^(k)+A(z)f = 0 and f(k)+ A(z)f = F(z) are discussed. Our results are a generalization of the original results.
文摘An algorithm for calculating gravity effect of three-dimensional (3D) linear density distribution is presented in this paper. The linear continuous density distribution is represented with 3D grid model, which has a resemblance to the velocity model used in some seismic tomography codes. The consensus in representation method of density model and velocity model facilitates the seismic-gravity-integrated interpretation or simultaneous inversion. The numerical test of synthetic data shows that although the analytical gravity formula for linear density distribution is more complex than that for piecewise constant density distribution, it takes less time to calculate the gravity effect with linear density model than that with piecewise constant density model. In addition, this method is used in the integrated interpretation of 3D seismological tomography and gravity data in Dabie Mountain area.